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As mesenchymal stem cells (MSCs) are being investigated for regenerative therapies to be used in the clinic, delineating the roles of
the IGF system in MSC growth and differentiation, in vitro, is vital in developing these cellular therapies to treat degenerative
diseases. Muscle differentiation is a multistep process, starting with commitment to the muscle lineage and ending with the
formation of multinucleated fibers. Insulin-like growth factor binding protein-6 (IGFBP-6), relative to other IGFBPs, has high
affinity for IGF-2. However, the role of IGFBP-6 in muscle development has not been clearly defined. Our previous studies
showed that in vitro extracellular IGFBP-6 increased myogenesis in early stages and could enhance the muscle differentiation
process in the absence of IGF-2. In this study, we identified the signal transduction mechanisms of IGFBP-6 on muscle
differentiation by placental mesenchymal stem cells (PMSCs). We showed that muscle differentiation required activation of both
AKT and MAPK pathways. Interestingly, we demonstrated that IGFBP-6 could compensate for IGF-2 loss and help enhance the
muscle differentiation process by triggering predominantly the MAPK pathway independent of activating either IGF-1R or the
insulin receptor (IR). These findings indicate the complex interactions between IGFBP-6 and IGFs in PMSC differentiation into
the skeletal muscle and that the IGF signaling axis, specifically involving IGFBP-6, is important in muscle differentiation.
Moreover, although the major role of IGFBP-6 is IGF-2 inhibition, it is not necessarily the case that IGFBP-6 is the main
modulator of IGF-2.

1. Introduction

Skeletal muscle comprises one-half of the human body [1].
The development of skeletal muscle is a complex multistep
process, starting with the generation of myogenic precursors
from mesodermal stem cells and ending with terminal differ-
entiation and the commitment of myoblasts into myofibers
[2]. During myogenesis, muscle stem cells commit to the

muscle lineage by upregulating muscle commitment markers
(Pax3/7). As Pax3/7 subsequently decreases, early muscle dif-
ferentiation markers (MyoD and Myogenin) begin to be
expressed [3]. The committed muscle cells then start to fuse
and form multinucleated fibers, which express the late mus-
cle differentiation marker, myosin heavy chain (MHC) [3].
During muscle repair, a similar process is thought to occur
whereby satellite cells become activated, migrate towards
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Figure 1: Continued.
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injured muscle, and begin the differentiation process to
replace injured myofibers [4].

IGFs are important components of the skeletal muscle
microenvironment and are required for muscle growth dur-
ing development and regeneration after injury [1, 5, 6]. IGFs
regulate MyoD and Myogenin gene expressions, but the
mechanism is not completely understood [1]. When mice
are injected with IGF-1, there is an enhancement in muscle
mass (hypertrophy) [7, 8]. Moreover, IGF-1R null mice show
profound muscle hypoplasia and die prematurely soon after
birth due to breathing difficulties resulting from atrophy of
diaphragm and respiratory muscles [9].

Following the binding of IGFs to IGF-1R or IR, IRS-1 and
IRS-2 are phosphorylated, and then PI3K-AKT-mTOR and
MAPK pathways are activated [10]. Therefore, crosstalk
between the different receptor tyrosine kinase (RTK) path-
ways can lead to different cellular responses and signaling
outcomes. Also, the presence of target effectors and the tim-
ing of their activation are important in determining cell fate
decisions towards proliferation or differentiation [11].

During muscle differentiation, MAPK signals play an
important role [12]. Marshall reported that a prolonged acti-
vation of ERK1/2 leads to differentiation, whereas a transient
activation of ERK1/2 leads to proliferation, as it is not suffi-
cient to elevate the levels of nuclear ERK1/2 [13]. Therefore,
the availability of growth factors in the microenvironment

and the receptors they activate determine stem cell fate
through the signaling intermediates activated. Furthermore,
it is known that IGFs mediate and induce myogenesis by
directly activating the myogenin gene promoter. However,
when the PI3K inhibitor, LY294002, which acts upstream of
AKT signaling, is introduced, IGF is no longer able to induce
myogenesis or enhance the expression of myogenin [14].
Therefore, the direct effects of the IGF stimulation on the
myogenin promoter are also mediated via the actions of
PI3K via AKT signaling. Additionally, IGF-1R signaling
through PI3K was shown to upregulate myogenin expression
leading to an enhanced myogenesis [14] and also regulate
basal levels of IGF-1 and IGF-2 genes during myogenesis
[14, 15]. C2BP5 myoblast differentiation was still achieved
when transfected by recombinant adenoviruses expressing
MyoD in the absence of IGFs [16]. When MyoD-transfected
C2BP5 cells were treated with LY294002, the transcriptional
activity of MyoD, Myogenin, and MHC was not inhibited
but the myofibers were smaller and thinner with fewer nuclei
[16]. Collectively, these studies suggested that IGF-activated
PI3K-AKT and MAPK pathways are both important for
myoblast differentiation [17].

IGFs interact with insulin for metabolism, survival,
proliferation, and differentiation of many cell types either
through IGF-1R or the insulin receptor (IR) or the IGF-
1R-IR hybrid receptor [18–20]. Both the IGF-1R and IR are
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Figure 1: PMSCs treated with the IGF-1R inhibitor, PPP, decreased potency-associated and muscle differentiation markers. (a) PPP
treatment decreased IGFBP-6 protein levels at day 14 as compared to the PMSCs grown in muscle differentiation media only. IGFBP-6
supplementation with PPP increased IGFBP-6 levels at 1 and 14 days compared to PPP alone. PPP treatment also decreased the protein
levels of the potency-associated markers (b) OCT4 and (c) SOX2. When IGFBP-6 was added with PPP, OCT4 levels increased at 14 days.
(d) PPP treatment decreased the protein levels of muscle lineage commitment marker Pax3/7 at 7 and 14 days. IGFBP-6 supplementation
with PPP increased Pax3/7 from 3 to 14 days compared to PPP alone. (e, f) Levels of the muscle differentiation markers, MyoD and
MyoG, were decreased at 7 and 14 days, and adding IGFBP-6 with PPP reversed these effects. (g) Conversely, MHC protein levels were
reduced with PPP treatment at all time points compared to muscle differentiation. IGFBP-6 supplementation with PPP increased MHC
levels from 3 to 14 days compared to PPP alone. Protein levels were quantified by densitometry and normalized to β-actin. Data is
presented as the mean ± SEM of 3 independent experiments from one preterm placenta. Two-way ANOVA with Bonferroni’s multiple
comparison test was performed to determine ∗P < 0 05, ∗∗P < 0 01, and ∗∗∗P < 0 001 compared to muscle differentiation conditions
or #P < 0 05, ##P < 0 01, and ###P < 0 001 compared to PPP.

3Stem Cells International



tyrosine protein kinases that activate multiple signaling
transduction pathways [20, 21]. The PI3K-AKT pathway
but not the MAPK is activated by insulin [21]. It is known
that each ligand binds to its respective receptor with higher
affinity and to the other receptor or hybrid receptors with
lower affinity. While IGFs play a major role in cellular prolif-
eration, differentiation, and survival, and insulin has a major
role in metabolism, their functions are interchangeable
depending on the concentration of the peptide in the extra-
cellular space.

Circulating IGFs are bound to six soluble IGF-binding
proteins (IGFBPs 1–6), which determine the bioavailability
of free IGFs in the extracellular environment, thus modifying
the IGF actions [22]. Under normal physiological conditions,
IGFs bind IGFBPs with greater affinity than they bind IGF-
1R, playing an important role in IGF-regulated cell metabo-
lism, development, and growth. In addition, it has become
apparent that the IGFBPs can be expressed and maintained
within the cellular microenvironment and have additional
functions independent of regulating IGFs [22].

In RD rhabdomyosarcoma and LIM 1215 colon cancer
cells, mutant IGFBP-6 that does not bind to IGF-2 induces
cellular migration, suggesting an IGF-independent function
of IGFBP-6 [23]. Inhibition of ERK1/2 but not AKT impeded
cellular migration [23]. We have previously reported that
IGFBP-6, which has high affinity to IGF-2 [24, 25], stimulates
a multipotent profile and an early commitment to the muscle
lineage in PMSCs [26]. Furthermore, the impact of extracellu-
lar IGFBP-6 and silencing of endogenous IGFBP-6 suggest

that the biologic actions of IGFBP-6 occur in both IGF-
dependent and IGF-independent mechanisms [19, 27–29].
The mechanisms of IGF-dependent and IGF-independent
actions are not yet delineated. In this study, we demonstrated
that the biologic actions of IGFBP-6 on PMSC differentiation
into the skeletal muscle occur independently of either IGFs or
insulin signaling through IGF-1R or IR.

2. Materials and Methods

2.1. Isolation of PMSCs. PMSC isolation and experiments
were conducted in accordance with the approval from the
Health Sciences Research Ethics Board of Western Univer-
sity. Informed consent was obtained from healthy women
undergoing therapeutic termination of pregnancy, and the
PMSCs used in this study were isolated from 15 weeks pre-
term placental tissues. After surgery, chorionic villi were
dissected, washed, minced with surgical scissors and for-
ceps, and subjected to enzymatic digestion with collagenase
IV (369 IU/mg), hyaluronidase (999 IU/mg) (Sigma-
Aldrich), and DNase I (2,000 IU/mg) (Hoffmann-La Roche)
for 10 minutes at room temperature, followed by 0.05%
trypsin (Gibco/Invitrogen) for 5 minutes at room temper-
ature. The sample was then washed for 10 minutes with
10% FBS in DMEM/F12, and the resulting single cell sus-
pension was separated by density centrifugation over a
Percoll gradient using a modified protocol by Worton
et al. [26, 30].
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Figure 2: PMSCs treated with IGF-1R inhibitor (PPP) showed reduced p-AKT and p-ERK1/2 levels that were reversed by IGFBP-6 addition.
(a, b) PMSCs treated with PPP showed lower protein levels of p-AKT p-ERK1/2 at the later time points when compared to the PMSCs under
muscle differentiation conditions alone. When IGFBP-6 was added to PPP, p-AKT and p-ERK1/2 levels increased at all time points compared
to PPP alone. Protein levels were quantified by densitometry and normalized to total AKT or total ERK1/2. Data is presented as the
mean ± SEM of 3 independent experiments from one preterm placenta. Two-way ANOVA with Bonferroni’s multiple comparison
test was performed to determine ∗P < 0 05, ∗∗P < 0 01, and ∗∗∗P < 0 001 compared to muscle differentiation conditions or #P < 0 05 and
###P < 0 001 compared to PPP.
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2.2. Muscle Differentiation and Treatments. Cells were plated
in muscle growth media (fetal bovine serum 0.05mL/mL,
fetuin 50 μg/mL, epidermal growth factor 10 ng/mL, basic
fibroblast growth factor 1 ng/mL, insulin 10 μg/mL, and
dexamethasone 0.4 μg/mL) for 48 hours before changing
to skeletal muscle differentiation media, which is a proprie-
tary serum-free medium containing 10 μg/mL insulin (Pro-
moCell) for 14 days. PMSCs were treated every 3 days with
200nM of IGF-IR inhibitor PPP, 25 μM of AKT inhibitor
LY294002, 10 μM of MEK1/2 inhibitor U0126, or 10 μM
of IR inhibitor HNMPA (Santa Cruz Biotechnology) under
muscle differentiation conditions. Treatment concentra-
tions for LY294002, U0126, and HNMPA were determined
by a dose-response experiment using PMSCs in muscle dif-
ferentiation media (Supplementary Figure 1). For IGFBP-6
supplementation with the inhibitors, recombinant human

IGFBP-6 (ProSpec) was added to the media (375 ng/mL)
every 3 days at the time of media change. The dose of
IGFBP-6 was based on our previous studies [26, 31].

2.3. Immunoblotting. Cell lysates containing 20 μg of
protein were added to 6x SDS gel loading buffer. Samples
were resolved by molecular weight using 10% SDS-
polyacrylamide gels transferred onto polyvinylidene fluo-
ride (PVDF) membranes using Trans-Blot Turbo (Bio-Rad)
with an optimized protocol depending on protein size.
Membranes were blocked with 5% nonfat dry milk, gently
shaking for 1 hour at room temperature in Tris-HCl buffer
saline pH 8.0 with 0.1% Tween-20 (TBS-T). Blots were
washed with TBS-T followed by incubation at 4°C over-
night with specific primary antibodies in 5% BSA or 5%
nonfat dry milk in TBS-T following the manufacturer’s
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Figure 3: PMSCs treated with PPP showed increased IGFBP-6 secretion but decreased IGF-2 secretion. (a) IGFBP-6 secretion was increased
after PPP treatment at all time points compared to muscle differentiation conditions alone. (b) IGF-2 secretion was reduced at 3 and 7 days
compared to muscle differentiation conditions alone. IGFBP-6 with PPP did not have an additional effect. Data is presented as the mean
± SEM of 3 independent experiments from one preterm placenta. Two-way ANOVA with Bonferroni’s multiple comparison test was
performed to determine ∗P < 0 05, ∗∗P < 0 01, and ∗∗∗P < 0 001 compared to muscle differentiation conditions alone.
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Figure 4: PMSCs treated with LY294002 reduced differentiated muscle compaction at 7 and 14 days, while IGFBP-6 with LY294002 delayed
muscle compaction changes to 14 days. Higher magnification of PMSCs treated with LY294002 or with IGFBP-6 supplementation with
LY294002. PMSCs treated with LY294002, a PI3K inhibitor upstream of AKT, under muscle differentiation conditions showed less
skeletal muscle compaction at 7 days compared to muscle differentiation alone, but the addition of IGFBP-6 with LY294002 delayed these
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independent experiments from one preterm placenta.
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Figure 5: Continued.
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protocol. To detect markers of cell potency, antibodies for
OCT4 antibody (Santa Cruz Biotechnology) and SOX2
(Epitomics) were used. To detect the markers of muscle dif-
ferentiation, Pax3/7, MyoD, Myogenin, and Myosin heavy
chain (Santa Cruz Biotechnology) were used. To detect
the activated signaling molecules, we used phospho-p44/42
MAPK, p44/42 MAPK, phospho-AKT, and AKT (Cell Sig-
naling Technology). Then membranes were washed and
incubated at room temperature with the corresponding sec-
ondary HRP-conjugated antibody. Resolved protein bands
were detected using chemiluminescence, and images were
taken using the VersaDoc Imager (Bio-Rad) [25, 30].

2.4. Quantification of IGFBP-6 and IGF-2 by Enzyme-Linked
Immunosorbent Assay (ELISA). Human IGFBP-6 (RayBio-
tech®) and IGF-2 (ALPCO) ELISA kits were used to measure
the amount of IGFBP-6 and IGF-2 secreted into PMSC-
conditioned media. Standards and samples were loaded into
the wells, and the immobilized antibody bound the IGFBP-6
or IGF-2 present in the sample. The wells were washed and
biotinylated anti-human antibody was added. After washing,
HRP-conjugated streptavidin was added; then, a TMB sub-
strate solution was used to develop a blue color in proportion
to the amount of IGFBP-6 or IGF-2 bound. The stop solution
changes color from blue to yellow, and the intensity was mea-
sured at 450 nm using the Multiskan Ascent plate reader and
analysis software [26, 31].

2.5. Aldehyde Dehydrogenase (ALDH) Activity. ALDH activ-
ity, a conserved progenitor cell function, was assessed by flow
cytometry at days 1, 3, 7, and 14 using the Aldefluor™ assay
(STEMCELL Technologies), as per the manufacturer’s
instructions. Briefly, 5 μL of activated Aldefluor reagent was
added to 1mL of cell suspension and incubated for 45
minutes at 37°C. Cells were washed and resuspended in
500 μL of ice-cold Aldefluor assay buffer, and ALDH activity
was measured using flow cytometry. As a negative control,
Aldefluor™ DEAB reagent was used [26, 31].

2.6. Statistical Analysis. All experiments were performed in
triplicate from one 15-week placental tissue (technical repli-
cates). GraphPad Prism Software 5.0 was used to generate
all graphs and analyses. A two-way ANOVA followed by
Bonferroni’s multiple comparison test or a one-way ANOVA
followed by Student’s t-test was used to calculate significant
differences when P < 0 05. Graphic representation values
are presented as mean ± SEM (shown as variance bars).

3. Results

3.1. IGF-1R and IGFBP-6 Are Required for PMSC
Differentiation into the Skeletal Muscle. To evaluate the
effects of IGF-1R inhibition on potency-associated and
muscle differentiation markers in PMSCs under muscle
differentiation conditions, PPP (IGF-1R-specific autophos-
phorylation inhibitor) was used during PMSC muscle
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Figure 5: LY294002 treatment reduced IGFBP-6 and potency-associated and muscle differentiation markers. (a) IGFBP-6 protein levels
decreased with LY294002 at days 1 and 14 as compared to muscle differentiation alone, and adding extracellular IGFBP-6 with the
treatment did not cause additional changes to IGFBP-6 levels. (b, c) PMSCs treated with LY294002 decreased OCT4 (at day 1) and SOX2
(at each time point) compared to muscle differentiation, whereas IGFBP-6 addition with LY294002 increased OCT4 expression at 3, 7,
and 14 days and at day 14 for SOX2 compared to LY294002 alone. Muscle lineage differentiation marker protein levels were reduced with
LY294002 for (d) MyoD from 3 to 14 days, (e) MyoG at 7 and 14 days, and (f) MHC at all time points. IGFBP-6 supplementation with
LY294002 increased MyoD levels at 1 and 3 days and MHC levels at 3, 7, and 14 days compared to LY294002 treatment. (g) Pax3/7
protein levels decreased with LY294002 at day 7. IGFBP-6 addition with the inhibitor increased Pax3/7 levels until day 7. Protein levels
were quantified by densitometry and normalized to β-actin. Data is presented as the mean ± SEM of 3 independent experiments from one
preterm placenta. Two-way ANOVA with Bonferroni’s multiple comparison test was performed to determine ∗P < 0 05, ∗∗P < 0 01,
and ∗∗∗P < 0 001 compared to muscle differentiation conditions #P < 0 05, ##P < 0 01, and ###P < 0 001 compared to LY294002, or

P < 0 001 compared to muscle differentiation with IGFBP-6.
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differentiation for 14 days with/without IGFBP-6 supple-
mentation every 3 days. As determined by immunoblotting,
the presence of PPP decreased IGFBP-6 protein levels at 14
days (Figure 1(a)). Potency-associated marker (OCT4 and
SOX2) levels were decreased by PPP treatment compared to
muscle differentiation alone (Figures 1(b) and 1(c)). The
muscle commitment marker Pax3/7 levels were decreased
by PPP treatment at 7 and 14 days (Figure 1(d)). Similarly,
the protein levels of the muscle lineage differentiation
markers MyoD and MyoG were decreased at 7 and 14 days
(Figures 1(e) and 1(f)). In contrast, MHC levels were reduced
at all time points after PPP treatment compared to muscle
differentiation (Figure 1(g)). Overall, PPP treatment signifi-
cantly delayed muscle lineage commitment and differentia-
tion in vitro.

To determine whether IGFBP-6 could rescue PMSC
differentiation into the skeletal muscle during IGF-1R inhibi-
tion, extracellular IGFBP-6 was added to the culture along-
side PPP supplementation. As predicted, IGFBP-6 levels
increased after coadministration of IGFBP-6 with PPP at
day 14 compared to the inhibitor alone (Figure 1(a)). Also,
OCT4 protein levels were increased at 14 days with the
combined treatments, while SOX2 levels were not changed
compared to the inhibitor alone (Figures 1(b) and 1(c)). Fur-
thermore, IGFBP-6 supplementation with PPP increased the
levels of the muscle lineage differentiation markers Pax3/7,
MyoD, MyoG, and MHC from 3 to 14 days compared to
PPP alone (Figures 1(d)–1(g)). Moreover, the addition of
IGFBP-6 alone without PPPwas tested, and there were no sig-
nificant changes compared to the addition of IGFBP-6 with
PPP (data not shown). These findings indicate that IGFBP-
6 may be an important regulator of skeletal muscle differenti-
ation and its action, in part, occurred without activating
IGF-1R signaling and independent of IGF.

Downstream of the IGF-1R signaling, the presence of
PPP during muscle differentiation caused a reduction in
p-AKT levels at 7 days which was significant by day 14 and
in p-ERK1/2 levels at 7 and 14 days when compared to mus-
cle differentiation alone (Figures 2(a) and 2(b)). In contrast,
IGFBP-6 increased both p-AKT and p-ERK1/2 protein levels
at all time points in the presence of PPP under muscle differ-
entiation conditions compared to PPP alone indicating that
IGFBP-6 may trigger MAPK signal transduction cascade
independent of IGFs (Figures 2(a) and 2(b)). In the presence
of PPP, IGFBP-6 secretion into the conditioned media was
increased compared to muscle differentiation (Figure 3(a)),
whereas IGF-2 secretion was reduced at days 3 and 7
(Figures 3(b)); these effects could be because the exogenously
added IGFBP-6 is internalized (data not shown).

3.2. IGFBP-6 Is Required for PMSC Muscle Differentiation
after Inhibition of the PI3K Pathway. To better understand
downstream signaling of the IGF-1R, LY294002 was used
to inhibit PI3K signaling pathway. LY294002 alone reduced
differentiated muscle morphology at 7 days (Figure 4 and
Supplementary Figure 2). However, the addition of IGFBP-
6 with LY294002 delayed these changes until day 14
postdifferentiation (Figure 4 and Supplementary Figure 2).
Using immunoblotting, IGFBP-6 expression was decreased

at days 1 and 14 in the presence of LY294002 and remained
decreased despite IGFBP-6 supplementation (Figure 5(a)).
Furthermore, LY294002 treatment reduced the protein levels
of the potency-associated markers OCT4 (Figure 5(b)) at day
1 and SOX2 (Figure 5(c)) at all time points as compared to
muscle differentiation alone. After IGFBP-6 supplementation
with LY294002 treatment, OCT4 levels were maintained
higher at all time points, while SOX2 expression was higher
at day 14 compared to LY294002 treatment alone
(Figures 5(b) and 5(c)). The levels of the muscle lineage
markers MyoD, MyoG, and MHC decreased with LY294002
treatment as compared with muscle differentiation alone
(Figures 5(d)–5(f)). IGFBP-6 addition with LY294002
treatment increased MyoD protein levels at days 1 and 3
(Figure 5(d)), while MHC levels were increased compared to
LY294002 treatment alone (Figure 5(f)). These results
indicated that muscle commitment occurred earlier in the
presence of IGFBP-6 with LY294002 treatment. To confirm
this hypothesis, Pax3/7, the muscle commitment marker,
expression was tested. Pax3/7 protein levels were increased
after IGFBP-6 addition with LY294002 (Figure 5(g)),
suggesting an earlier commitment to the muscle lineage
when IGFBP-6 was present.

We used the Aldefluor™ assay to determine the fre-
quency of progenitor cells with high ALDH activity, a more
primitive progenitor phenotype. Compared to PMSCs under
muscle differentiation alone, there was a decrease in the fre-
quency of cells with high ALDH activity (ALDH+ cells) in
PMSCs treated with LY294002 until day 7 (Figure 6 and
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Figure 6: PMSCs treated with LY294002 and LY294002 with
IGFBP-6 under skeletal muscle differentiation conditions decreased
the frequency of cells with high ALDH activity. Compared to the
PMSCs under muscle differentiation conditions, cells treated with
LY294002 showed a decreased frequency of cells with high ALDH
activity at 1, 3, and 7 days. IGFBP-6 with LY294002 treatment
decreased frequency of cells with high ALDH activity only at day 1
and a significantly increased ALDH+ cells at day 3 compared to
LY294002 treatment alone. Data is presented as themean ± SEM of
3 independent experiments from one preterm placenta. Two-way
ANOVA with Bonferroni’s multiple comparison test was
performed to determine ∗P < 0 05 and ∗∗∗P < 0 001 compared to
muscle differentiation or ##P < 0 01 and ###P < 0 001 compared to
LY294002 alone.
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Supplementary Figure 3).Moreover, IGFBP-6with LY294002
treatment reduced the frequency of cells with high ALDH
activity at day 1 but was maintained at a higher number
compared to LY294002 alone at day 3. Thus, IGFBP-6
prolonged the progenitor phenotype in PMSCs when the
PI3K pathway is inhibited under muscle differentiation
conditions. These results show that the PI3K pathway is
essential for muscle differentiation, and when the pathway
was inhibited, IGFBP-6 could overcome the impact by
allowing the cells to commit earlier to the muscle lineage and
enhancing late-stage differentiation.

3.3. MAPK Signaling Is Required for PMSC Differentiation
into the Skeletal Muscle. To test the downstream signaling
of the IGF-1R via the MAPK pathway, U0126 was used to
inhibit MAPK signaling, which phosphorylates ERK1/2.
PMSCs treated with U0126 under muscle differentiation
conditions showed reduced muscle cell compaction from 3
to 14 days with a change in muscle morphology compared
to the PMSCs under muscle differentiation alone. IGFBP-6
supplementation with U0126 treatment showed similar mor-
phology to U0126 alone (Figure 7). Using immunoblotting,
IGFBP-6 levels were reduced with U0126 treatment and add-
ing IGFBP-6 did not increase IGFBP-6 levels, indicating that

MAPK is an important pathway for IGFBP-6 production
(Figure 8(a)). OCT4 levels were reduced at day 1 by U0126
alone or U0126 with IGFBP-6 addition; however, U0126 with
IGFBP-6 treatment maintained higher levels of OCT4 at 7
and 14 days until a significant decrease at day 14 compared
to U0126 alone (Figure 8(b)). In contrast, potency-
associated marker SOX2 protein levels were decreased by
U0126 until 7 days and were increased by IGFBP-6 at 7
and 14 days compared to U0126 alone (Figure 8(c)). The pro-
tein levels of the early and late muscle lineage differentiation
markers MyoD, MyoG, and MHC were significantly reduced
after day 3 with U0126, and adding IGFBP-6 with U0126 did
not reverse these effects (Figures 8(d)–8(f)). These findings
suggest that MAPK is a critical pathway for PMSC skeletal
muscle differentiation and cannot be substituted by an alter-
native pathway. The fact that IGFBP-6 did not accumulate in
the intracellular environment when MAPK was inhibited
shows that the MAPK pathway may be important for
IGFBP-6 action on PMSC differentiation; however, this is
not the only possible explanation, and it could be due to other
effects caused by the MAPK inhibition or because the
IGF-1R-dependent pathway is involved. PMSCs treated with
U0126 under muscle differentiation conditions decreased the
frequency of cells with high ALDH activity compared to the

Muscle differentiation U0126

Day 1

Day 3

Day 14

Day 7

U0126 + IGFBP-6

Figure 7: PMSCs treated with U0126 under muscle differentiation conditions showed reduced muscle compaction at 3 days. PMSCs under
muscle differentiation conditions with U0126, a MEK inhibitor upstream of ERK1/2, showed less skeletal muscle differentiation at 3, 7, and 14
days with a change in cell morphology at 14 days compared to muscle differentiation (10x). The images are the representative of 3
independent experiments from one preterm placenta.
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Figure 8: Continued.
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PMSCs under untreated muscle differentiation condition at
1, 3, and 7 days (Figure 9 and Supplementary Figure 4). In
contrast, adding IGFBP-6 with U0126 treatment increased
the frequency of cells with high ALDH activity compared
to the PMSCs treated with U0126 alone. Therefore, in
PMSCs under muscle differentiation conditions, IGFBP-6
acts in an IGF-1R-dependent manner mainly through the
MAPK pathway.

Consequently, triggering downstream phosphorylation
of AKT or ERK1/2 independent of IGF-1R activation by
IGFBP-6 via an unknown mechanism could be responsible
for IGFBP-6 impact on muscle cell differentiation.

3.4. Inhibition of Insulin Receptor Signaling Delayed PMSC
Differentiation into the Skeletal Muscle and Adding IGFBP-6
Rescued the Effects. To test the role of insulin receptor (IR)
signaling in the differentiation of PMSCs into the skeletal
muscle, HNMPA was used to block IR kinase activity as
it is specific for the IR and does not affect the IGF-1R.
Neither HNMPA nor HNMPA with IGFBP-6 impacted
differentiated cell morphology when compared to muscle
differentiation conditions alone. However, HNMPA treat-
ment delayed muscle differentiation (less compaction) at
day 14, compared to control treatment (Figure 10 and
Supplementary Figure 5).

Intracellular IGFBP-6 levels were unchanged by HNMPA
except for a reduction at day 7; however, adding IGFBP-6
with HNMPA increased IGFBP-6 protein levels at 3, 7, and
14 days (Figure 11(a)). HNPMA did not change the protein
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Figure 8: PMSCs treated with U0126 under muscle differentiation conditions reduced protein levels of IGFBP-6 and potency-associated and
muscle differentiation markers. (a) U0126 decreased IGFBP-6 protein levels and adding IGFBP-6 with U0126 did not cause additional
changes to IGFBP-6 levels. (b) Potency-associated marker OCT4 protein levels reduced with U0126 treatment at day 1with increased
levels at 7 days. IGFBP-6 addition with U0126 increased OCT4 levels at 3 and 7 days compared to U0126 treatment alone. (c) SOX2
protein levels were lower at 1, 3, and 7 days compared to muscle differentiation. IGFBP-6 addition with U0126 decreased SOX2 levels at
day 1 with an increase at 7 and 14 days compared to U0126. (d–f) Protein levels of the muscle differentiation markers MyoD, MyoG, and
MHC were decreased at the later time points with U0126 and adding IGFBP-6 with U0126 did not change these effects. Protein levels
were quantified by densitometry and normalized to β-actin. Data is presented as the mean ± SEM of 3 independent experiments from one
preterm placenta. Two-way ANOVA with Bonferroni’s multiple comparison test was performed to determine ∗P < 0 05, ∗∗P < 0 01, and
∗∗∗P < 0 001 compared to muscle differentiation or #P < 0 05, ##P < 0 01, and ###P < 0 001 compared to U0126.
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Figure 9: PMSCs treated with U0126 and U0126 with IGFBP-6
under skeletal muscle differentiation conditions decreased the
frequency of cells with high ALDH activity. U0126 treatment
showed decreased frequency of cells with high ALDH activity at 1,
3, and 7 days compared to muscle differentiation alone. IGFBP-6
supplementation with U0126 increased frequency of cells with
high ALDH activity at 1, 3, and 7 days compared to U0126. Data
is presented as the mean ± SEM of 3 independent experiments
from one preterm placenta. Two-way ANOVA with Bonferroni’s
multiple comparison test was performed to determine ∗P < 0 05
and ∗∗∗P < 0 001 compared to muscle differentiation or ##P < 0 01
and ###P < 0 001 compared to U0126.
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levels of the potency-associated markers (OCT4 and SOX2)
but addition of extracellular IGFBP-6 with HNMPA
increased both markers at days 7 and 14 compared to the
PMSCs under muscle differentiation conditions and PMSCs
treated with HNMPA (Figures 11(b) and 11(c)). Addition-
ally, the levels of the muscle lineage differentiation markers
MyoD, MyoG, and MHC were decreased at the later time
points with HNMPA compared to PMSCs under muscle dif-
ferentiation conditions, and extracellular IGFBP-6 increased
MyoG and MHC levels at 7 and 14 days compared to
HNMPA alone (Figures 11(d)–11(f)). These results suggest
that insulin or IGFs could trigger myogenic differentiation;
however, IGFBP-6 could also promote differentiation inde-
pendent of insulin or IGFs.

4. Discussion

The promise of using stem cells in treating diseases is
becoming closer to be used in the clinic [32, 33]. Still,

understanding the niche factors and their influence on stem
cell proliferation and differentiation in vitro is essential
before stem cells can be used safely in regenerative medicine
applications [34]. Muscle differentiation is a multistep pro-
cess, starting with commitment to the muscle lineage and
ending with the formation of multinucleated myotubes [2].
The IGF family is an essential early niche factor for stem cell
survival, growth, proliferation, and differentiation [24]. It is
also important in the skeletal muscle niche, with a major
role in muscle development [5, 6, 9]. IGFBP-6 is expressed
in the developing cells [23, 26–28]. We have demonstrated
that the balance between intracellular and extracellular
IGFBP-6 levels is required for modulating muscle differenti-
ation by PMSCs [26] and that the effects of IGFBP-6 on
muscle differentiation are both IGF-dependent and IGF-
independent [31]. These findings provided basic insight into
the role of IGFBP-6 and IGFs on PMSC muscle differenti-
ation. The aim of this study was to characterize the effects
of IGF-1R and IR activation on the differentiation of

Muscle differentiation HNMPA

Day 1

Day 3

Day 14

Day 7

HNMPA + IGFBP-6

Figure 10: PMSCs under muscle differentiation conditions treated with HNMPA show delayed muscle compaction at 14 days. PMSCs under
muscle differentiation conditions, with HNMPA or HNMPA with extracellular IGFBP-6, showed minimal change in skeletal muscle
morphology and density at day 14 when compared to muscle differentiation (10x). The images are the representative of 3 independent
experiments from one preterm placenta.
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Figure 11: Continued.
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PMSCs into skeletal muscle and to investigate IGFBP-6
role in this process.

In these studies, we demonstrated that IGF-1R and its
downstream signaling pathways (PI3K-AKT and MAPK
pathways) were required for PMSC muscle differentiation.
We also showed that when the PI3K pathway was inhibited,
increased extracellular IGFBP-6 improved PMSC differentia-
tion into the skeletal muscle as seen with the increased pro-
tein levels of MyoD and MHC. In contrast, MAPK pathway
inhibition could not be rescued by increased extracellular
IGFBP-6 as seen with the unchanged protein levels of the
muscle lineage differentiation markers. MAPK inhibition
also caused a significant decrease in intracellular IGFBP-6
concentrations, which could not be reversed by the addition
of extracellular IGFBP-6 as seen with the unaffected IGF
BP-6 protein levels. These studies suggested that MAPK sig-
naling is an important pathway for PMSC differentiation into
the skeletal muscle and that intracellular IGFBP-6 compli-
ments this process. Therefore, we suggest that in PMSCs,
IGFBP-6 acts in an IGF-1R-dependent manner predomi-
nantly through the MAPK signaling pathway and not
through PI3K to achieve skeletal muscle differentiation. We
further verified the importance of the insulin receptor (IR)
in PMSC differentiation into the muscle and the interaction
with IGFBP-6.

We demonstrated that IR plays an important role in
PMSC muscle differentiation in addition to IGF-1R. We
showed that inhibiting IR signaling delayed PMSC differenti-
ation into the skeletal muscle but did not completely block
the process as IGF-1R signaling was still active and most
likely mediated the differentiation process. These observa-
tions also suggested that the induction of muscle differentia-
tion by the high concentration of insulin (10 μg/mL) in the
media is likely exerted by insulin binding to the IGF-1R, to
which it has low-affinity binding capacity. The fact that
IGFBP-6 enhanced muscle differentiation when IR was
inhibited suggests that IGFBP-6-induced PMSC differentia-
tion into the muscle could occur independent of IR signaling.

The IGF-1R and IR are both receptor tyrosine kinases
that activate several signaling transduction pathways
[20, 21]. IGFs and insulin both promote cell proliferation
and differentiation [10, 18–20], and IGFs also possess
insulin-like metabolic effects, including increased glucose
uptake in the skeletal muscle, mediated by either IGF-1R or
IR [35]. Previous reports show that high concentrations of
insulin activates both IGF-1R and IR [36, 37]; however, not
much attention is given to IGF-1R binding affinity and effects
versus IR when insulin is used.

Therefore, in future studies, a phosphokinase array may
be used to specify interacting adaptors and signaling proteins
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Figure 11: PMSCs treated with HNMPA under muscle differentiation conditions reduced muscle differentiation markers with no change in
potency-associated markers. (a) HNMPA treatment decreased IGFBP-6 protein levels at 7 days as compared to muscle differentiation.
IGFBP-6 supplementation with HNMPA increased IGFBP-6 levels at 3, 7, and 14 days. (b, c) HNMPA treatment did not change the
protein levels of the pluripotency-associated markers OCT4 and SOX2. IGFBP-6 with HNMPA treatment increased the levels at 7 and
14 days. (d–f) HNMPA treatment decreased the protein levels of the muscle lineage differentiation markers MyoD, MyoG, and MHC
at the later time points (3-14 days). IGFBP-6 addition with HNMPA treatment increased MyoG and MHC levels at 7 and 14 days
compared to HNMPA treatment alone. Protein levels were quantified by densitometry and normalized to β-actin. Data is presented as
the mean ± SEM of 3 independent experiments from one preterm placenta. Two-way ANOVA with Bonferroni’s multiple comparison
test was performed to determine ∗P < 0 05, ∗∗P < 0 01, and ∗∗∗P < 0 001 compared to muscle differentiation conditions or #P < 0 05,
##P < 0 01, and ###P < 0 001 compared to HNMPA.
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Figure 12: Schematic of the insulin-like growth factor system role in PMSC differentiation into the skeletal muscle. PMSCs isolated from the
chorionic villus of preterm human placenta differentiated into the skeletal muscle under appropriate culture conditions. As PMSCs
differentiated into the skeletal muscle, the levels of the potency-associated markers decreased, cells became committed to the muscle
lineage, and skeletal muscle differentiation marker levels increased. IGFs bind to the IGF-1R and activate the tyrosine kinase activity to
achieve muscle differentiation via downstream signaling pathway (PI3K-AKT and MAPK). The insulin receptor is also important in
PMSC skeletal muscle differentiation. Moreover, IGFBP-6, due to its location, binds IGFs and enhances the muscle differentiation process
through the IGF-1R or directly impacts PMSC muscle differentiation through IGF-independent functions. When IGF-1R or IR was
inhibited in vitro, IGFBP-6 addition enhanced the muscle differentiation process of PMSCs with MAPK being a critical pathway for this
differentiation process.
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within complementary IGF-1R and IR signaling pathways.
Also, alterations in the PMSC microenvironment can cause
epigenetic changes, and it will be interesting to understand
whether the IGF system affects potency and myogenesis
through epigenetic modulation of promoter regions.

These results are in agreement with previous reports
on the importance of IGF-1R and its downstream path-
ways and the IR in muscle development and differentia-
tion. However, this study is the first to show these
effects on human stem cells isolated from the placenta
and that IGFBP-6 addition enhanced the muscle differen-
tiation process of PMSCs when IGF-1R or IR were inhib-
ited in vitro.

Different signaling pathways, including IGF-1R and IR,
crosstalk, and the complexity of signaling and its effects on
PMSC differentiation into the muscle are beyond the scope
of one study. The possibility that a different pathway, not
examined in this study, is responsible for IGFBP-6 effects
on PMSC differentiation into the skeletal muscle must be
considered and further investigated to better understand
the IGFBP-6 role in this differentiation process. Moreover,
to confirm the results from this study, increasing the sample
number to have biological replicates is vital as experiments
were performed from one preterm placental tissue (15
weeks). Therefore, future studies are warranted to directly
compare MSCs from the chorionic villi of different gestations
(preterm and full-term human placentae), which will further
improve our understanding of skeletal muscle differentiation
and the effects of the IGF system based on ontogeny, and will
help in choosing the best gestation age PMSC for skeletal
muscle differentiation.

To date, previous studies on the role of the IGF family,
specifically IGFBP-6, have not been reported during the dif-
ferentiation of PMSCs towards the skeletal muscle lineage.
Therefore, data presented in this study provides insight into
the mechanisms of differentiation from PMSCs into the skel-
etal muscle by IGFs and IGFBP-6 during development and
suggests that both the IGF-1R and IR signaling are important
signaling pathways in PMSC differentiation towards skeletal
muscle lineage. In addition, IGFBP-6 is also important for
differentiation to occur, due to a combination of IGF-
dependent and IGF-independent functions (Figure 12).
Overall, manipulating the PMSC microenvironment using
the IGF system, particularly IGFBP-6, can improve PMSC
myogenic differentiation, a first step towards PMSC use for
muscle regeneration therapies.
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Supplementary Materials

Supplementary Figure 1: PMSCs under muscle differentia-
tion conditions treated with different concentrations of
PI3K, MAPK, and IR inhibitors. Cells were treated with dif-
ferent concentrations of (A) LY294002 (PI3K inhibitor), (B)
U0126 (MAPK inhibitor), or (C) HNMAP (insulin receptor
inhibitor) for 3 days under muscle differentiation conditions
to assess the optimal concentration to be used. The concen-
tration of the inhibitors was selected based on maintaining
low band intensity for the duration of the experiment (3
days) compared to muscle differentiation alone. 25μM of
the AKT inhibitor LY294002, 10μM of the ERK1/2 inhibitor
U0126, and 10μMof the IR inhibitor HNMPA were selected.
Protein levels were quantified by densitometry and normal-
ized to total AKT, total ERK1/2, or β-actin. Data is presented
as the mean± SEM of 3 independent experiments from one
preterm placenta. Two-way ANOVA with Bonferroni’s mul-
tiple comparison test was performed to determine ∗P < 0 05,
∗∗P < 0 01, and ∗∗∗P < 0 001 compared to muscle differenti-
ation conditions. Supplementary Figure 2: PMSCs treated
with LY294002, a PI3K inhibitor upstream of AKT, under
muscle differentiation conditions showed less skeletal muscle
morphology at 7 and 14 days, but the addition of IGFBP-6
with LY294002 delayed these changes until day 14 (10x).
The images are the representative of 3 independent experi-
ments from one preterm placenta. Supplementary Figure 3:
representative flow cytometry dot plots showing the fre-
quency of PMSCs with high ALDH activity when cultured
under muscle differentiation conditions with or without
LY294002 or LY294002 and IGFBP-6 at (A) day 1, (B) day
3, (C) day 7, and (D) day 14. DEAB-treated controls were
used to establish the ALDH gate (data not shown). Supple-
mentary Figure 4: representative flow cytometry dot plots
showing the frequency of PMSCs with high ALDH activity
when cultured under muscle differentiation conditions with
or without either U0126 or U0126 and extracellular
IGFBP-6 at (A) day 1, (B) day 3, (C) day 7, and (D) day 14.
DEAB-treated controls were used to establish the ALDH gate
(data not shown). Supplementary Figure 5: higher magnifica-
tion of PMSCs treated with HNMPA or with IGFBP-6 sup-
plementation with HNMPA. PMSCs treated with HNMPA
under muscle differentiation conditions showed less skeletal
muscle compaction and density at 14 days compared to mus-
cle differentiation alone, but the addition of IGFBP-6 with
HNMPA showed more muscle compaction as seen with the
white arrows compared to HNMPA alone (20x). The images
are the representative of 3 independent experiments from
one preterm placenta. (Supplementary Materials)
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