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Abstract

A major limitation of gene expression biomarker studies is that they are not reproducible as

they simply do not generalize to larger, real-world, heterogeneous populations. Frequentist

multi-cohort gene expression meta-analysis has been frequently used as a solution to this

problem to identify biomarkers that are truly differentially expressed. However, the frequen-

tist meta-analysis framework has its limitations–it needs at least 4–5 datasets with hundreds

of samples, is prone to confounding from outliers and relies on multiple-hypothesis cor-

rected p-values. To address these shortcomings, we have created a Bayesian meta-analy-

sis framework for the analysis of gene expression data. Using real-world data from three

different diseases, we show that the Bayesian method is more robust to outliers, creates

more informative estimates of between-study heterogeneity, reduces the number of false

positive and false negative biomarkers and selects more generalizable biomarkers with less

data. We have compared the Bayesian framework to a previously published frequentist

framework and have developed a publicly available R package for use.

Author summary

There has long been a reproducibility crisis in medical research–driven by small, single-

cohort studies with low-to-moderate statistical power. One of the reasons for this lack of

generalizability is not accounting for heterogeneity representative of the real-world

patient population. To address this issue, researchers have turned to meta-analysis–which

allows for researchers to combine data from across previously published studies to gener-

ate an overall estimate of an effect, which has been used with gene expression data to cre-

ate diagnostic and prognostic markers of disease. However, traditional meta-analysis

techniques have limitations–they need at least 4–5 datasets with hundreds of samples and

are prone to confounding from outliers in datasets. In this study, we create a new frame-

work for gene expression meta-analysis using Bayesian statistics and show that it is more

robust to outliers, creates more informative estimates of heterogeneity, reduces the
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amount of data required, and reduces the number of false positive and false negative bio-

markers. We have compared the Bayesian framework to a previously published frame-

work and have developed a publicly available R package for use.

Introduction

With the advent of high-throughput transcriptomics, researchers have been able to profile

gene expression in millions of samples at low costs, opening many new avenues of research.

However, single-cohort studies with low-to-moderate statistical power are one of the four

horsemen of irreproducibility in biomedical research [1]. Recent studies have estimated that

only 10–25% of biomedical studies are reproducible [2–4]. This is especially a problem in bio-

marker studies, where differentially expressed genes (DEGs) between subjects with disease of

interest and controls rarely generalize to the real-world patient populations. One of the reasons

for this lack of generalizability is not accounting for heterogeneity representative of the real-

world patient population.

Broadly, there are three sources of heterogeneity in the real-world patient population: bio-

logical (age, sex, tissue, cell type), clinical (treatment, disease duration, comorbidities), and

technical (experimental protocol, batch effects). Traditionally, in a single cohort analysis, these

sources of heterogeneity reduce the statistical power, requiring a large number of samples.

Therefore, single cohort studies strive to increase statistical power by limiting heterogeneity as

much as possible. However, this reduction in heterogeneity in single cohort studies leads to

reduced generalizability to heterogeneous, real-world patient populations. We have repeatedly

shown that leveraging heterogeneity across independent cohorts using a frequentist meta-anal-

ysis approach can identify robust disease signatures that are diagnostic and prognostic, and

have been translated into a point-of-care test for clinical use [5,6]. We have previously identi-

fied best practices for gene expression meta-analyses, such as the number of studies and sam-

ples needed [7].

Despite its repeated success in identifying robust disease signatures, the frequentist

approach has its limitations. First, previous work has shown that approximately 4–5 datasets

with about 250 samples are needed to perform a successful frequentist meta-analysis [7]. How-

ever, several diseases simply do not have enough samples or datasets publicly available for suc-

cessful integration using this guideline. Second, the statistic used to estimate and summarize

effect sizes (e.g., Cohen’s d, Hedge’s g) can be susceptible to outlier samples within a subset of

studies, resulting in misleading effect size estimates. Finally, frequentist approaches rely on

multiple hypotheses corrected p-values, which are shown to be substantially underestimated

[7]. Bayesian meta-analysis approaches have the potential to overcome these limitations. For

example, Bayesian estimation has previously been shown to be more outlier resistant than tra-

ditional hypothesis testing [8]. Importantly, unlike frequentist meta-analysis, adjusting for

multiple comparisons is not required for Bayesian approaches and yields more efficient and

reliable estimates of effect [9].

We compared a frequentist approach with a new framework utilizing Bayesian approxima-

tion supersedes the t-test (BEST) for the meta-analysis of transcriptome using multiple inde-

pendent datasets from humans with different diseases [8]. Here, we show that using this

Bayesian approach, we are able to: 1) select more generalizable and robust biomarkers with

fewer datasets, 2) be robust to outliers, 3) create better estimates of between study heterogene-

ity for biomarker selection, and 4) reduce the number of false positives and false negative

genes for classification. This framework has also been developed into an R package,
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bayesMetaIntegrator, that is publicly available for use (https://github.com/Khatri-Lab/

bayesMetaIntegrator).

Results

Bayesian meta-analysis is resistant to outliers and provides a better

estimate of heterogeneity in gene expression meta-analysis

We investigated whether the two meta-analysis approaches, Bayesian (Fig 1) and frequentist,

identified the same or different set of genes using four publicly available asthma bronchial epi-

thelial cell gene expression datasets—differentiating samples from asthma patients and healthy

controls (S1 Table) [10–12]. Although the summary effect sizes were highly correlated

between approaches (r = 0.94, p<2.2e-16; Fig 2A), the Bayesian approach consistently esti-

mated higher between-dataset heterogeneity, τ2, than the frequentist approach (Fig 2B). While

the frequentist approach found a large number of genes (26%) with no between-dataset hetero-

geneity, the Bayesian approach did not assign near-zero heterogeneity (τ2 < 0.01) to any

genes. This difference in τ2 between the two approaches is due to how it is estimated. In a fre-

quentist meta-analysis, high within-study heterogeneity leads to wider confidence intervals,

which in turn drowns out the between-study heterogeneity. In contrast, Bayesian meta-analy-

sis uses a probabilistic distribution to represent τ2 instead of a confidence interval, resulting in

more conservative estimates of heterogeneity. The range of between-datasets heterogeneity

was substantially higher for the Bayesian approach compared to the frequentist approach, fur-

ther suggesting a Bayesian approach is more conservative than a frequentist approach.

Interestingly, despite the high correlation between summary effect sizes, within-dataset

effect size correlations ranged widely from 0.87 to 0.95. Closer examination found that both

approaches differed substantially in effect size estimates for a subset of genes. For example, in

GSE64913, a subset of genes has an effect size of 0 when using the Bayesian approach, but a

non-zero effect size when using a frequentist meta-analysis (Fig 2B). Therefore, we investi-

gated whether these differences in effect size estimates and between-dataset heterogeneity will

lead to identification of different set of differentially expressed genes (DEGs).

We used false discovery rate (FDR) for the frequentist approach and Bayesian probability

for the Bayesian approach as the measures of statistical significance. Low correlation between

both measures (r = 0.37, p<2.2e-16) suggested they identified different sets of DEGs. As the

number of significant genes by either approach increased, the number of genes identified as

Dataset ES Distribution 
Cases vs. Controls
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Std Dev: τ

Datasets with cases and 
controls

P l d ES Di t ib ti
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If ES > 0: Pr(Gene ES < 0)
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Fig 1. Bayesian gene expression schematic. We first use the BEST framework to estimate the posterior distribution of effect size between cases and controls

for each gene in each dataset. Then we combine the distributions from independent studies using a gaussian hierarchical model, estimating both the pooled

effect size and between-study heterogeneity in the process. Following, we estimate the probability of a gene being upregulated or downregulated based on the

pooled effect size distribution.

https://doi.org/10.1371/journal.pcbi.1010260.g001
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significant by both methods also increased (S3 Fig). Out of 1,117 DEGs that were statistically

significant by either approach, 545 genes (48.8%) were statistically significant by both

approaches (FDR < 10% and Bayesian probability < 0.1). The remaining 572 genes were sig-

nificant when using either the frequentist approach (235 genes, 21%) or the Bayesian approach

(337 genes, 30.2%) (Fig 2D).
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https://doi.org/10.1371/journal.pcbi.1010260.g002
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Importantly, for genes that were significant by either approach but not both, we found that

the Bayesian approach is more robust to outlier samples within a single dataset than the fre-

quentist approach. For example, SLC6A4 was significant by the frequentist approach

(FDR<4%), but not by the Bayesian approach (p = 0.24). Comparison of effect sizes from both

approaches showed that for GSE64913, the frequentist approach estimated statistically signifi-

cant non-zero effect size, whereas the Bayesian approach estimated non-significant effect size

(Fig 2E). Further analysis showed that although 59 out of 70 samples in GSE64913 had identi-

cal expression values for SLC6A4, irrespective of estimate of statistically significant effect size

by the frequentist approach was driven by only 2 out of 70 samples (Fig 2F). In contrast, the

Bayesian approach correctly estimated near-zero effect size due to its reliance on parameter

estimation and sampling, and was not confounded by a small number of outliers. This obser-

vation demonstrated that the Bayesian approach reduced false positives.

In contrast, another gene, FANCI, was statistically significant by the Bayesian approach

(p = 0.01), but not by the frequentist approach (FDR = 19%). Although both approaches esti-

mated the effect size for FANCI in the same direction, the difference in statistical significance

was due to the difference in estimated effect size in a single dataset (GSE18965) (Fig 2E). The

frequentist approach estimated negative effect size for FANCI in GSE18965, which was driven

by a single healthy control sample (Fig 2F), which in turn led to higher between-study hetero-

geneity for the gene and the summary effect size for the gene being statistically insignificant. In

contrast, the Bayesian approach was not confounded by a single sample, correctly estimated its

effect size as positive in GSE18965, and identified it as being statistically significant overall.

Collectively, these results show that the Bayesian meta-analysis approach is robust to outliers,

which in turn reduces false positives and false negatives.

Comparing Bayesian and frequentist meta-analysis methods

A key difference between the frequentist and Bayesian meta-analysis approaches is how

between-study heterogeneity affects estimates of summary effect size and its statistical signifi-

cance. To investigate the effect of between-study heterogeneity, we simulated data across 5

independent studies (Methods) such that either the effect size, its variance, or both changed

for one study (Fig 3). Increasing the effect size for one study without changing its variance esti-

mate, which simulated adding a study with high certainty of a strong positive effect, statistical

significance reduced for the frequentist approach (i.e., higher FDR), but increased for the

Bayesian approach (i.e., lower probability), although the between-study heterogeneity

increased for both approaches (Fig 3B). When we increased only variance or both effect size

and variance, the summary heterogeneity and statistical significance decreased for both

approaches (Fig 3C and 3D). These results, combined with robustness of the Bayesian

approach to outliers within a dataset, are desired characteristics for identifying generalizable

signal across heterogeneous datasets.

Comparing the predictive performance of Bayesian and frequentist meta-

analysis

Given that the Bayesian approach is robust to outlier samples within a study and better esti-

mates between-study heterogeneity, we investigated whether it would identify DEGs that are

more generalizable to unseen data than the frequentist approach. To investigate this, we

applied both meta-analysis approaches to transcriptome profiles from patients with cardiomy-

opathy (14 datasets, 1039 samples) [13–23] or tuberculosis (27 datasets, 3069 samples) [24–

45]. For both diseases, we identified most differentially expressed genes by successively

increasing the number of datasets and compared their discriminatory power in unused
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datasets (Fig 4A and Methods). For both diseases, we randomly selected N datasets 100 times

and applied both meta-analysis approaches to each set of randomly selected N datasets. For

each iteration, we selected DEGs with absolute summary effect size > 0.6 and used the top 10

genes with the lowest FDR or Bayesian probability. We used difference of geometric means of

over- and under-expressed genes as a classifier in unseen datasets to distinguish cases from

healthy controls. We chose difference of geometric mean as a classification model because

such a classifier has been repeatedly demonstrated to be generalizable and has been translated

in a point-of-care test [5,6,46,47]. When we varied the effect size threshold (0.4 to 1.1) and the

number of selected genes (10 to 200), while keeping the number of datasets used for analysis

constant at 4, the genes selected using the Bayesian approach consistently led to higher AUC

(S2 Fig).

First, we compared area under the receiver operating characteristic (AUROC) curves in the

unused datasets in each iteration as a proxy for identifying generalizable gene signatures for

both meta-analysis approaches. For both diseases, irrespective of the number of datasets used,

the DEGs identified using the Bayesian approach had consistently higher AUROC in unseen

datasets than using the frequentist approach. When using 2 out of 27 datasets to identify DEGs

for tuberculosis, there was no significant difference in AUROC between the two approaches,

which suggests that N = 2 does not represent the heterogeneity across the other 27 datasets.

Interestingly, for both diseases, the median AUROCs for the Bayesian approach using 3 data-

sets was always equal or greater than the median AUROCs for the frequentist approach using

substantially larger number of datasets (9 datasets for cardiomyopathy, 14 datasets for tubercu-

losis). This result demonstrated that the DEGs identified using the Bayesian approach are

more generalizable to previously unseen data than those identified using the frequentist

approach. Further, it also suggests that using as few as 3 datasets may be sufficient to identify

robust gene signatures of a disease using the Bayesian meta-analysis approach.

Next, we investigated between-study heterogeneity, τ2, and effect sizes for the DEGs identi-

fied by the two approaches and whether those differences explained more generalizability for

the Bayesian approach. For both diseases, median τ2 decreased with the increasing number of

datasets (Fig 4C). The DEGs identified by the Bayesian approach had significantly lower τ2
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Fig 3. Simulated Meta-Analysis. A) Using simulated data in five studies, we explored the effect of changing the effect size and variance of a single study on

each model’s pooled effect size, heterogeneity (τ2) and significance. Here, we show the baseline meta-analysis. We picked a scenario where both Bayesian and

frequentist are borderline significant. B) Increasing effect size. We increased the effect size of a single study–creating high certainty of a strong positive effect of

that study. The Bayesian model became more significant, whereas the frequentist model became less significant. Both increased in effect size and τ2. C)

Increasing variability. We increased the variability of a single study. We found that both methods behave similarly–with effect size, significance and τ2

decreasing. D) Increasing variability and effect size. We increased both the variability and effect size of a single study. We found that both methods behave

similarly–with effect size, significance and τ2 decreasing.

https://doi.org/10.1371/journal.pcbi.1010260.g003
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than those identified by the frequentist approach. Interestingly, for the frequentist approach as

the number of datasets increased, variability in τ2 increased for tuberculosis analysis but not

cardiomyopathy analysis. However, there was no consistent difference in the summary effect

sizes of the genes selected by either approach. For example, for cardiomyopathy datasets, the

difference in summary effect sizes of DEGs were mostly non-significant, whereas for tubercu-

losis datasets, there was no statistically significant difference in summary effect sizes, when

using a smaller number of datasets (N�6), but the frequentist approach selected genes with

significantly higher summary effect sizes for a larger number of datasets (N>6). Interestingly,

for tuberculosis analysis, higher summary effect size and variability in τ2 with the increased

number of datasets suggest that the DEGs may be affected by outlier datasets, which in turn

reduces their generalizability to unseen datasets with reduced AUROCs.

To further investigate the differences between gene sets created using Bayesian or frequen-

tist meta-analysis, we performed an overall meta-analysis with all of the Asthma, Cardiomyop-

athy and Tuberculosis datasets. Calculating the Jaccard similarity of the gene sets, we found

that for the smallest meta-analysis, asthma, the Jaccard similarity between the models was low

for the top 500 genes, only reaching 0.3. For the larger meta-analyses, Cardiomyopathy and

Tuberculosis, we found that the Jaccard similarity increased up to 0.5 (S3 Fig). In each case,

the Jaccard similarity increased until reaching a plateau. We also compared the gene sets using

pathway analysis using ReactomePA [48] (S4 Fig). The pathways represented were similar in

both analysis types for all three analyses, which suggested that although Bayesian meta-analysis

identified more generalizable genes that have higher discriminatory power, it is still identifying

the same biological pathways as frequentist meta-analysis.

Collectively, our results show that compared to the frequentist approach, the Bayesian

approach for meta-analysis identifies genes with lower between-study heterogeneity and com-

parable summary effect sizes, and is robust to outlier samples, which in turn leads to more gen-

eralizable classifier for unseen datasets. Our results also suggest that the Bayesian approach

requires lower number of datasets to identify generalizable DEGs compared to the frequentist

approach.

Discussion

We performed three gene expression meta-analyses to compare the Bayesian and frequentist

meta-analysis approaches. Using dozens of publicly available gene expression studies, we

found that Bayesian approach tends to identify differentially expressed genes that have lower

between-dataset heterogeneity and higher discriminatory power, which leads to more general-

izable classifiers. Importantly, we found that the Bayesian approach consistently required

lower number of datasets than the frequentist approach.

Several factors contribute to drive these effects for the Bayesian meta-analysis approach.

First, our analysis showed that the Bayesian approach is resistant to outliers due to the t-

Fig 4. Comparing gene signatures from frequentist and Bayesian meta-analysis. A) Selection method—for both

diseases, we randomly selected N datasets 100 times. For each iteration, we selected DEGs with absolute pooled effect

size> 0.6 and selected 10 genes with the smallest FDR or Bayesian probability. The signature is then created using a

geometric mean signature score and validated on completely left-out datasets. B) Average AUC–the Bayesian method

picked gene signatures that are more generalizable—achieving higher AUCs for both diseases on left-out datasets. The

Bayesian method also requires less datasets to achieve higher classifier performance. C) Average τ–we find that the

between study heterogeneity (τ) is significantly lower for the gene signatures selected by the Bayesian method

compared to the frequentist, suggesting the Bayesian method is selecting genes that have lower heterogeneity. Due to

the frequentist method calculating τ as 0 for a large percentage of genes, Bayesian tau is displayed for all genes. D)

Mean pooled effect size–we do not see consistent trends in the average effect sizes of the gene signatures, except for the

tuberculosis analysis where the frequentist method tended to pick higher effect size genes with larger Ns. ���� <

0.0001, ��� < 0.001, �� < 0.01, � < 0.05, ns:> 0.05.

https://doi.org/10.1371/journal.pcbi.1010260.g004
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distribution underlying the estimation of the effect size distribution per dataset. Second, the

Bayesian approach uses probabilistic distributions to represent effect size in each dataset as

opposed to confidence intervals that the frequentist approach relies on. When the number of

datasets used for meta-analysis is small and the within-dataset variability is higher, confidence

intervals tend to be wider, leading the frequentist approach to estimate the between-study het-

erogeneity as zero or very low for a large number of genes the large within dataset heterogene-

ity. In contrast, the use of probabilistic distribution leads to conservative estimates of between-

study heterogeneity. For biomarker discovery, this is preferable, for we seek to find the bio-

markers that have the smallest between-study heterogeneity across all datasets in our analysis.

Finally, the p-values in the frequentist approach represent the probability of observing data

under a hypothesis of no effect and must be multiple hypothesis adjusted, whereas Bayesian

probability represents the posterior belief of the difference between groups and require no

multiple hypothesis adjustment [49].

Although the Bayesian meta-analysis tends to perform better than the frequentist method

at finding consistently differentially expressed genes across studies with low heterogeneity, one

area in which it would be less advantageous is the unsupervised identification of subgroups

within patient populations. In this case, we would want to select for genes that have high effect

sizes when compared to controls, but also have heterogeneity to separate between cases. For

this task, the frequentist method would likely be more effective than the Bayesian method

described in this study. However, priors and probability calculations can be adjusted, provid-

ing Bayesian meta-analysis the flexibility to succeed in many different scenarios. A limitation

of our study is that we used minimally informative priors for all estimation in order to produce

the most accurate estimates of effect size and heterogeneity. However, depending on the con-

text, these priors could be changed. For example, in the case of finding biomarkers for diagnos-

tic use, the prior for τ2 could be changed from a uniform to a monotonically increasing

function. This would in turn create a form of regularization, pushing τ2 to be estimated as

larger and increasing the effect of heterogeneity on Bayesian probability estimate. For sub-

group identification and clustering of patients, one could similarly adjust priors and probabil-

ity estimates to select genes that have high effect size and moderate-to-high within and/or

between study heterogeneity. This shows the true flexibility and potential adaptability of the

Bayesian framework for different uses.

Methods

Dataset selection

We used publicly available transcriptome data from the NCBI GEO for three diseases: (1) 223

samples across 4 datasets from healthy controls and patients with asthma (S1 Table) [10–12],

(2) 1039 samples across 14 datasets from healthy controls and patients with cardiomyopathy

(S2 Table) [13–23], and (3) 3069 samples across 27 datasets from healthy controls and patients

with tuberculosis (TB) (S3 Table) [24–45]. Each dataset was appropriately normalized and

log2 transformed, if not already in log scale. We removed genes that were not present in at

least half of the datasets for a given disease.

Frequentist meta-analysis

We used the frequentist meta-analysis implemented in MetaIntegrator, which uses random

effects inverse variant model, for comparison with the Bayesian method [50]. Briefly, MetaIn-

tegrator computes a Hedge’s g as an effect size for each gene in each dataset. The effect sizes

are combined using random effects inverse variance model the DerSimonian-Laird method,

and the corresponding p-value is estimated using a standard normal distribution, which is
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corrected for multiple hypotheses testing using the Benjamini-Hochberg FDR adjustment

[51]. Following these calculations, the top genes are selected by using FDR and effect size

thresholds. We used difference between geometric mean of over-expressed genes to that of

under-expressed genes as a classifier because it has been repeatedly shown to be more general-

izable across datasets [52] and has also been translated in a point-of-care test [5,6,46,47].

Bayesian meta-analysis–dataset effect size calculation

The first step of the Bayesian meta-analysis pipeline involves creating an effect size distribution

for each case and control for each gene in each dataset (Fig 1). We used the BEST [8] frame-

work with default parameters and priors for this purpose. The BEST framework estimates the

posterior distribution of effect size between cases and controls for each gene in each dataset by

assuming that the data is independently distributed and comes from a t distribution with dif-

ferent mean (μ) and standard deviation (σ) parameters for each group. Then, we combine the

distributions from independent studies using a gaussian hierarchical model, estimating both

the pooled effect size and between-study heterogeneity in the process. Overall normality

parameter (v) that denotes the size of tails of the t distribution and the level of normality. Over-

all, the BEST framework estimates 5 parameters: μ1, μ2, σ1, σ2 and v using minimally informa-

tive priors. μ1 and μ2 are the population means of cases and controls and are parameterized

with a wide normal prior with a large standard deviation. σ1 and σ2 are the population stan-

dard deviations of cases and controls and are parameterized with a broad uniform. The nor-

mality parameter, v, has a broad, shifted exponential prior. Following the parameter

estimation, we calculated the effect size as a standardized mean difference:

ðm1 � m2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs1 þ s2Þ=2

p

For this study, we ran all individual datasets with 2000 steps with 400 for model burn-in

with 3 chains to ensure convergence, which is then calculated using r̂ [53]. We removed any

genes with an r̂ greater than 1.1 from the dataset.

Bayesian meta-analysis–pooling step

Following the dataset effect size distribution estimation, a pooling step is performed to esti-

mate an overall pooled effect size using a hierarchical model. The effect size distribution from

each dataset for each gene is assumed to be normally distributed with mean μi and σi. To calcu-

late the pooled effect size, we use each of the calculated dataset effect size distributions and

assume that they are sampled from an overall, pooled normal distribution represented as

Normalðmpooled; t
2Þ. Both μ and τ are parameterized with minimally informative priors: μpooled

as Normalð0; 3Þ and τ as Uniformð0; 2Þ and parameters are estimated using Gibbs sampling

[54]. We chose priors for effect size and between-study heterogeneity using 122 previous gene

expression meta-analyses (S1A and S1B Fig) [50]. Sensitivity analysis of the priors found that

when we varied the parameters of the Normal priors for effect size, the Bayesian probabilities

for differential expression remained concordant (S1C and S1D Fig). For between-study het-

erogeneity, we found that using Uniform(0,1) as prior had lower Bayesian probability esti-

mates (S1E Fig), whereas using Uniform(0,2) or Uniform(0,3) as prior had highly concordant

Bayesian probability estimates (S1F Fig). Hence, the final gene rankings and posterior proba-

bilities did not change by widening the priors further.

For this study, all pooling steps were run with 5000 steps with 1000 for burn-in with 3

chains. The convergence parameter (r̂) is calculated using the chains and any genes with an r̂
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greater than 1.1 are removed. Using the hierarchical model structure, once the pooled distribu-

tion is estimated, we adjusted the individual dataset effect size distributions based on the sum-

mary distribution, akin to a random effects model in frequentist meta-analysis. To calculate

statistical significance, we calculate the probability that a certain gene is upregulated or down-

regulated, calculating Pr(μpooled < 0) or Pr(μpooled > 0), respectively. This is done with a stan-

dard cumulative density function for a normal distribution.

Simulated data for comparison of frequentist and Bayesian meta-analysis

Random study data was used to compare the Bayesian and frequentist methods. The frequen-

tist random-effects meta-analysis was run using the metagen function from the meta package

[55] in the R using default parameters. The Bayesian model was run as with the parameters

described above, with 50000 steps with 10000 for burn-in.

Comparison of AUCs, effect sizes, and heterogeneity between frequentist

and Bayesian meta-analysis

To compare the methods, we used the Tuberculosis and Cardiomyopathy cohorts, as defined

above. We removed genes that were not present in at least half of the datasets. For both dis-

eases, we randomly selected N datasets 100 times (or 91 times in the case of Cardiomyopathy:

N = 2) and applied both meta-analysis approaches Bayesian (bayesMetaIntegrator) and fre-

quentist (MetaIntegrator) to each set of randomly selected N datasets. For each iteration, we

filtered to differentially expressed genes with absolute summary effect size > 0.6 and used the

top 10 genes with the smallest FDR or Bayesian probability. We used difference of geometric

means of over- and under-expressed genes as a classifier in unseen datasets to distinguish

cases from healthy controls, as defined below. For the tau comparison, we report the Bayesian

estimate of tau for each gene due to frequentist meta-analysis reporting large numbers of

genes as 0. For pathway analysis, the ReactomePA package [48] was used to perform pathway

analysis on all three diseases, using the most significant genes for both methods– 1000 genes

for Cardiomyopathy and Tuberculosis and 500 genes for Asthma. A p-value cutoff of 0.2 was

used for Cardiomyopathy, 0.2 for Asthma and 0.05 for Tuberculosis.

Supporting information

S1 Fig. A) Using 122 previous gene expression meta-analyses we observed the pooled effect

size and tau to determine our initial priors. Our priors, picked to be minimally informative,

are shown in red. B) Sensitivity analysis of effect size prior using Asthma data. C) Sensitivity

analysis of tau prior using Asthma data.

(EPS)

S2 Fig. A) Using N = 4 datasets and top 10 statistically significant genes, we examined the

effect of effect size thresholds using the AUC performance on all other left-out datasets. We

find that the Bayesian model consistently outperforms the frequentist at effect sizes < 1. B)

Using N = 4 datasets and effect size threshold of .6, we examined how the number of genes in a

signature affect performance. We find that no matter how many genes were used in the signa-

ture, from 10–200, the Bayesian model consistently outperforms the frequentist.

(EPS)

S3 Fig. Jaccard similarity of the top N genes, by statistical significance, between the Bayes-

ian and frequentist meta-analysis methods, which is generally low.

(EPS)

PLOS COMPUTATIONAL BIOLOGY Increasing reproducibility and generalizability of biomarkers using Bayesian meta-analysis

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010260 June 27, 2022 11 / 15

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010260.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010260.s002
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010260.s003
https://doi.org/10.1371/journal.pcbi.1010260


S4 Fig. Pathway analysis using Reactome PA—using the most significant genes for both

methods– 1000 genes for Cardiomyopathy and Tuberculosis and 500 genes for Asthma. A

p-value cutoff of .2 was used for Cardiomyopathy, .2 for Asthma and .05 for Tuberculosis.

BMA_only denotes genes only significant in Bayesian, but not frequentist. FMA_only denotes

genes only significant in frequentist, but not Bayesian.

(EPS)

S1 Table. Datasets used for meta-analysis of asthma.

(XLSX)

S2 Table. Datasets used for meta-analysis of cardiomyopathy.

(XLSX)

S3 Table. Datasets used for meta-analysis of tuberculosis.

(XLSX)
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