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Abstract. Harmonization of magnetic resonance imaging (MRI) and positron
emission tomography (PET) scans from multi-scanner and multi-site studies
presents a challenging problem. We applied the Removal of Artificial Voxel
Effect by Linear regression (RAVEL) method to normalize T1-MRI intensities
collected on two different scanners across two different sites as part of the
Neurodegeneration in Aging Down syndrome (NiAD) study. The effects on
FreeSurfer regional cortical thickness and volume outcome measures, in addi-
tion to FreeSurfer-based regional quantification of amyloid PET standardized
uptake value ratio (SUVR) outcomes, were evaluated. A neuroradiologist
visually assessed the accuracy of FreeSurfer hippocampus segmentations with
and without the application of RAVEL. Quantitative results demonstrated that
the application of RAVEL intensity normalization prior to running FreeSurfer
significantly impacted both FreeSurfer volume and cortical thickness outcome
measures. Visual assessment demonstrated that the application of RAVEL
significantly improved FreeSurfer hippocampal segmentation accuracy.
The RAVEL intensity normalization had little impact on PET SUVR measures.

Keywords: Harmonization � MRI � PET

1 Introduction

Positron emission tomography (PET) and structural magnetic resonance imaging
(MRI) are two neuroimaging modalities frequently used in studies of Alzheimer’s
Disease (AD). [11C] Pittsburgh Compound B (PiB) PET standardized uptake value
ratio (SUVR) and T1-weighted MRI-based volumetric measures, such as hippocampal
volume and entorhinal cortical thickness, play a crucial role in studying the progression
of AD in the elderly (Jack et al. 2017; Schwarz et al. 2016; Villemagne et al. 2011),
autosomal dominant AD mutation carriers (Yau et al. 2015), and Down Syndrome
(DS) populations (Lao et al. 2017).
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Adults with DS are at high risk to reveal AD pathology in part due to the tripli-
cation of chromosome 21 encoding the amyloid precursor protein. Adults with DS are
typically affected by AD pathology by their 30s, demonstrate AD-associated structural
and functional brain changes in midlife, and have a 70–80% chance of clinical
dementia by their 60s (Lao et al. 2017; Tudorascu et al. 2019).

Multi-site multimodal neuroimaging studies are becoming increasingly popular in
studying neurodegenerative diseases, but there is a lack of statistical methods for
combining data acquired across multiple sites and scanners. The use of different
scanner types for data acquisition can introduce a significant amount of variability in
the image processing, which propagates into the statistical analysis pipeline. Therefore,
data harmonization should be considered a key element in the analysis of data from
multi-site studies.

Previous research in addressing the multi-site confound and data harmonization has
focused on either characterizing differences in derived imaging measures obtained
across different scanners (Tummala et al. 2016) or on harmonizing derived measures
using statistical models that account for scanner variability (Fortin et al. 2018; Johnson,
Li and Rabinovic 2007). In both cases the focus has been on post-image processing
derived measures.

Heinen and colleagues (Heinen et al. 2016) have characterized the robustness of
measures from 1.5T and 3T MRI on the same subjects, using multiple automated
techniques and evaluating accuracy using manual segmentations, and show that all
automated methods demonstrate variability in accuracy depending on the segmented
compartment/tissue type (Heinen et al. 2016). Pfefferbaum et al. characterized agree-
ment between volume measures acquired at 1.5T and 3T using two techniques
(FreeSurfer and SRI24) (Pfefferbaum et al. 2012). Their results demonstrated varying
degrees of agreement depending on region and analysis method. Notably, the globus
pallidus showed particularly poor agreement with either method. It has also been
shown that including acquisition site as a confounding variable does not improve
prediction accuracy of a cognitive outcome from imaging data (Rao, Monteiro and
Mourao-Miranda 2017).

The focus of our study was to investigate the impact of a T1-weighted MRI
intensity normalization method, Removal of Artificial Voxel Effect by Linear regres-
sion (RAVEL) (Fortin et al. 2016), on MRI- and PET-based outcome measures. The
purpose of RAVEL is to remove unwanted variation from and standardize MRI voxel
intensity values. RAVEL consists of two main steps: (1) factor analysis of control
voxels within cerebrospinal fluid (CSF) space, where voxel intensities are known to be
unassociated with disease status and clinical covariates, to estimate the principal
directions of unwanted technical variability; and (2) linear regression at the whole brain
level, including both covariates of biological interest and direction of unwanted
variation.

We specifically focused on investigating MRI intensity normalization using
RAVEL for improving neuroimaging outcomes derived from intensity normalized
images. Four major steps were combined to create a novel characterization of the
effects of RAVEL normalization on neuroimaging derived outcomes. The processes in
place were: 1) RAVEL intensity normalization, 2) MRI segmentation using FreeSurfer
v5.3 (FS) and derivation of cortical thickness and Region-of-Interest (ROI) volumes, 3)
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PET SUVR quantification using ROIs derived from MRI images processed with and
without RAVEL intensity normalization, and 4) neuroradiological evaluation to assess
the accuracy of hippocampus segmentation derived with and without RAVEL intensity
normalization. The effect of RAVEL normalization on MRI- and PET-based outcome
measures was explicitly assessed. However, the harmonization of outcome measures
was not, as the assessed cohort did not include same-subject data scanned across
multiple scanners and/or sites, which would be necessary to explicitly and accurately
assess harmonization.

2 Methods

2.1 Study Participants

Forty subjects with Down syndrome were selected from two sites participating in the
Neurodegeneration in Aging Down Syndrome (NiAD) study, 20 subjects from the
University of Pittsburgh (UPitt) and 20 from the University of Wisconsin (UWisc). The
20 subjects from each site were selected to span the age range of total study participants
(32–54 y/o from UPitt, 30–54 y/o from UWisc), and the frequency of amyloid burden
positivity as assessed by PiB PET (D. L. Tudorascu et al. 2018) was matched across
sites. In all, 10 subjects with PiB scans indicative of amyloid deposition (PiB (+)) and
30 subjects without indication of deposition (PiB (−)) were used in this work. Amyloid
classification was established as part of our existing standard analysis of the data and
based on previously published methods from our group (Cohen et al. 2013).

2.2 Image Acquisition

MRI. Sagittally acquired structural T1-weighted MRIs were acquired at both sites.
A Siemens MAGNETOM Prisma 3T scanner was employed at the UPitt (TE = 2.95
ms; TI = 900.0 ms; TR = 2300 ms; Weighting = PD; Flip Angle = 11.0° ; Pulse
Sequence = GR/IR). A General Electric Discovery MR750 scanner was used at the
UWisc (TE = 3.04 ms; TI = 400.0 ms; TR = 7.35 ms; Weighting = T1; Flip
Angle = 11.0° ; Pulse Sequence = GR). MRIs from both sites had an in-plane pixel
spacing of 1.05 mm and a sagittal thickness of 1.2 mm.

PET. PiB PET imaging was performed on a Siemens mCT Biograph PET/CT scanner
(UPitt) and a Siemens EXACT HR + PET scanner (UWisc). For both sites, a nominal
dose of 15 mCi PiB was delivered as a bolus injection over approximately 30 s,
followed by a saline flush, and subjects were imaged over 50–70 min post-injection.
PET images were reconstructed into four 5-min time frames using the manufacturers’
software and included corrections for scatter, deadtime, random coincidences, and
radioactive decay.

Reconstruction at the UPitt site was via ordered subset expectation maximization
(OSEM) using 4 iterations of 12 subsets with no post filtering. Data required for
attenuation and scatter correction were derived from a low-dose CT-scan, without
contrast, acquired at the start of the scan session. Voxel size of the reconstructed PET
image was 1.02 mm � 1.02 mm � 2.03 mm (axial).
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PET images at the UWisc site were also produced via OSEM (4 iterations, 16
subsets) with no post filtering. Attenuation data were acquired in transmission scans
performed using Ge-68/Ga-68 rotating rod sources. PET image voxel size was
2.57 mm � 2.57 mm � 2.43 mm (axial).

2.3 RAVEL Intensity Normalization

The application of RAVEL to a set of T1-weighted MRIs requires 3 conditions:
(Condition 1) MRIs to be in a common anatomical space, (Condition 2) MRIs to be
skull-stripped, and (Condition 3) a single control ROI indicating common CSF voxels
across all images. Condition 2 is, in fact, not an explicit requirement of the RAVEL
process but is for the WhiteStripe WM normalization step which precedes RAVEL
[https://cran.rproject.org/web/packages/WhiteStripe/index.html]. The MRI preprocess-
ing steps undertaken to meet these conditions are outlined below.

First, MRIs were processed through the Statistical Parametric Mapping v12
(SPM12) Segment tool (Ashburner and Friston 2005) in order to generate forward and
inverse nonlinear registration transforms to SPM12-defined Montreal Neurological
Institute (MNI) space and subject-specific GM, WM, and CSF tissue probability maps
in both subject native space and MNI space. Incidentally, the application of SPM
Segment tool is commonly used as part of the Centiloid process in amyloid PET
imaging studies of Alzheimer’s disease and aging in Down syndrome (Klunk et al.
2015; Tudorascu et al. 2018).

To satisfy Condition 1, native-space MRIs were warped to MNI space using
subject-specific SPM12-defined forward transforms. In addition, MNI-space MRIs
were bias corrected using the “N4BiasFieldCorrection” function implemented within
the “ANTsR” library (Avants 2019), applied in RStudio version 1.2.1335.

To satisfy Condition 2, a single MNI-space intracranial mask was generated by
summing the GM, WM, and CSF tissue prior probability maps provided within SPM12
(TPM.nii), thresholding the sum image at 0.1 and binarizing the result. To remove
noncontiguous extracranial voxels from the MNI-space intracranial mask, the “cluster”
function within FSL FMRIB Software Library v5.0 (Jenkinson et al. 2012) was used to
identify and isolate the largest cluster. All MNI-space bias-corrected MRIs were then
masked using the intracranial mask to generate skull-stripped MRIs.

To satisfy Condition 3, MNI-space CSF tissue probability maps were first
thresholded at a value of 0.3 and binarized to generate subject-specific MNI-space CSF
ROIs. The intersection of all MNI-space CSF ROIs was then calculated to generate a
single CSF control ROI indicating all common CSF voxels across subjects.

RAVEL intensity normalization was subsequently performed using the “normal-
izeRAVEL” function within the “RAVEL” R library (https://github.com/Jfortin1/
RAVEL) with MNI-space bias-corrected skull-stripped MRIs as “input.files” input,
MNI-space intracranial mask as “brain.mask” input, and MNI-space CSF ROI as
“control.mask” input. Default parameters were used. Resulting RAVEL-intensity
normalized MRIs were also in MNI space with WM voxel intensities centered on a
value of 0, such that GM and CSF voxel intensities were negative. This is a conse-
quence of WhiteStripe normalization, which is run by default within the “normal-
izeRAVEL” function.
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To remove negative voxel intensities from RAVEL-normalized images, the mini-
mum voxel value across all images was added to each RAVEL-normalized MRI. The
voxel intensity-shifted MNI-space RAVEL-normalized MRIs were subsequently spa-
tially warped back to subject-specific native space using the SPM12 Segment-derived
inverse nonlinear transforms.

2.4 MRI Processing

Native-space unnormalized and RAVEL-normalized T1-weighted MRIs were pro-
cessed using FreeSurfer v5.3 (FS) to generate regional cortical thicknesses, volumes,
and binary ROI images for sampling PiB PET images. Unnormalized MRIs were
processed through FS using default parameters. RAVEL-normalized images were
processed using the “-noskullstrip” flag given that skull-stripping had already been
performed as part of the RAVEL normalization process.

2.5 PiB PET Processing

The multi-frame (5 min/frame) PiB PET images were visually inspected for frame-to-
frame motion, and motion corrected when appropriate, using PMOD software version
3.711 (PMOD Technologies LLC, https://www.pmod.com/). Single-frame PET images
were generated by averaging the time frames from 50–70 min post-injection. The
single-frame PET images were subsequently registered to subject-specific unnormalized
T1-weighted MRIs using the “Coregister: Estimate and Reslice” tool within SPM12.
Previously described PiB-specific composite ROIs were used to sample single-frame
PET images, generating regional PiB radioactivity concentration values (Tudorascu
et al. 2018). Regional values were normalized by dividing by the FS-defined cerebellar
GM radioactivity, resulting in regional SUVRs. PiB regional SUVR values were derived
using both unnormalized MRI-derived FS ROIs and RAVEL-normalized MRI-derived
FS ROIs. However, the PiB-PET images were not re-registered to RAVEL-normalized
MRIs. The results of this process, for each subject, were two sets of PiB-PET SUVR
measures based on FS ROIs: one set from the unnormalized MRI and one set from the
RAVEL-normalized MRI. For the purposes of this work, we evaluated PET results
using a striatal ROI, a region of early accumulation of amyloid deposition in DS
(Tudorascu et al., 2019), and a global ROI that is the union of all our standard amyloid
quantitation regions. Amyloid status (PiB (−) or PiB (+)) was not reevaluated as part of
this work.

2.6 Statistical Evaluation

Descriptive statistics including means and standard deviations (SD) were computed for
each cortical thickness and ROI volume as well as for the global PiB SUVR derived
measures with and without the use of RAVEL. Group differences were determined using
Cohen’s d effect sizes for each measure between PiB (−) and PiB (+) subject groups.
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Intraclass correlation coefficients (ICCs) and their corresponding 95% confidence
intervals (CI) were calculated to measure agreement between the derived measures from
unnormalized MRI and RAVEL-normalized MRI-derived FS cortical thicknesses,
volumes, and PiB SUVR values. FS volumes were normalized to FS-reported total
intracranial volume (tICV) before statistical assessment to account for sex-specific
differences in anatomical volumes (Schwarz et al. 2016).

A neuroradiologist (JMM) visually rated unnormalized and RAVEL-normalized
MRI-derived FS hippocampal masks on unnormalized MRIs using a four-point scale to
rate the accuracy of the segmentations (1 = poor, 2 = some errors, 3 = good,
4 = excellent). The rater was blinded to subject information, including age, gender,
amyloid status and to the origin and methodology from which hippocampal masks were
derived. The Wilcoxon signed-rank test was used to assess pairwise differences in rater
ranking between unnormalized MRI-derived FS hippocampal masks and RAVEL-
normalized MRI-derived FS hippocampal masks.

3 Results

Density plots, smoothed versions of histograms, of MRI voxel intensities are shown by
site and amyloid status at multiple preprocessing steps (Raw, after applying n4 cor-
rection, after applying White Stripe and, last, after RAVEL) in Fig. 1. It can be
observed that after RAVEL intensity normalization the histograms of intensities have a
much greater overlap, reinforcing that RAVEL normalization significantly reduces
MRI voxel intensity variability.

Descriptive statistics and PiB(−) to PiB(+) effect sizes for volumes, cortical
thicknesses, and SUVR are presented in Table 1. The derived PET global SUVR and
striatum SUVR measures were almost identical with or without the use of RAVEL in
the preprocessing stream. The estimated regional brain volumes obtained using
RAVEL were larger for left and right hippocampus in both PiB(−) and PiB (+) groups.
For assessing variability, standard deviations were larger for the PiB (+) group,
SD = 0.67 for left hippocampus and SD = 0.52 for right hippocampus when RAVEL
was used compared to SD = 0.57 for left hippocampus and SD = 0.50 for right hip-
pocampus when RAVEL was not used. In the PiB (-) group, the SD was smaller and
almost identical regardless of the use of RAVEL.

However, the cortical thickness values were much more variable, with no clear
pattern observed. For example, the means and SDs for the right entorhinal values are
almost identical across methods, while left entorhinal values diverged (3.77 mm mean
with SD = 0.40 for PiB (−) when RAVEL was not used and 3.69 mm mean with
SD = 0.39 when RAVEL was used). Similarly, in the PiB (+) group, the values were
3.37 mm, SD = 0.44 without RAVEL and 3.49 mm, SD = 0.42 with RAVEL. The
computed Cohen’s d effect sizes between PiB (+) and PiB (−) were 0.95 without
RAVEL and 0.45 with RAVEL.
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ICCs are shown for SUVR, volumes, and cortical thickness between outcomes
obtained with and without RAVEL in Table 2. The ICCs show very good agreement
between PET SUVR measures, with values greater than 0.9. The ICC values were
lower for volumes, with a range of ICC = 0.365 (95% CI: 0.066, 0.604) in the right
amygdala up to ICC = 0.830 (95% CI: 0.703, 0.906) for the right hippocampus. The
ICCs for the cortical thicknesses were much lower, specifically for middle temporal left
(0.228 (95% CI: −.083, 0.5)) and middle temporal right (0.33 (95% CI: 0.028, 0.579)).
Areas with highest ICC values for the cortical thickness were left fusiform (0.851 (95%
CI: 0.589, 0.864)) and right fusiform (0.871 (95% CI: 0.77, 0.929)).

Fig. 1. Density plots of MRI voxel intensities by site (University of Pittsburgh [UPitt] and
University of Wisconsin [UWisc]), amyloid classification status (PiB (−) and PiB (+)), and tissue
type (cerebrospinal fluid [CSF], grey matter [GM], and white matter [WM]) for multiple steps of
the RAVEL intensity normalization process (unnormalized [Raw], bias corrected [n4],
WhiteStripe-normalized [WhiteStripe], and RAVEL-normalized [RAVEL]). Results shown for
RAVEL are prior to the constant intensity shift described in the text.
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Neuroradiological ratings revealed that RAVEL intensity normalization signifi-
cantly improved right hippocampal segmentation accuracy (Wilcoxon W-value = 69,
p-value = 0.02) as shown in Fig. 2. When RAVEL was used, the right hippocampal
segmentation was excellent for 18 subjects as compared to only 10 when RAVEL was
not used. A single case is illustrated in Fig. 3, showing the hippocampus segmentation
by method with arrows pointing to the areas that were incorrectly segmented without
RAVEL normalization. The arrows point to voxels that were incorrectly classified as
hippocampus when RAVEL was not implemented (in red).

Table 1. Descriptive statistics for MRI- and PET- based outcome measures stratified by amyloid
status (PiB (−) and PiB (+)) and MRI intensity normalization method (unnormalized [Raw] and
RAVEL-normalized [RAVEL]), and Cohen’s d effect sizes between PiB (−) and PiB (+) groups.

Region Mean (SD) Effect size

PiB (−) PiB (+) Raw RAVEL

N = 30 N = 10
Raw RAVEL Raw RAVEL

PiB SUVR
Global 1.10

(0.07)
1.11 (0.07) 1.78 (0.40) 1.80 (0.39) 3.19 3.26

Striatum 1.28 (0.18) 1.31 (0.19) 2.26 (0.37) 2.30 (0.38) 3.86 3.80
Volume (tICV normalized)
Left Hippo-campus 3.00

(0.32)
3.22 (0.33) 2.24 (0.57) 2.38 (0.67) 1.83 1.83

Right Hippo-campus 3.02
(0.31)

3.16 (0.30) 2.27 (0.50) 2.47 (0.52) 1.97 1.81

Left
Amygdala

1.45
(0.18)

1.32
(0.25)

1.07
(0.32)

0.96 (0.26) 1.64 1.34

Right
Amygdala

1.56
(0.26)

1.32
(0.28)

1.13
(0.32)

1.06 (0.21) 1.51 0.93

Cortical thickness (mm)
Left
Entorhinal

3.77
(0.40)

3.68 (0.39) 3.37 (0.44) 3.49 (0.42) 0.95 0.45

Right
Entorhinal

3.93 (0.37) 3.94 (0.38) 3.55 (0.48) 3.55 (0.48) 0.91 0.90

Left
Fusiform

2.82
(0.20)

2.87 (0.18) 2.65 (0.21) 2.71 (0.16) 0.81 0.90

Right
Fusiform

2.95 (0.19) 2.94 (0.18) 2.78 (0.27) 2.82 (0.26) 0.77 0.53

Left Inferior Temporal 2.79 (0.27) 2.93 (0.20) 2.65 (0.22) 2.82 (0.14) 0.50 0.59
Right Inferior Temporal 2.86 (0.26) 2.92 (0.21) 2.75 (0.20) 2.82 (0.19) 0.41 0.47
Left Middle Temporal 2.86 (0.26) 3.09 (0.20) 2.75 (0.21) 2.94 (0.21) 0.43 0.71
Right Middle Temporal 2.80 (0.27) 3.01 (0.25) 2.70 (0.27) 2.86 (0.28) 0.37 0.58
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Table 2. Intraclass correlation coefficients (ICC) between unnormalized and RAVEL-intensity
normalized FreeSurfer-based regions of interest outcome measures for both sites (University of
Pittsburgh and University of Wisconsin) combined.

Region ICC (95% CI)

PiB SUVR

Global 0.998 (0.996, 0.999)

Striatum 0.995 (0.992, 0.998)

Volume

Left Hippocampus 0.754 (0.583, 0.862)

Right Hippocampus 0.830 (0.703, 0.906)

Left Amygdala 0.616 (0.382, 0.776)

Right Amygdala 0.365 (0.066, 0.604)

Cortical thickness

Left Entorhinal 0.683 (0.477, 0.819)

Right Entorhinal 0.758 (0.589, 0.864)

Left Fusiform 0.851 (0.738, 0.918)

Right Fusiform 0.871 (0.770, 0.929)

Left Inferior Temporal 0.474 (0.197, 0.682)

Right Inferior Temporal 0.647 (0.425, 0.796)

Left Middle Temporal 0.228 (−0.083, 0.500)

Right Middle Temporal 0.330 (0.028, 0.579)

Fig. 2. Visual ratings of FreeSurfer-based right hippocampus segmentations based on unnor-
malized (Raw) and RAVEL-intensity normalized (RAVEL) MRIs. A four-point rating scale was
used, such that 1 = poor, 2 = some errors, 3 = good, and 4 = excellent. (Color figure online)
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4 Discussion

In this study we show that using the RAVEL intensity normalization technique in a
multi-site imaging study of neurodegeneration in Down syndrome leads to increased
accuracy in hippocampal segmentation, an area of high significance for characterizing
Alzheimer’s disease pathology. However, it remains unclear if RAVEL intensity
normalization removes site- and scanner- specific variability in derived structural MRI
outcomes, such as volume and cortical thickness.

In terms of PET SUVR measures, observed differences were small between the
values obtained when RAVEL was used compared to when it was not used (Table 2).
This is likely due to the differences in spatial resolution of PET imaging (*5 mm)
relative to MRI (*1 mm), such that voxel-level differences in MRI-based ROI seg-
mentation may have little impact on the related PET ROI outcome measure.

Unlike the results for the PET SUVRs, the MRI-measured cortical thickness and
regional volume data exhibited much larger variability between the two preprocessing
methods (with and without RAVEL). RAVEL clearly impacted volume and cortical
thickness measures as exhibited by low levels of ICC agreement (<0.5 ICC) in the right
amygdala volume and left inferior temporal, left middle temporal, and right middle
temporal cortical thicknesses. It is, however, unclear whether the application of
RAVEL resulted in superior cortical thickness measures given the seemingly random
pattern of change in effect size between PiB (−) and PiB (+) subjects with and without
RAVEL.

PiB (+) subjects exhibiting amyloid deposition are further along the spectrum of
AD pathophysiology than PiB (−) subjects and thus may demonstrate an increased
level of cortical atrophy, or smaller volumes and cortical thicknesses, than PiB (−)
subjects (Jack et al. 2013). Therefore, it is expected that a method which improves
MRI-based regional segmentation accuracy would increase the effect sizes of volumes

Fig. 3. Sagittal, coronal, and axial slices of a single subject MRI with right hippocampal
segmentations overlaid generated without the use of RAVEL (red) and with RAVEL (green).
Arrows indicate extraneous non-hippocampus voxels classified as hippocampus prior to RAVEL
intensity normalization. (Color figure online)
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and cortical thicknesses between PiB (−) and PiB (+) groups. Five of the eight cortical
thickness regions presented in Table 1 had improved effect sizes with the application of
RAVEL, but the greatest difference in cortical thickness effect size was observed in the
left entorhinal region with no normalization outperforming RAVEL-intensity normal-
ization. For cortical thickness measurements, the features of the cortical ribbon present
challenges in processing that are dependent on size, shape and location within the
particular ribbon.

In conclusion, applying RAVEL normalization during preprocessing of image data
acquired at different sites using different scanners reduced variability in the distribution
of voxel intensities and improved the accuracy of hippocampal segmentation but not
the discriminatory power of quantitative FS-based outcome measures. The primary
purpose of this work was to assess the effects of RAVEL intensity normalization on
MRI- and PET-derived outcome measures. However, the efficacy of RAVEL in
removing site- and scanner- specific variability from volume and cortical thickness
measures was not assessed. Future work will address this by applying RAVEL on
same-subject data acquired on multiple scanners to more accurately assess RAVEL’s
effect on harmonization of imaging outcome measures than was possible with this
cohort. The effect of each preprocessing step (n4 bias correction, skull-stripping, and
WhiteStripe intensity normalization) on the accuracy and harmonization of MRI- and
PET- based outcome measures of same-subject data across different scanners will also
be more thoroughly characterized.

RAVEL can be easily incorporated into the preprocessing stream, and the code is
available online (https://github.com/Jfortin1/RAVEL) (Fortin et al. 2016).
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