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Abstract: Latent Variable Models (LVMs) are well established tools to accomplish a range of different
data processing tasks. Applications exploit the ability of LVMs to identify latent data structure in
order to improve data (e.g., through denoising) or to estimate the relation between latent causes and
measurements in medical data. In the latter case, LVMs in the form of noisy-OR Bayes nets represent
the standard approach to relate binary latents (which represent diseases) to binary observables (which
represent symptoms). Bayes nets with binary representation for symptoms may be perceived as
a coarse approximation, however. In practice, real disease symptoms can range from absent over
mild and intermediate to very severe. Therefore, using diseases/symptoms relations as motivation,
we here ask how standard noisy-OR Bayes nets can be generalized to incorporate continuous
observables, e.g., variables that model symptom severity in an interval from healthy to pathological.
This transition from binary to interval data poses a number of challenges including a transition from
a Bernoulli to a Beta distribution to model symptom statistics. While noisy-OR-like approaches
are constrained to model how causes determine the observables” mean values, the use of Beta
distributions additionally provides (and also requires) that the causes determine the observables’
variances. To meet the challenges emerging when generalizing from Bernoulli to Beta distributed
observables, we investigate a novel LVM that uses a maximum non-linearity to model how the latents
determine means and variances of the observables. Given the model and the goal of likelihood
maximization, we then leverage recent theoretical results to derive an Expectation Maximization (EM)
algorithm for the suggested LVM. We further show how variational EM can be used to efficiently scale
the approach to large networks. Experimental results finally illustrate the efficacy of the proposed
model using both synthetic and real data sets. Importantly, we show that the model produces reliable
results in estimating causes using proofs of concepts and first tests based on real medical data and
on images.

Keywords: latent variable models; Bayes nets; Beta distribution; noisy-OR; expectation maximization;
variational inference

1. Introduction

Automatic systems able to infer hidden causes from data are of considerable interest
for the automation in a wide range of applications. In medical data analysis, for instance,
an important task of medical doctors is to infer a possible set of causes from an array
of patient symptoms. In this context, machine learning algorithms, specifically Latent
Variable Models (LVMs) and noisy-OR Bayes nets, are well established tools. They aim
at automatizing previous manual inference processes to further assist both patients and
doctors. In recent years, machine learning algorithms have shown promising results in
constructing a causal graph between the latents and observables and thus estimating a
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diagnostic model from a set of patient data [1-4]. Once trained, they can assign probabilities
to hidden causes (e.g., diseases) given a set of observables (e.g., symptoms). Such models
for medical data analysis, e.g., in the form of noisy-OR networks [2,5-8], assume medical
symptoms to be encoded by binary observables (a symptom is present or absent). As an
example of the studies in this direction, we refer the readers to [2] where three different
probabilistic models (namely noisy-OR, naive Bayes nets and logistic regression) have
been investigated in order to infer a knowledge graph from electronic health records.
Amongst the three models, the authors have shown that a probabilistic noisy-OR model
can outperform the other two and produce state-of-the-art results that are further used
for diagnosis.

Nevertheless, it can be argued that assuming a binary representation is simplistic.
Given a data set with records of measurements of symptoms, the distribution of symptoms
can range from not present, over intermediate, to severe. Furthermore, for any given
cause (any disease), the distribution of symptoms may be of interest for data analysis
(e.g., for precise disease characterization). Indeed, many schemes for medical records taking
establish a more continuous recording of symptoms [9-11]. If symptoms are binarized,
as required for noisy-OR networks or as provided by data sets such as QMR-DT [12],
then not all statistical information can be leveraged. Approaches that can infer causes
from non-binarized symptoms may consequently be able to extract more information,
which motivates our investigation of generalizations from Bernoulli to Beta distribution
for observables.

Instead of further developing probabilistic data descriptions (as we do here), a po-
tential alternative would be the use of deep neural network (DNN) approaches. So far,
a number of DNNs including Variational Autoencoders (VAEs), Convolutional Neural
Networks (CNNs) and Recurrent Neural Networks (RNNs) have been used for learning
diagnostic models (see, e.g., [13-18] and references therein). In recent years, DNNs have
shown a strong capability in analyzing medical and other advanced data sets and have
consequently gained a considerable attention. This is importantly due to the availability
of large data sets, e.g., in the form of electronic health records. To some extent, DNNs
can outperform probabilistic models in terms of both accuracy and run-time as evaluation
measures. However, it could be argued that they are not appropriate tools for medical
reasoning in the context that we considered here due to the following reasons: First, the
results obtained from DNNSs are usually not interpretable as the taken assumptions and
also the procedure of producing the results are relatively unclear [19,20]; we stress that in-
terpretability is a substantial factor for medical data reasoning. Secondly, DNNs commonly
provide a final result without refined representation, e.g., of alternative other likely solu-
tions or of statistical properties of symptoms/causes [21]. Thirdly, DNNs usually require
a large amount of clean data sets for training and, in some cases, have been observed to
perform rather poorly in the absence of certain important information (see, e.g., [22] for a
concrete comparison between different machine learning tools for medical data analysis
including DNN5s and probabilistic models). Taken together, more explicit probabilistic
graphical models may, consequently, be preferable.

In this work, we aim at generalizations of standard noisy-OR models towards models
with observable values that lie within an interval, as they occur, e.g., for medical data
analysis. An example for medical data that we will use is provided in the form of Com-
mon Audiological Functional Parameters (CAFPAs) [9,23] describing certain audiological
symptoms which can be used to infer different types of causes for hearing loss or hearing
deficits. Another example that we will use is image data that are conventionally stored
by assigning a pixel value in an interval (e.g., [0,255]). Motivated by such data and by
the success of noisy-OR networks, we here seek a graphical model description of interval
data using a bipartite graph as noisy-OR nets. We also maintain binary latents to model
the presence or absence of a disease. However, we will use Beta distributions to model
observables instead of Bernoulli distributions used by standard noisy-OR Bayes nets. The
generalization from Bernoulli to Beta distributions instantly results in significant challenges
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that have to be addressed: First, when replacing binary {0,1} symptoms by an interval of
values in [0, 1], the corresponding distributions, e.g., the Beta distribution, has parameters
for variable means as well as variable variances (while a Bernoulli distribution has one
parameter that determines mean and variance). The more refined statistics of interval data
therefore suggests for an LVM approach to model mean as well as variance combinations
given a set of non-zero causes. As a second main challenge, we require a background
model to avoid degeneracies for the absence of all causes (i.e., if all causes are zero). Thirdly,
we require learning and inference to be scalable since the number of diseases and symp-
toms is (as for noisy-OR networks) potentially large, which renders exact inference and
learning intractable.

Starting point for our investigation will be non-linear combinations of causes that
are well suited for continuous observables. As noisy-OR combinations are specific to
binary latents, we here use the maximum non-linearity as combination rule [24-30]. The
maximum is (A) a relatively canonical choice, (B) a suitable model for the combination of,
e.g., diseases, and (C) will turn out to be particularly convenient to model the combination
of symptom variances. In previous work, the use of a maximum non-linearity for latent
causes has been motivated by properties of acoustic data (e.g., [24]); and has repeatedly
been used for LVMs with observables that are, e.g., distributed according to a Poisson
distribution [28] as well as w.r.t. a Gaussian distribution [25-27,31,32].

Here we will exploit more recent analytical results that apply if the maximum combi-
nation is used to combine binary causes. More concretely, we will use a theorem derived
by [33], which shows how learning equations can in principle be derived if observables
follow a distribution of the exponential family. By far most previous LVM approaches
have focused on Gaussian observables [25,26,31,34-36] including LVMs that have used
the maximum combination instead of the more conventional linear sum [25,26,31]). How-
ever, there have also been a number of LVM approaches that aimed as [33] at deriving
results for distributions other than Gaussians. For instance, exponential family sparse
coding (EF-SC) [37], exponential family probabilistic component analysis (EF-PCA) [38] or
Bayesian exponential family PCA [39,40] all considered distributions of the exponential
family. Except of [33], in all the other studies, generalizations of standard linear sum-
mations for Gaussian observables were the starting point towards the generalization to
exponential families. Importantly for this work, none of the previous LVM approaches
has shown realizations of their approaches for more intricate distributions of the expo-
nential family (such as the Beta distribution). Any experimental results (and usually the
corresponding analytical derivations) of previous work [37-40] were restricted to one-
parameter distributions of the exponential family (such as Bernoulli and Poisson). To our
best knowledge, details of how their theoretical results can be generalized to incorporate
more intricate probability distributions (such as Beta) have not been discussed (not in their
original paper nor in related studies). The exception is represented by [33] who provide
results for the two-parameter Gamma distribution. Neither [33] nor any of the other above
discussed LVM models has shown analytical or experimental results for Beta distributed
observables, however.

To continue our discussion of related work, studies like [41,42] suggested an automatic
procedure using a fully Bayesian method to estimate the statistical dependencies from a set
of heterogeneous data. In particular, the method introduced by Valera and Ghahramani
in [41] can successfully model the true statistical types of data as being real-valued, positive
real-valued, interval, categorical or ordinal, and defines a mixture of likelihood functions
that factorizes for each of the considered data types. However, as a Markov chain Monte
Carlo (MCMC) algorithm is used for training, application of the model at large-scales is
relatively costly. The work by Vergari et al. [42] further generalizes this approach so that
the new model can also robustly estimate missing values, corruption and anomalies in the
data. The new approach, known as Automatic Bayesian Density Analysis (ABDA), then
shows a consistent performance for automatic exploratory analysis of complex data.
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In Section 2, we will motivate the maximum combination (together with other prereqg-
uisites of the model) using the example of diseases and symptoms modelling for medical
data. Because of its actuality we specifically consider COVID-19 as an introductory ex-
ample but will use medical data of hearing impairments [9] for numerical experiments
in Section 5 as such data is directly at our perusal. The symptoms will be assumed to be
continuous and to lie in a finite interval. We will later present our generative model in
Section 3 and discuss the specifics of using a Beta distribution to model such interval data.
In Section 4, we will apply expectation maximization (EM) [43] to train our model, and we
will use the theoretical results presented in [33] to obtain a set of update equations. We
will specifically apply variational EM approximations in order to scale the novel model to
realistically large model sizes. Similar to previous approximations for models with binary
latents [28,44], we use truncated posteriors. Unlike earlier approaches however, we apply
a novel and fully variational form of such approximations [45-47]. Further, Section 5 will
present the first results that we obtained using both synthetic and real data sets, and finally
in Section 6, we will conclude the paper.

2. A Preliminary Maximal Causes Model with Beta Observables

Let us first consider a relatively straightforward but preliminary generative model
that generalizes binary observables to observables with values in unit intervals. For this,
consider the maximal causes generative model [28] (MCA) which uses the maximum in
place of a linear summation as model for the combination of causes. Let ¥ = (y1,...,¥p)
be a D-dimensional vector in interval [0, 1]”. Then, by simply using a Beta distribution
instead of a Gaussian, a preliminary version of the corresponding generative model for
interval data can be defined as follows:

H
p(51©) = [ [ Bernoulli(sy; ), s, € {0,1} 1)
h=1
2 2
p(715,0) = [ | Beta(ys; a(5,©),0%),  ya € [0,1] @)
d=1
where fi;(5,0) = m}?x{sthh}, h=1,...,Handd=1,...,D 3)

where the Beta distribution is parameterized w.r.t. the distribution mean and a distribution
variance ¢2. For the given H hidden variables, the Bernoulli distribution assumes a cause
to be present or not (s, € {0,1}) and assigns a prior probability 7t;, € [0, 1] to each cause
h. Moreover, the model has as parameters the prior probabilities 7y, . . ., 7y, the variance
02 (which is assumed to be the same for all Beta distributions), and a D x H weight
matrix M with elements in interval (0,1) that models the dependency between latents
and observables. Each vector A_}Ih = (Myy, ..., Mpy,) is referred to as a basis function or
generative field. The set of all model parameters is consequently ® = (7, M, (72). The
hidden variables (causes) s;, determine the mean of an observable d through a maximum
function: For a given observable d the active cause with the largest value of M, determines
the mean. An alternative combination model could, for instance, use a linear summation
followed by a sigmoidal function [48,49] (SBN). The noisy-OR combination can not be used,
however, as it is defined for binary observables.

The data model (1)—(3) generalizes the previous MCA models [26-28,31,32] by replac-
ing the Gaussian or the Poisson distribution by the Beta distribution. Consequently, the
model can cope with interval data and would be considered as a generalization of non-
linear binary data models (e.g., noisy-OR). At a closer inspection, however, the considered
model may still require some further generalizations that are preeminent for analyzing
medical data. One example generalization which we will require further below concerns
the global variance modelling. Already in the Gaussian case, it could be argued in favor
of a variance that also depends on the causes (see, e.g., [50]). For the Beta distribution, a
global fixed variance can cause more severe problems. In the following, we develop some
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intuition using the example of diseases and symptoms modelling in order to discuss the
required generalizations of our data model (1)—(3).

As an example, here, consider the outbreak of COVID-19 and the difficulty to dis-
tinguish the novel disease from other diseases such as “common cold” or “flu” which
cause similar symptoms. For simplicity, let us assume four medical symptoms: “fever”,
“cough”, “sneezing” and “fatigue”. For the given set of diseases and symptoms, a binary
representation of the causes/symptoms relations assigns 0 to the cases where the symptom
is not present (i.e., the corresponding measurement is similar to the one of a healthy patient)
and 1 otherwise.

In contrast to modelling a symptom as being present or absent, the LVM (1)-(3)
assumes continuous symptoms, i.e., a symptom is modelled to range from not or barely
present (close to zero) over intermediate (around 0.5) to very severe (close to one). This
graded modelling is different from conventional binary or ordinal encodings and can
be considered as a generalization of both cases. Figure 1 depicts an example of binary
vs. continuous representation of the given set of diseases/symptoms (we refer to it as
the disease profile). Note that the presented disease profile is, however, only an example
of how such diseases and symptoms could be related to each other, and the figure may
not be accurate (we refer the readers, e.g., to [51,52] for more details regarding the given
causes/symptoms relations). Nevertheless, the disease profile illustrates how a continuous
encoding, in contrast to a binary encoding, enables us to capture higher order statistics of
the observables and to model more information of the corresponding symptoms.

In particular, each disease causes different symptoms, e.g., “COVID-19” reliably
causes “cough” and a strong “fever”. In the Bayes net (1)—(3), the relation of diseases to the
symptoms is modelled by the weight matrix M where each element M, distinguishes the
strength connection between cause (disease) i and observation (symptom) d. For instance,
the weight M, modelling the connection from “COVID-19” to “fever” is strong while the
weight My, modelling the connection from “COVID-19” to “fatigue” is rather weak, and so
forth (here strong means a value closer to 1 while weak means closer to 0). Now, suppose
that only the “COVID-19” disease is active, then it sets the corresponding symptom for
“fever” to a value close to one. Consequently, the maximum combination (3) sets the mean
of observables to be close to one. The Beta distribution then models that the actual value
can be a bit higher than the mean or a bit lower (but never outside the range [0, 1]).

Moreover, causes (diseases) have different probabilities to occur (different 7t;, values).
That is, in some regions, for instance, contracting to “COVID-19” is very likely such that the
prior 7tj, for “COVID-19” is rather high while the prior for “common cold” or “flu” could
be low. Importantly, causes (diseases) can co-occur, which highlights the importance of a
possible combination of the causes which we modelled here using the maximum (3). For
any one symptom, a plausible model for symptom combination is to assume the symptom
mean to be set by the disease with the strongest influence on the symptom. If the strongest
disease is, for instance, always causing a “fever” then this small variance should also
apply for the symptom “fever” even though other diseases are active. A disease with an
intermediate probability for “fever” and a high variance (like “common cold”) should not
make the variance for “fever” large if, e.g., “COVID-19” is active. In this case, however,
the model (1)—(3) generates the symptoms for “fever” using the mean value equals to the
My, connecting “COVID-19” to “fever” (the strongest connection) and a global variance
o? that results in a mild “fever”. This ascertains one main limitation of the preliminary
model (1)—(3) where a global variance encoding of the observables is assumed. Therefore,
we will later motivate a more general model that assumes a generalization of the global
variance parameter of the model and thus alleviates the effect of this issue.
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Figure 1. A disease profile illustrating the differences between a binary and a continuous interval encoding of the observables.
Here, the interval [0, 1] is used to model the severity of the symptoms where for 0 the symptom is completely absent while 1
models the most severe (most pathological) state of the symptom. For binary symptoms, the states "H” and 'P’ refer to the
‘healthy’ and ‘pathological’, respectively. From the figure, it can be seen that a continuous interval encoding models a higher
order statistics of the data and could provide more information compared to a binary encoding. For instance, the statistical
properties of the symptom “cough” for “COVID-19” and “flu” can be distinguished if an interval encoding is used, while a
binary encoding makes this symptom identical for the two causes.

Another limitation of the LVM model (1)—(3) is the case where none of the causes
(diseases) are active. Consequently, the mean of observables in (3) will be obtained as zero
which is not valid for the Beta distribution (the mean of Beta distribution must be in the
interval (0,1)). To address this issue, in addition to the H considered hidden causes for
diseases, we further assume a background model for our generalization which combines
with the corresponding active causes and provides (if all s; = 0) non-zero mean and
variance values. The background model thus prevents degeneracies and models, in the
case of medical data, the symptom statistics of healthy patients. We denote this cause by
so = 1 that is much like how bias terms are usually modelled. Given latent variable 3, we
then demand the mean of observable y,; to compute by:

i4(5,0) = m’?x{sthh}, h=0,...,Handd=1,...,D (4)

where the basis function My contains background parameters and corresponds to so = 1.

Applying the two generalizations mentioned above is a formidable challenge that,
to our best knowledge, has not been considered previously. While the dominance of
one cause is modelled by the maximum (3) as for previous MCA approaches, modelling
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the dominance of the same cause also for the variance has not been used neither for
maximum combinations nor for linear or any other combination models. The exception is
a sparse coding model with Gaussian observables [50] as well as the general (and above
discussed) theoretical treatment for exponential family distributions [33]. In the following,
the theoretical results of the latter will be used to obtain an LVM model for Beta distributed
observables which overcomes the limitations of the preliminary model (1)-(3).

3. A Complete LVM Model with Beta Distributed Observables

In order to utilize theoretical results of [33] for the aimed generalizations, note that
exponential family distributions with two parameters can in general be parameterized
differently, e.g., by using standard shape parameters (like for Beta or Gamma), mean and
variance parameters (1, %), natural parameters (11, 772), or by using mean value parameters
(w1, wy) [53]. In the case of the Beta distribution, the standard shape parameters « and 8
are the same as the natural parameters 7; and 7. Using the natural parameters, the mean
value parameters of the Beta distribution are defined as follows:

wy == (log(y))py and wp:= (log(1—y))p, (5)

where (f(y)), represents the expected value of a function f(y) w.r.t. a Beta distribution
p(y | 11, 12) with natural parameters 77 and #,. The following relations then exist between
the mean value parameters, the natural parameters, and the mean and variance parameters
of the Beta distribution:

_ 2 112
P and " = (m +m2)*(n +n2+1) ©
and
wy = P(111) — POy +12) and wa = P(n2) — P11 + 112), 7)

where ¢(.) is the Digamma function [54]. Moreover, in the case that 777 # 175, there exists a
bijective mapping @ such that:

O(@) =7 with @ = (wy,wy), 7= (11,12). (8)

Observe that the assumption of 1j; # 15 is required for the existence of function ®
(compare, e.g., [53,55] under the name of minimal representation property of the exponen-
tial family distributions).

Now, consider N conditionally independent and Beta distributed observed variables
Y = {#V,..., N} where each input (") = (ygn),. .. ,yg)) is a D-dimensional vector in
interval [0,1]P. Further let the Beta distribution to be parameterized w.r.t. its mean value
parameters. Then we generalize the preliminary generative model (1)—(3) as follows:

H
p(s1®) = [ [ Bernoulli(s; 71,), s, € {0,1} and 7, € [0,1] )

h=0

D —_ —_

p(715,0) = [ | Beta(ya; Wa(5,©), Va(5,0)), va € [0,1] (10)

d=1
where Wd(§,®) = Wdh(d,§,®)/ d= 1, ey D (11)
Vd(_', @) — th(d,§,®)/ d - 1, vy D (12)
h(d,s,®) = argmax; {s,Mz(®)}, h=0,...,Handd=1,...,D (13)

where ©® = (77, W, V) represents the set of all parameters: W and V are matrices with D x
(H +1) entries and 7 = (7, ..., tpy), where the index 0 corresponds to the background
(we set sgp = 1). Likewise, the weight matrix M (©) with D x (H + 1) entries corresponds to
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the mean of observables, but this time M(©) is dependent to the parameters © of the model
(we will later elaborate how this matrix will be obtained). For a given set of active causes,
i.e,, those taking the value s;, = 1 including the background, we take the distribution of y,
to be determined by the strongest connection (given the weight matrix M(©)) associated
with the active causes and y,;. The index for this strongest connection is computed using the
argmax function in (13) (note the relation but also the difference to the max function in (3)).
Equation (13) together with Equations (11) and (12) then define the desired maximum
superposition. Further, the maps W, (5, ©) and V;(5, ®) set the mean values of the Beta
distribution of observable y; according to (11) and (12).

The definitions of the LVM model (9)—(13) are rather technical here but will enable
us to optimally generalize our preliminary model (1)-(3). Such a generalization results in
learning two dictionaries: W and V. Having these two dictionaries and further assuming
the existence of the function @ in (8) (we have to assume N1 # 12), we can compute the
natural parameters as well as the mean and variance parameters of the Beta distribution.
The use of mapping ® from mean value parameters to natural parameters is not only
required for the formal definition of the generative model, but also the mapping will be
required for the concrete parameter updates (by using Equations (18)-(20) further below).
These updates will be formulated in terms of the mean value parameters. At the same time,
the updates will also require expectation values w.r.t. the posteriors which are computable
in closed-form for the natural parameters. Additionally, note (see below) that the mean
for Equation (13) is given by a closed-form expression of the natural parameters. Now, in
order to concretely compute the mean (and the variance) parameter of the Beta distribution,
let 2(®) be a D x (H + 1) matrix containing, for each cause / (plus background), a set
of D different standard deviations (one for each observable). Then, ford = 1,...,D and
h=0,...,H, we define:

@1 (Wan, Van)
Wans Van) + @2(Wan, Van)
52 (@) = D1 (Wan, Vd;l) Do (Wan, Van) e
(D1 (Wan, Van) + P2(Wap, Vi) )™ (@1 (W, Van) + P2 (Wap, Vi) + 1)

My,(0) := o (14)

Equations (14) and (15) taken together with Equations (11)-(13) model how mean and
variance parameters of each cause combine to generate the statistics of the symptoms. The
dominant cause per observable is obtained using the argmax function in (13). The function
h(d,s,®) determines the effective weight on observable y; and further determines the
mean value parameters and consequently the variance of the Beta distribution. As for the
previous MCA models, each observable y; can have a different cause as the dominant cause.
Here the dominant cause not only determines the observables” mean but also its variance.

The proposed generative model (9)—(13) can be considered as a generalization of
binary—binary models such as noisy-OR or Sigmoid Belief Networks [48,49] (SBN) towards
continuously distributed interval data. The model takes advantage of the previous MCA
approaches but decisively amends the original model in aspects central to our goals that
are: (a) modelling interval data by using Beta distributions, and (b) exploiting properties
of the maximum that allows to model a combination of symptom variances alongside
with a combination of symptom means. Our example of medical data analysis may have
motivated the necessity of modelling variance combinations sufficiently obvious. We
addressed the dependence of the variance on the causes using one dominating cause per
symptom, and the argmax function (13) determines the dominant cause. Additionally, note
that given a data point #("), the dominant cause can be different for each d. We will refer
to the proposed data model (9)-(13) as Beta-MCA and, in the following, seek the optimal
parameters ®* that maximize the log-likelihood of the data given by:

£(©) =log (p(7",...,.7™|0)) = Y log (p(7"10)) = Llog (L p(7",510)). (16)
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4. Maximum Likelihood

We apply the Expectation Maximization (EM) algorithm to optimize the parameters
©® under the generative model described in (9)-(13). Following, e.g., [43], instead of
maximizing the log-likelihood function, the so-called free energy function (aka. ELBO)
F(q,0) that is a lower bound of the log-likelihood is maximized in two alternating E- and
M-steps:

22211( {Zlog yd ,Wd(s 0),V,;(5,0)) —l—Zlog (s1]©) }—i—?—[(q) (17)

where #(q) is the Shannon entropy and ¢ (5) is a variational distribution w.r.t. the state
parameters §. The objective F (g, ®) will be increased w.r.t. the (") (5) i 1r1 the E-step (while
@ is kept fixed) and w.r.t. the parameters © in the M-step (with fixed (") (3)). These steps
monotonically increase the free energy and, in practice, also the log-likelihood of the data
till convergence. Practically, the E-step maximizes the free energy by setting () (5) equal
to the posteriors (we refer to this as the full EM; (") (5) = p(5|7("), ®)). In addition, the
M-step maximizes the free energy w.r.t. the parameters ©. In this manner, the derivatives
of F(gq,0) w.r.t. each of the parameters W, V and 7 is set to zero and the corresponding
update equations are obtained accordingly.

4.1. Parameter Update Equations (M-Step)

For standard linear LVMs with Gaussian observables, parameter update equations
can usually be derived in closed-form [56]. In case of non-Gaussian or non-linear LVMs
the derivation of suitable parameter updates is a central challenge [26,28,33]. Such chal-
lenges are already significant if one-parameter distributions are assumed for observables.
Therefore, the Beta distribution seems to be a choice that is particularly difficult to address.
Because of the maximum used to combine causes, we can however leverage a result of
Mousavi et al. [33] which applies for the whole exponential family. More concretely, we
can apply an analytic expression for a necessary condition at free energy maxima. The
expression (Theorem 1 of Mousavi et al. [33]) contains the sufficient statistics of the corre-
sponding distribution, the data and an index matrix. Such analytical expressions can be
used here for parameter updates of the Beta distribution (with its sufficient statistics log(y)
and log(1 — y)) and are given by:

o D1 (A (5,001) ) Tog(yy")
dh T Old (18)
Z 1{Aan (5,0°9)) )
o D (Agy(3,0°99)) ) Tog(1 - yy") )
o Ll {Aan (5, 0°19))
1 N
=% n};<5h>q<n> (20)

whered =1,...,Dand h = 0,..., H, and where q(”) = q(”) (5;©@°1d) depends on the old
parameters. The index set Ay, (5, ©) is given by:

1 h=h(ds5,0)

. (21)
0 otherwise

A (5,0) = {

with h(d, s, ®) defined in (13).

Observe that Equations (18) and (19) are fixed-point updates that at their equilibrium
points provide the optimal solutions of W and V. For the EM algorithm, we initialize
parameters © of Beta-MCA and update each of the parameters using (18)—(20) in the M-
step (we will perform each of the above updates only once for our experiments). The
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alternating E- and M-steps will continue until parameters ® have sufficiently converged.
The (locally) optimal value of ®* is then obtained at the convergence point. Note that
we still require the function ®(W, V) in order to compute matrices M(®) and %(®). To
this, one can use equations presented in (7) and approximate the Digamma function to
obtain a relation between matrices W and V and the natural parameters. We therefore
apply a straightforward method and solve the following system of non-linear equations
w.rt. D x (H + 1) matrices #1 and 7, in each M-step:

{w—¢(m)+¢(m+’72) =0 (22)
V—9(2) +9(m +12) =0

We will then let ®1(W,V) = 51 and (W, V) = 1, in (14) and (15) to compute
matrices M(®) and %(®) corresponding to the mean and variance parameters of the Beta
distributions. The obtained weight matrix M(®) can then be used to distinguish the
dominant cause per observable in (13).

The updates (18)—(20) together with (21) and (22) provide (together with a full E-step)
an EM method that can be used to train interval data using the proposed Beta-MCA model.
Algorithm 1 finally presents a brief summary of the full EM algorithm presented here. In
the next section, we will further assess the reliability of the proposed generative model
together with its update equations using both artificial and real data sets. Before that,
however, we should stress that computing the posteriors at larger scales will become
infeasible, which limits the application of the model to small size data sets. Specifically,
computations will increase exponentially with number of latents, H, as the summation in
the posterior goes over all possible states 5 (we denote such a set by S which includes all
different permutations of a bit vector, i.e., |S| = 2H). For larger H, we therefore exploit
variational approximations (variational E-steps) in the form of truncated variational EM.

Algorithm 1 Full EM for parameter updates of the Beta-MCA model

initialize model parameters © = (7, W, V);

repeat

solve the system of two non-linear Equations (22) and obtain 77; and #y;

let ®1(W,V) = #1 and $(W, V) = 1p;

compute the weight matrix M(®) and the variance matrix %(®) using
Equations (14) and (15);

for each vector 5 of the latent space do

ford =1:Ddo

h(d,s,®) = argmax;, {s;M;(9©)};

Wi = Wap(az0) and Vo = Viyaz0);

end

forn=1:Ndo
g™ (E) = pE| 7™, ©);
forh=0:Handd=1:Ddo

compute " (©)s,;

compute ") (©).A,, where Ay, is defined in (21);
end

end

end

update parameters © using Equations (18)—(20);

until parameters ® have sufficiently converged,

4.2. Truncated Approximations (Variational E-step)

We will apply the approach presented by, e.g., [45,46,57], that approximates full
posteriors by truncating sums over the whole latent space to sums over those subsets
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which accumulate most of the posterior mass. In detail, we use truncated posteriors as
approximation which are of the form:

pG.7™ | ©)

Y p@E7"|0)
s efc(n)

g™ 7", 0,K) = 5(5e kM) (23)

where §(5 € K(") is 1if § is in the subset (™) and zero otherwise. The set of all ()
is denoted by K, ie.,, K = (K(l), ceey IC(N)). There is one subset (") for each data point
7", and it contains those states estimated to best describe the generation of 7") given
the parameters © (see, e.g., [45,57] for details). Using the variational distributions (23), we

—

further compute the following expected values for a well-behaved function g(5)

Y pGE 7" |0)g6)

o ek
8 = @ e)
§'€/C(”>

(24)

The subsets /(") can be chosen to be relatively small, which allows for training a Beta-
MCA model with relatively high values of H. The main challenge, however, is to compute
the subset (") (for each 1) in E-steps such that the presented distributions in (23) represent
a good approximation of the full posteriors. According to [45], these sets can be updated,
e.g., using evolutionary algorithms with fitness defined as a monotonic function of the
joint p(8, 7| ©). This approach, termed Evolutionary Expectation Maximization (EEM), is
black-box, i.e., it does not require any further derivations. Knowing the joint probability of
a given generative model with binary latents is sufficient for the method to be applied. We
can consequently directly use the EEM approximation to optimize the Beta-MCA model
and obtain an efficient variational EM algorithm applicable also at larger scales.

Ideas of truncation are commonly used to optimize graphical models. In our context,
“truncation’ originally referred to a truncation of the sums over states [31], or equivalently
to a truncation of the full posterior to subset of the latent space [57]. Other types of
truncated approximations used for efficient optimization of graphical models are mixtures
of truncated exponentials (MTEs, e.g., [58,59]), where “truncation’ refers to exponential
functions truncated to subspaces of their respective domain. For MTEs truncation is used
to approximate the variables of the graphical model themselves (and complex graphical
models can be optimized efficiently). The here used approach is complementary, as it uses
truncation to approximate the posteriors resulting from the specific graphical model of
Section 3.

5. Experiments

In the following, we will first consider the artificial bars test [60] to validate the efficacy
of the presented update equations in finding ground-truth parameters. Next, medical data
of hearing impairments is analyzed and the performance of the proposed Beta-MCA model
in estimating the causes/symptoms relations is assessed in comparison to the noisy-OR
model. Finally, we demonstrate the scalability of the Beta-MCA model by considering
two further application domains of the model: Feature extraction and denoising. For
these two experiments, we specifically leverage truncated posteriors (23) as variational
distributions [45] (EEM).

5.1. The Bars Test

The bars test [28,60-63] is a well-known task for non-linear component extraction
that is used to validate unsupervised learning algorithms. To generate data for this task,
we assume H = 10 basis functions M, in the form of horizontal and vertical bars. Here
we use continues values of 0.9 for each observable representing a bar (and a bar occupies
5 observables/pixels ina D = 5 x 5 image) and 0 for other observables (non-bar pixels).
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Together with these basis functions, a background My with pixel values of 0.08 and 0.22
(a checkerboard) is assumed that ensures the lowest value of the observation mean to be
greater than zero (see Figure 2B). Moreover, we here deliberately choose two basis functions
with the same mean values but with different variances (causes 1 and 5 in Figure 2B) in
order to assess the ability of the model in distinguishing between the two causes. Such a
task is formidable for most of the previously established generative models as they learn a
global variance parameter. In contrast, the proposed Beta-MCA model (9)—(13) is capable
of training component variances alongside with the component means.

A Samples of the generated data fackground D

* 1.0
7o
0 true label ﬁ

B Ground-truth dictionaries $=(0010001101)

1.0 1.0
0

0.6
0.2
0

C Learned parameters

1.0
0 true label
s n $=(0,0001,1001,0,1)
o 0 1.0
1.0

0.4

p(sy; Y, 0)

0.2

0
12 3 45 6 7 8 910 B

0.8

0.6

0.4

Al

0.2

0

12 3 45 6 7 8 910 B

1 2 3 4 5 6 7 8 9 10 0

Figure 2. (A) A total of 11 examples of input data. (B) Ground-truth mean and variance dictionaries used to generate data.
As illustrated, generative fields s; and s5 have the same mean value but different variances. (C) Learned mean and variance
dictionaries together with learned 71, values after 50 EM iterations. As observed, the model is able to learn all parameters
with a fairly good precision. Importantly, the learned background patterns and also learned variance dictionaries reveal the
robustness of the model in training interval data. (D) Two example data points that are chosen such that cause s; is active
for one of them (the upper data point) and ss is active for the other (the lower data point). The posterior values p(5; 7, ®)
given the learned parameters are then computed for these two data points and the results are shown accordingly. As it can
be seen, the model successfully distinguishes between the two causes with the same mean value and different variances and
infers the active causes correctly. Observe that the model still assigns a low probability to cause ss5 for the upper case and to

cause s for the other.

For the variance values %, we consider different bar-like patterns with pixel values
ranging from 0.1 to 0.2. The ground-truth patterns for variances were deliberately chosen
to be different from the mean patterns (to better illustrate the modelling capabilities of
the model). The background ¥ was chosen to also (like the mean) have a checkerboard
shape (with low pixel values of 0.01 and 0.05) to distinguish the background variance
pattern from other patterns. Regarding the prior, we consider each of the causes (except
the background ) to be active independently with a probability of 71, = 0.2 (meaning
two bars, on average, are active for each data point). The causes are then non-linearly
superimposed according to the maximum function defined in (11)—(13). Note that for



Entropy 2021, 23, 552

13 of 28

d=1,...,D, the mean /i(5,®) and variance 2 (5, ®) of the Beta distribution are defined
as follows:

714(3,0) = May(az50)(©) and 03(5,0) = 23, 1:6)(®) (25)

where h(d, 5, ©) is given by (13).

For our experiment, we generated N = 1000 iid data points according to the Beta-
MCA model with the settings mentioned above (see Figure 2A for the illustration of such
data points). Next, we used the full EM procedure presented in Algorithm 1 to recover the
ground-truth parameters (50 EM iterations were observed to be sufficient). To initialize
matrices W and V, we randomly (uniform) chose H + 1 data points and then computed
the values of log(y) and log(1 — y) and rearranged the results into two different matrices
with D x (H + 1) entries. The matrix obtained from the values of log(y) was used for the
initialization of W and the other for the initialization of V. We also initialized 7t;, values
at 0.3. The results are then presented in Figure 2 where the background parameters are
deliberately separated for the sake of a better visualization.

As it can be seen, the model extracted all bar patterns of the mean. All basis functions
of the mean M have also learned traces of the checkerboard background. The reason for
this is the maximum combination and the fact that the background is always present. As
the non-bar pixels of the bar patterns are smaller than the background pixels (they have
values of zero), the likelihood or free energy does not change for values between zero and
the value of the background. Therefore, there is no reason for the algorithm to converge to
any specific value, and learning stops once the value of the background pixel is reached.
The variance basis functions %, do seem to converge to patterns very different from the
generating (i.e., ground-truth) patterns. At a closer inspection, also the variance patterns
are optimal in the likelihood sense, however. Again, the maximum non-linearity explains
the divergence from the original patterns: For any non-bar pixels of component means
(with zero values), the background will always be larger. The variance of any non-bar
pixel is consequently never used to generate a bar (is irrelevant for the likelihood value).
The only variance values that are important, are consequently the variance values for
those pixels that correspond to high mean values (together with the background values).
For those pixels, the learned variance values estimate the ground-truth variances well.
Nevertheless, the learned %, values are observed to be slightly noisy that can be interpreted
as the effect of finite sample size. Importantly, the model can distinguish between the
two causes with the same mean value and different variances. In this context, Figure 2D
illustrates the inference results for two unseen data points where each of them has only
one of these two causes as the active cause. The model can then correctly infer the true
active causes for these two data points (even though it still assigns a low probability for
the activation of the other cause with the same mean value). Finally, we observed that the
Beta-MCA algorithm estimates the generating 77, values well.

Figure 2 shows the result of an execution of Algorithm 1 with a finally relatively
high free energy value. When executing several runs with different initial conditions, we
also frequently observed convergence to lower free energy values (convergence to local
optima). When measuring the number of bars for the mean that can correctly be inferred
after learning, we find an average of 8 bars out of 10 across different runs. However, as
we can compute the free energy exactly, we are able to simply use the run with highest
likelihood out of several runs. Alternatively, it would be possible to introduce additional
annealing strategies (see, e.g., [28] for a concrete discussion).

Overall, the results approve the ability of the proposed Beta-MCA model and also
the corresponding update Equations (19) and (20) in recovering (approximately) optimal
model parameters for interval data.

5.2. Application to Medical Data

For the purpose of showing the application of the Beta-MCA model to medical data,
a data set containing Common Audiological Functional Parameters (CAFPAs) is used.
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CAFPAs were introduced by Buhl et al. [9,23] as an abstract representation of the human
auditory system which are independent of audiological tests performed for the respective
patients. The data used here comprises CAFPA values determined by an expert survey,
where leading clinical audiologists and physicians labelled the database from Horzentrum
Oldenburg, Germany, by indicating audiological findings, treatment recommendations,
and CAFPAs for 287 single patients. The CAFPAs are defined on a continuous scale
(the interval [0, 1]) representing 0 as normal and 1 as pathological and describe different
functional aspects of the auditory system: four CAFPAs are related to hearing thresholds in
different frequency ranges, two CAFPAs are related to suprathreshold deficits below and
above 1.5 kHz, and finally one CAFPA for each of the binaural hearing, neural processing,
cognitive abilities and socio-economic components. We here excluded the socio-economic
CAFPA as it describes the social environment of a patient rather than a physiological
cause of hearing impairment. The data are then deliberately deidentified and here, as a
first test, only CAFPAs for the audiological findings of high-frequency hearing loss and
broadband hearing loss are used. This results in an amount of 124 data points with D = 9
CAFPA values in which a number of 52 patients with high-frequency hearing loss, 26
with broadband hearing loss, 9 patients with both causes, and 37 with normal hearing are
included. For the sake of computations, a small value of 1.0 x 1071? is added (subtracted)
to the CAFPAs with 0 (1) value.

We then used a model with H = 2 (three causes including background) and applied
Beta-MCA to learn the symptoms/causes relations between the two diseases and CAFPAs.
We divided the considered data into two sets of training and test using 10-fold cross-
validation and further assessed the performance of the proposed model in predicting the
true active causes on the held-out data. That is, after learning parameters © of the model,
we computed the following posterior probabilities for an unseen data point y:

p(sM);y,®) — probability of y being healthy
p(s1 = 1,y,©) — probability of s; being active for y

) (
) (

=(0,1,1) p(s2 = 1;y,©) — probability of s, being active for y
) (

p(s™);y,®) — probability of both s1 and s, being active

where S denotes the set of all possible state variables such that s; corresponds to the
high-frequency hearing loss and s; to the broadband hearing loss.

We further considered three different data sets: Real CAFPAs, simulated CAFPAs and
augmented CAFPAs. The first corresponds to training and testing on an amount of 124 real
CAFPA values collected and labelled by the experts; the second denotes the synthetic data
that we have generated for our purposes in this study (we will discuss its details further
below); and the third corresponds to training on simulated CAFPAs and testing on real
CAFPAs. Each of the cases will be discussed in the following.

In addition and for the sake of comparison, we also applied a probabilistic noisy-OR
model (see Appendix A.2 for the details) on the binarized data set. To this, we compared
each observable with an arbitrary and constant threshold a and set the binary output to 0 if
the observed value is below the threshold and 1 otherwise. We repeated the experiments
for several possible values of the binarization threshold, and the value to yield the best
results found to be & = 0.5. Receiver Operating Characteristic (ROC) curves are then
depicted in Figure 3 (for all the three settings discussed above) where we used the scikit
package metrics for computing the area under the curve (AUC) values.

Considering the middle column of Figure 3 (training and testing on real CAFPAs),
it can be seen that the Beta-MCA can outperform the noisy-OR model on predicting the
high-frequency hearing loss disease, but Beta-MCA performs worse than noisy-OR for
broadband hearing loss. This can be seen as the effect of having very few amount of data
points for training the model: Note that the Beta-MCA model has to estimate approximately
twice as many parameters as the noisy-OR model. Consequently, the effect of finite sample
size is more severe for the Beta-MCA. Therefore, in order to obtain a more informed
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comparison, a set of synthetic data, called simulated CAFPAs, is generated to be used for
further analysis of the two diseases.

Simulated CAFPAs: we first learned the symptom statistics of the two diseases by
fitting a Beta (and also a Gaussian for the sake of comparison) distribution to the data
in which only one of the causes is active, i.e., data points with only the high-frequency
hearing loss or the broadband hearing loss. Likewise, we fitted a Beta (and a Gaussian)
distribution to the amount of 37 data points where none of the causes is active to learn
the symptom statistics of a healthy patient. Doing so, we obtained the continuous disease
profiles corresponding to the two diseases of high-frequency and broadband hearing losses
and also of the normal case. The results of these disease profiles are further presented in
Appendix A.3. In short, we observed that the Beta distribution is a better fit to the CAFPAs
rather than Gaussian as the Beta distribution obtained higher log-likelihood values (see
Figures Al and A2). This is in line with the results described in [9].

Simulated CAFPAs Real CAFPAs Augmented CAFPAs

—=- Beta-MCA (AUC = 0.90)
—=- Noisy-OR (AUC = 0.88)
—— Chance (AUC = 0.5)

—=- Beta-MCA (AUC = 0.80)
——- Noisy-OR (AUC = 0.73)
—— Chance (AUC = 0.5) 0.04

- Beta-MCA (AUC = 0.99)
- Noisy-OR (AUC = 0.98)
—— Chance (AUC = 0.5) 00

High-frequency hearing loss
TPR

0.0 02 0.4 0.6 0.8 1.0

TPR

- === Beta-MCA (AUC = 0.65) ==+ Beta-MCA (AUC = 0.84)

Beta-MCA (AUC = 0.90)

Broadband hearing loss

—=- Noisy-OR (AUC = 0.85)
—— Chance (AUC = 0.5)

—=- Noisy-OR (AUC = 0.75)
—— Chance (AUC = 0.5)

—=- Noisy-OR (AUC = 0.83)
—— Chance (AUC = 0.5)

0.0 02 0.4 0.6 0.8 1.0
FPR

0.0 0.2 04 0.6 0.8 1.0
FPR

0.0 0.2 0.4 0.6 0.8 1.0
FPR

Figure 3. Illustration of the ROC curves presenting the results of the Beta-MCA and noisy-OR models trained on simulated,
real and augmented CAFPAs (see text for details). The two models of Beta-MCA and noisy-OR are distinguished with black
and red colors respectively. Moreover, the blue line denotes the prediction results corresponding to tossing a coin (each
disease have 50% chance to be active). The appeared AUC values reveal the beneficiary of the Beta-MCA in 5 out of 6 cases.

We further used the learned mean and variance parameters (obtained from fitting a
Beta distribution) to generate N = 1000 data points according to the Beta-MCA model
(we refer to it as the simulated CAFPAs). The 7, values were also computed by fitting
a mixture of two Beta distributions to the data in which both diseases (high-frequency
hearing loss and broadband hearing loss) are active.

We then considered the two models of Beta-MCA and noisy-OR and repeated the
experiment above but this time using the (N = 1000) simulated CAFPAs. The results are
illustrated in Figure 3 (the first column from the left). Here, we observed that the Beta-MCA
yields reliable results in inferring the symptoms/causes relations, and in predicting the true
active causes for an unseen data point as it performs better in comparison to the noisy-OR
model. Finally, for the third case, we trained the two models on simulated CAFPAs and
tested the outcome on real CAFPAs (we refer to this case as the augmented CAFPAs).
Considering Figure 3 (the first column from the right), we observed that additional data
provided by simulated CAFPAs improves the performance of both models. Simulated
CAFPAs are consequently a valuable form of data augmentation such that performance
(in practice) can be improved. Additionally, we find that Beta-MCA is (as for simulated
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CAFPAs) now the preferable model: It achieves higher AUC values than noisy-OR with
optimized threshold.

Especially for medical data, seemingly small differences of ROC curves can be very
important in practice. As an example, we may again use COVID-19. For detections of
COVID-19 infections it is very important to not miss an infection. Therefore, a classifier
would have to operate at a high true positive rate (TPR, also known as sensitivity) ideally
at >0.99. So, if the disease cause of the top-left plot of Figure 3 was COVID-19 instead of
high-frequency hearing loss, then we could operate a Beta-MCA-based classifier above 99%
TPR and it would produce less than 10% false positives (wrongly positive COVID-19 diag-
noses). The noisy-OR-based classifier, on the other hand, would produce approximately
30% false positives in that case, i.e., more than three times as many patients would wrongly
be diagnosed COVID-19 positive.

5.3. Feature Extraction—Natural Image Patches

To explore other applications and to investigate scalability, we trained the proposed
Beta-MCA model on a set of N = 100, 000 natural image patches chosen randomly from
the van Hateren database [64] (compare, e.g., [26,28,31,50]). Here we used D = 8 x 8 image
patches with pixel intensities linearly rescaled to fill the interval [0.1,0.9]. After rescaling,
we added a small amount of Beta noise to the image patches (which increased stability).
On these data points, we trained Beta-MCA models with H = 100 latent components for
500 EM iterations. We were particularly interested in how learned data representations
varied when transitioning from a model with a global scalar variance parameter ¢ to a
model with individual variances per latent component £2, (note that we here dropped
the dependency on parameters @ for the sake of readability). Consequently, we trained
two different models: one with a dictionary M for component means and a global variance
o2 (as in preliminary model (1)—(3); see Appendix A.1 for details about the corresponding
M-step update rules) and one with individual dictionaries for component means and
component variances (as described in Section 3).

As the size of the Beta-MCA model applied here did not allow for exact evaluations of
posterior probabilities, we used the EEM approach to approximate E-steps (see Section 4.2;
we used 60 variational states per subset ") for the EEM algorithm). To initialize parame-
ters © of the two models, we applied the following procedure: component means M}{‘it
were initialized with the mean of the data points plus a small amount of Gaussian noise,
the prior components n}l“it and also the values of ¢ and i};‘it were uniformly randomly
sampled from the interval (0,1). We kept the variance parameters ¢> and ¥? constant at
their initial values during the first 30% of the iterations and only updated parameters W
and 77 (we found this to lead to a more stable convergence behaviour of the algorithm).

The results are then presented in Figure 4. Looking at the generative fields (GFs)
corresponding to the component means Mj, learned with the Beta-MCA model with scalar
variance parameter, we observed many globular fields, some elongated fields and some
gratings (Figure 4A). For the variance, we inferred the single globular value of o = 0.086.
For the model with individual component variances, the diversity of GFs increased, with
many elongated fields (with different location and orientation), gratings, and with large
globular fields (Figure 4B, top). A crucial qualitative difference of the model with individual
variances is, of course, the additional GFs for the variances (Figure 4B, bottom). The
variances allow for increased flexibility in terms of intensity variations of elongated fields
(for many elongated fields variances are high where the corresponding mean is high). GFs
for variances also allow for more intricate modelling of image structure, however. As
can be observed, for some fields (e.g., bottom right) variance encoding allows for shape
variations rather than intensity variations: p = only at the transition of high to low mean
values are variances high, which means that variations of the precise shape modelled by a
component are allowed and modelled.
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A Single dictionary approach
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Figure 4. Feature extraction. (A,B) Parameters M, and ¥, of the Beta-MCA generative model
trained with (A) a single dictionary (a scalar variance 02) and (B) individual dictionaries for com-
ponent means and component variances. Displayed are H = 100 generative fields sorted from
left to right and from top to down based on their prior values, 71;,. The top left corresponds to the
background which has a prior parameter close to 1. Each of the component variances in the lower
part of panel (B) corresponds to the respective component means in the upper part of panel (B).
(C) Examples of (left) elongated and (right) edge-like functions learned with the double dictionary
approach. (D) 30 training patches. (E) Evolution of the free energy for Beta-MCA model for both
single and double dictionary approaches. Here, only the first 200 (out of 500) iterations are depicted.
(F,G) 30 examples of the patches generated according to the Beta-MCA trained with (F) scalar vari-
ance and (G) matrix variance. We here deliberately reduced the amount of noise in the generation
process for the sake of visualization. Additionally, in all the above cases, we linearly scaled the
learned values to fill the corresponding color range in the gray (color) space.
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In terms of free energy, the Beta-MCA model with individual component variances
achieved a better fit to the data compared to the model with global variance parameter
(Figure 4E): the corresponding final free energy value was 82.03 for the model with indi-
vidual variances compared to 70.31 achieved by the model with global variance parameter.
While a higher free energy can be expected because of more parameters of the model
with individual variances, the higher free energy can be taken as a confirmation that the
encoding of more intricate image structure in Figure 4B corresponds to a more refined
model of image patch structure.

To obtain more intuition about the learning results, we also applied the trained models
to generate new data points which can then visually be compared to the image patches
used for training. Consistent with the higher free energy values, we observed that the data
points generated using the model with individual component variances appear to be more
similar to the image patches used for training (Figure 4D,EG).

Finally, we repeated the experiment several times using different choices of hyper-
parameters. For instance, we ran the two algorithms again with H = 200 and in another
run with H = 100 and D = 16 x 16. In all different cases, we observed similar results
both qualitatively and quantitatively. In particular, the model with individual component
variances achieved consistently the highest final free energy value.

Consistent with the higher free energy value, the current experiment illustrates that
the variance components learned by the proposed Beta-MCA (with double dictionaries)
provide (in contrast to the Beta-MCA with scalar variance and other conventional LVMs)
more accurate information on how first and second order statistics of data are combined.
That generative models with non-linear combinations of latents are particularly well
suited to model, for instance, occlusion effects in natural image patches (as has been
argued previously, e.g., [26-28,31]). Besides, generative models with individual component
variances have been applied to natural image patches before very recently [33,50]. All
of these previous works used generative models with either Gaussian or Poisson noise
assumptions, however. Considering Figure 4, this paper is, to the knowledge of the authors,
the first to report results on images of a non-linear generative model with a Beta noise
assumption and individual component variances.

5.4. Denoising

Finally, we study the concrete example of denoising an image corrupted by Beta
noise. Many algorithms have been developed so far for the removal of additive white
Gaussian noise [65-72] which, to some extent, can also be applied for denoising of an
image corrupted by Beta noise. However, we here show that the proposed Beta-MCA
model is better suited for this task as it assumes a Beta observation noise. As an example,
we used the "house’ image [65] which we rescaled from its original interval of [0, 255] to
lie in the interval [0.2,0.8]. The image was then corrupted by Beta noise with a standard
deviation of 0.3 (we considered a homoscedastic noise as it is a common procedure for the
denoising experiments), and further segmented into patches of size D = 12 x 12. Therefore,
we again used the Beta-MCA model with a global variance parameter. We then applied
the Beta-MCA model on the noisy data without any further pre- or post-processing and
performed 1000 training iterations with H = 512 components. We also applied variational
approximation as for the previous experiment (with the same settings) in order to scale the
EM algorithm.

Note that the performance of any denoising algorithm will depend on many aspects
of the model. This includes the used approximate inference approach for the E-step, the
averaging and inpainting algorithms, or methods to avoid local optima during learning. We
here did not use annealing to avoid local optima, and also did not fine-tune approximate
inference or the averaging algorithm to improve the denoising performance. In general,
such fine-tuning or even automatic optimization of hyperparameters can significantly
further improve performance.
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After parameter optimization, we followed e.g., [45] and used the encoding learned
by the model to estimate the underlying image for which we employed the estimator:

(gegsrgmate) d = <ﬁd (§/ ®)>¢1(") . (26)

In addition to the Beta-MCA model mentioned above, we further applied MCA [26,31]
and spike-and-slab sparse coding [44,73] (SSSC) models each with H = 512 compo-
nents and 1000 EM iterations, and also the sparse 3D transform-domain collaborative
filtering [65] (BM3D) to the corrupted image. All these three approaches are tailored to
Gaussian observation noise but can directly be applied here as we use continuous data.
Amongst these approaches, the first two are based on generative models and exploit an
EM approach for training. The BM3D algorithm is not a generative model but a strong-
performing, highly engineered denoising approach that produces competitive results for
the removal of the additive white Gaussian noise.

Figure 5 depicts the results of the denoising experiment where the reconstruction per-
formances are compared using the standard measures of peak-signal-to-noise-ratio (PSNR)
and mean squared error (MSE). As can be seen, Beta-MCA obtained the best reconstruction
performance in terms of both PSNR and MSE values. Still the two measurements do not
best reflect the differences between the restored images in Figure 5 as visual inspection may
arguably favor the results of the Beta-MCA (in comparison to the other three approaches)
more than that the raw PSNR and MSE values suggest. The results may be taken to confirm
both scalability and effectiveness of the Beta-MCA model for continuous interval data.

(a) Original image (b) Corrupted (8.53/76.69) (c) B-MCA (26.45/9.73)

(d) MCA (25.61/10.73) (e) SSSC (24.96/11.55) (f) BM3D (26.21/11.55)

Figure 5. Denoising of the house image corrupted by Beta noise with 02 = 0.3. (a) is the original noiseless image, and

(b) the image with Beta-noise. (c—f) depict reconstructed images obtained by applying four different data models. Numbers

in parentheses are the corresponding PSNR (in dB) and MSE values (first number is PSNR, second number is MSE). As it
can be seen, the Beta-MCA (B-MCA) model improves on the other three approaches, which is consistent with the here used
Beta noise. See text for further details.
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Finally, in order to assess the performance of Beta-MCA if the noise is not Beta
distributed, we repeated the experiment but this time using Gaussian noise. To this, we
again considered the house image (Figure 5a) and corrupted the image by additive Gaussian
noise with o = 10. We then rescaled the corrupted image to the interval [0.01, 0.99] and
applied the Beta-MCA model, (Gaussian-)MCA and SSSC to denoise the image (rescaling
enables the application of all models). Concretely, we performed 1000 EM iterations for each
of the three models and used the same settings as for the previous experiment. The results
are presented in Figure 6. As the considered data is Gaussian distributed, we observed that
the two models of MCA and SSSC, which are tailored to Gaussian noise, perform best. The
performance of Beta-MCA is almost as high as the performance of MCA, though, which is
evidence for the flexibility of the Beta distribution. The SSSC approach is clearly the most
competitive, which may not be surprising as the model (A) assumes the correct type of
noise in this case, and (B) has a relatively flexible prior which is advantageous for denoising.
On the other hand, when the noise is Beta-distributed and the SSSC noise assumption is
thus not correct, Beta-MCA is observed to produce significantly better denoising results
(Figure 5).

4

(a) Corrupted (28.18/9.98) (b) B-MCA (32.63/5.97) (c) MCA (32.78/5.87) (d) SSSC (36.09/4.01)

Figure 6. Denoising of the house image corrupted by Gaussian noise. (a) Image with added Gaussian-noise. (b—d) depict
reconstructed images obtained by applying three different data models. Numbers in parentheses are the corresponding
PSNR (in dB) and MSE values (first number is PSNR, second number is MSE). As illustrated, denoising with Beta-MCA
(B-MCA) and (Gaussian-)MCA works similarly well but the SSSC model shows the best performance. See text for
further details.

6. Discussion

We here investigated a latent variable model (LVM) for observables with values in a finite
interval. Interval data is commonly encountered, e.g., in medical data recordings [9-11,74] and
other domains (we, e.g., considered intervals of [0,255] for gray level images). A natural
parametric distribution for interval data is the Beta distribution. However, inference and
learning of latent variable models with Beta-distributed observables is very challenging. To
infer latent causes, any interval data could, in principle, be binarized in order to apply stan-
dard models such as noisy-OR-like nets. Alternatively, we here endeavored in modelling
interval data directly. We took first steps in this novel direction by basing the investigated
LVM approach on the maximum non-linearity [28]. Related modelling approaches to
address non-binary or non-Gaussian types of observation statistics in other contexts is,
e.g., work by Vergari et al. [42]. Their approach focuses on discovering the statistical data
type of the model automatically, and to provide a number of automatic data analysis tasks
(also see [41]). While being applicable to interval data (and more generally), the approach
does not provide a model for the combination of means and variances which we believe
is of importance, e.g., for medical data. Another related approach by [37] uses a sparse
coding model with observables following, in principle, any distribution of the exponential
family. The interaction between causes and observables of this approach is chosen to make
inference easy, however, rather than modelling actual causes-observable relations in the
data. Furthermore, neither experiments for Beta distributions were discussed, nor were
variance combinations considered. Other similar studies are [38,39,75] which are all, in
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contrast to the proposed model here, based on a linear link function. Except of the standard
Gaussian, distributions depending on two parameters are avoided in the above discussed
approaches, as substantial changes to standard LVMs are required in this case. Often not
only the actually realized algorithms are constrained to one-parameter distributions but
also the derivations assume one-parameter distributions and sometimes only the distribu-
tions where one element of their sufficient statistics is proportional to y (e.g., [38]). Neither
is the case for the Beta distribution: the Beta distribution is a two-parameter distribution of
the exponential family and none of its sufficient statistics is proportional to the mean. While
the Beta distribution is more complex than observable distributions previously considered
for LVMs, we here argued that appropriate modelling of both mean as well as variances
within an LVM approach can result in important advantages compared, e.g., to approaches
using a binarization followed by an LVM (as noisy-OR) with a one-parameter distribution.
Using recent theoretical results [33] for LVMs with a maximum combination of binary
causes, we derived an LVM model that could model the relation between latents and
observables w.r.t. the mean values of the Beta distribution as well as w.r.t. the distributions’
variances.

The novel Beta-MCA model we considered thus allows for inferring multiple causes
(a property that it shares, e.g., with noisy-OR Bayes nets and sigmoid belief nets) based on
two sets of generative fields, one set containing the means associated with each cause and
one set (with equally many parameters) that models the variances associated with each
cause. Such individual variances per latent are known in the context of Gaussian mixtures
to carry important information [76]. For medical data, we have here argued that the same is
true for a multiple-cause model with individual variances. Disease profiles can be obtained
that are also instructive about the variance of a symptom, and numerical experiments on
augmented data collected from medical experts show that classifiers based on interval data
can perform more strongly than standard classifiers based on binary data. Applications to
image data, furthermore, show that the method can be scaled (we used up to N = 100,000
with up to H = 100 on data points with dimension D = 8 x 8). Features extracted by the
novel algorithms are qualitatively different with variances modelling feature variations;
and quantitative evaluations of denoising for data with Beta noise shows the capabilities of
the LVM model for a typical task addressed by LVMs.

Of course, the development of an LVM which models means and variances of the Beta
distribution is much more challenging than a binarization of the data followed by standard
noisy-OR, or compared to assuming Gaussian distributions. We believe, however, that
tackling such challenges is important to improve inference based on LVMs for interval data—
and it is worth the effort as improvements can be very important, e.g., for medical data. We
have here shown that an effective and scalable LVM based on Beta distributed observables
can indeed be developed—which makes the presented model unique in these respects.
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The following abbreviations are used in this manuscript:

LVM Latent Variable Model

MCA Maximal Causes Analysis

CAFPA  Common Audiological Functional Parameter
EM Expectation Maximization

EEM Evolutionary Expectation Maximization
SSSC Spike-and-Slab Sparse Coding

Appendix A
Appendix A.1. M-Step Update Equations of the Beta-MCA—Global Variance Parameterization

In order to train the Beta-MCA model with a global variance parameter, one can
simply use the update Equations (18) and (19) together with (15) to compute the matrix
2 (©) and then average over all elements of the matrix. However, we here consider another
approach and directly update a scalar variance ¢ in our EM algorithm. To this, we assume
the Beta distribution to be parameterized w.r.t. its mean parameter fi; (5, ©®) (defined in
(3)) ford =1,...,D and a global variance parameter ¢ (similar to the preliminary model
introduced in (1)—(3)). Moreover, in each M-step, we update the weight matrix M using
Equations (14), (18) and (19) using Cf>(W, V) obtained by (22); and also prior parameters
7 using (20). Then, to obtain a ¢ update equation, we set 3% = 0 where the free energy
function is given by:

= LLA"E{Llog(p(y," £, 0)) + Llog(p(lO)} + (- (AD

Therefore, we have
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mation §(x) ~ log(x) — zi(l + &), we obtain
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Considering f(jiz) = fiz(1 — fiz), the aforementioned equation can be restated as:
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and thus, one can obtain
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(A3)

where

k", 0) = f(log(y{") —log(a)) + (1 — fig) (log(1 —y\") —log(1 — 1a))  (A4)

W1 ) -1
19" = =7 S g = ~ ) (53)

Observe that we update variance ¢ in a fixed-point sense using Equation (A3) and

continue the iterative procedure in each M-step till convergence. The equilibrium point
will be then considered as the optimal scalar variance parameter. Furthermore, note that
for the Beta distribution, we should have (in order to obtain positive shape parameters):

o < pg(1— )

and therefore ¢ < f(fi;) which can be considered in each M-step as a constraint for our
update (A3). This ensures that we always obtain an acceptable variance parameter given
the current matrix M(©).

Appendix A.2. The Noisy-OR Model

The noisy-OR model is a highly non-linear bipartite Bayesian network with all-to-all
connectivity among hidden and observable variables. All variables take binary values. The
model assumes a Bernoulli prior for the latents, and active latents are then combined via
the noisy-OR rule:

pE1©) = m (1 — )t (A6)
h
p(7 | 5,0) = [ [NOR4(5)% (1 — NOR4(5))' (A7)
d
where ® = (77, W) and
NOR;(8) :=1— ] [(1 — Waysp). (A8)

h
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Parameter 7 is the set of values 71, € [0, 1] representing the prior activation probabili-
ties for the hidden variables s;, and W is a D x H matrix of values W, € [0, 1] representing
the probability that an active latent variable s;, activates the observable ;.

The M-step equations for noisy-OR are then obtained by equating derivatives of the
free energy to zero and solving for the desired parameters. We report the results here for
completeness:

T[;llew = %;<Sh>q(n) (A9)
v En” = D)D) 0
L SR (IE (A10)
where
Dan(8) = (SV)V(dlh(_s>;£l &) Can(5) = Wap(5)Dgpy(5), and Wy (3) = [ (1 — Wasi).  (A11)

W#h

The update equations for the weights Wy, do not allow a closed-form solution. We
similarly employ a fixed-point equation whose fixed point is the exact solution of the
maximization step. We exploit the fact that in practice one single evaluation of (A10) is
enough to (noisily, not optimally) move towards convergence.

Appendix A.3. Continuous Interval Disease Profiles for the CAFPAs

We present the symptom statistics of the two diseases analyzed in Section 5.2. To
this, we fit a Beta and a Gaussian distribution to the CAFPAs where only high-frequency
hearing loss or broadband hearing loss is active. The results are then presented respectively
in Figures Al and A2.

a b c

oo 02 04 05 08 10 oo 02 04 o8 08 10 00 02 04 05 o8 10

Figure A1. Continuous disease profile corresponding to the high-frequency hearing loss. (a—i) denote
values for 9 different CAFPAs (see [9] for details) where only the high-frequency hearing loss is active.
We here fitted Beta (black dotted line) and Gaussian (red dotted line) distributions to these CAFPAs
and the obtained log-likelihood (£(®)/N) values are —19.058 and —67.660 for the Beta and Gaussian
distributions respectively.
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Figure A2. Continuous disease profile corresponding to the broadband hearing loss.
(a—i) denote values for 9 different CAFPAs (see [9] for details) where only the broadband
hearing loss is active. We here fitted Beta (black dotted line) and Gaussian (red dotted
line) distributions to these CAFPAs and the obtained log-likelihood (£(®)/N) values are
—35.917 and —73.178 for the Beta and Gaussian distributions respectively.
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