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Mediation analysis has been a powerful tool to identify factors mediating the association 
between exposure variables and outcomes. It has been applied to various genomic 
applications with the hope to gain novel insights into the underlying mechanism of various 
diseases. Given the high-dimensional nature of epigenetic data, recent effort on epigenetic 
mediation analysis is to first reduce the data dimension by applying high-dimensional 
variable selection techniques, then conducting testing in a low dimensional setup. In 
this paper, we propose to assess the mediation effect by adopting a high-dimensional 
testing procedure which can produce unbiased estimates of the regression coefficients 
and can properly handle correlations between variables. When the data dimension is 
ultra-high, we first reduce the data dimension from ultra-high to high by adopting a sure 
independence screening (SIS) method. We apply the method to two high-dimensional 
epigenetic studies: one is to assess how DNA methylations mediate the association 
between alcohol consumption and epithelial ovarian cancer (EOC) status; the other one 
is to assess how methylation signatures mediate the association between childhood 
maltreatment and post-traumatic stress disorder (PTSD) in adulthood. We compare the 
performance of the method with its counterpart via simulation studies. Our method can be 
applied to other high-dimensional mediation studies where high-dimensional mediation 
variables are collected.

Keywords: de-sparsify, DNA methylation, high-dimensional testing, high-dimensional mediation, mediation analysis

INTRODUCTION 
Introduced by Baron and Kenny in 1986 (Baron and Kenny, 1986), mediation analysis has been 
broadly applied in many scientific disciplines, such as sociology, psychology, behavioral science, 
economics, epidemiology, public health science, and genetics (e.g., E.Shrout and Bolger, 2002; 
Preacher and Hayes, 2008; Hafeman and Schwartz, 2009; Pfeffer and Devoe, 2009; Imai et al., 2010; 
Rocca et al., 2010; Pearl, 2012; Pierce et al., 2014). Through solving a chain of relations between an 
exposure variable and an outcome, it helps to understand how the effect of one variable is transmitted 
to another variable. Thus, mediation analysis offers researchers a unique statistical tool to reveal 
the underlying mechanism or process of various scientific questions, especially when designing 
an intervention strategy. It has been further extended and developed via taking nonlinearity, 
interactions, various types of mediating and outcome variables, as well as missing data into account 
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in recent developments (e.g., Imai et al., 2010; Vanderweele and 
Vansteelandt, 2010; Pearl, 2012; Zhang and Wang, 2013).

Recently, mediation analysis has been applied to genetic association 
studies in which one can evaluate how genetic variants (e.g., single 
nucleotide polymorphisms (SNPs)) pass effects to mediators such 
as gene expression or DNA methylation (DNAm) to affect a disease 
risk (e.g., Liu et al., 2013; Huang et al., 2014; Huang et al., 2015). The  
genome-wide mediation analysis provides additional insight into 
the causal mechanisms of complex diseases. DNAm is an epigenetic 
phenomenon. Its status change reflects environmental exposures 
on the genome. DNAm can regulate gene expressions and can 
be potential biomarkers for the early prevention of stress-related 
disorders (Klengel et al., 2014). Properly maintained DNAms are 
necessary for regulating chromosomal stability and gene expressions. 
However, they can change the DNA activity when things go wrong, 
and lead to unexpected consequences. A growing body of literature  
shows that different environmental factors can alter the level 
of DNAm among individuals (e.g., Guida et al., 2015; Dongen 
et  al., 2016). Abdolmaleky et al. (2004) showed that DNAm may 
modulate gene-environment interactions on psychiatry disorder. Li 
et al. (2003) reported that exposure to xenobiotics in early life can 
persistently change the pattern of DNAm, resulting in potentially 
adverse biological effects which may explain the increased risk in 
adulthood of some chronic diseases. All evidences demonstrate the 
important role of DNAm in mediating the effect of environmental 
exposures on disease outcomes. Successful identification of causal 
DNAm as potential biomarkers can offer novel insights into the 
early prevention of some diseases such as stress-related disorders.

In a typical DNAm study, the number of DNAm can be 
much larger than the number of sample size. Mediation analysis 
focusing on one mediator at a time is not efficient enough to 
handle thousands of mediators (e.g., CpG sites). Methods for 
multiple mediators have been proposed assuming different data 
distributions with different methods. Focusing on continuous 
mediators, Huang and Pan (2016) developed a testing procedure 
using Monte-Carlo resampling method to evaluate the statistical 
significance. However, it is time consuming when the computing 
resource is limited.

Let X be an exposure variable; Mj, j=1,…,k be the jth mediator; 
and Y be an outcome variable. Figure 1 illustrates the mediation 
model with a single mediator (a) and multiple mediators (b). 
In an epigenetic study, multiple mediators could be potentially 
correlated. For example, methylation signals in a given gene or 
region are typically correlated. Such correlation, if not properly 

handled, can lead to potential false positives or false negatives in 
traditional mediation analysis.

The high-dimensional and correlation nature of DNAm 
signatures (Figure 1B) motivates us to consider a high-
dimensional mediation model, which is not a trivial extension of 
a low dimensional multiple mediator model studied in literature. 
Methodology development for mediation analysis with high-
dimensional mediators is still in its infancy. Zhang et al. (2016) 
proposed a high-dimensional mediation analysis method. They 
first applied a sure independence screening (SIS) method to 
reduce the data dimension from ultra-high to high, then adopted 
a penalized regression to shrinkage coefficients of irrelevant 
variables to zero. After the shrinkage, those mediators with 
non-zero coefficients were refit in a low-dimensional regression 
model for further hypothesis testing. Such penalized regression 
methods typically produce biased estimators, especially when 
correlations between predictors exist. This method thus could 
face potential issues with either false positives or false negatives. 
Huang and Pan (2016) proposed to transform the correlated 
mediators into independent ones, then performed the mediation 
analysis on the transformed variables. Such a method solves the 
correlation issue but faces the difficulty of interpretation, since 
the transformed variable is a linear combination of the original 
mediators and does not have a direct interpretation.

High-dimensional data analysis is typically formulated with 
high-dimensional penalized regression models, with the purpose 
to select important features that can minimize the prediction 
error. Popular methods include LASSO (Tibshiranit, 1996), 
adaptive LASSO (Zou, 2006), and elastic net (Zou and Hastie, 
2005). Although these methods can do variable estimation and 
selection simultaneously, they cannot quantify the estimation 
uncertainty. There has been a flourish of recent literature on 
testing low-dimensional coefficients in high-dimensional sparse 
regression models (e.g., Zhang and Zhang, 2014; Dezeure et al., 
2015; Zhang and Cheng, 2017; Wang and Samworth, 2018). These 
methods essentially implement a debias technique, then perform 
hypothesis testing using the debiased estimators (Zhang and 
Zhang, 2014). Following the asymptotic normality, one can obtain 
a p-value or construct a confidence interval for each coefficient 
(Van de Geer et al., 2014). Taking the high dimensionality and 
correlation issue into account, in this article, we adopt a high-
dimensional testing framework and conduct simultaneous 
inference under a high-dimensional sparse mediation model 
based on the recent de-sparsifying LASSO estimators (Zhang 

FIGURE 1 | Mediation model: (A) single mediator model; (B) multiple mediator model with correlated mediators.
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and Zhang, 2014). High-dimensional testing is embedded in 
the mediation model to handle the high dimensionality and 
correlation issues between mediators. We conduct extensive 
simulations to evaluate the performance of the methods and 
compare it with its counterpart. Application to two real data sets 
is given. Our method can be extended to other mediation analysis 
where high-dimensional mediators are observed.

STATISTICAL METHOD
Figure 1A demonstrates a single mediation model. There are 
two types of effect from X to Y: (1) the direct effect from X to 
Y, denoted as ′c ; and (2) the indirect effect from X to Y via the 
intermediate mediation variable M. The indirect effect measures 
the amount of mediation which comes from two sources: i) the 
effect from X to M, denoted as a; and ii) the effect from M to 
Y, denoted as b. The product of a and b defines the indirect 
effect. The total effect c from X to Y contains two parts, i.e., 
c c ab= +′ . By fitting three different regression models, one can 
use the Sobel’s method (Sobel, 1982) to estimate the standard 
error of ˆˆab from which the significance of mediation effect can 
be assessed.

The single mediator model shown in Figure 1A can be 
extended to a multiple mediator model by fitting a multiple 
regression model involving both the exposure and the mediator 
variables. The multiple mediator model is given as follows,

 

Y cX e
M a X j k

Y c X b M

j j j j

j j

= + +
= ′ + + =

= + ′ +

θ
θ

θ

1 1

2

1ε , , ..., ,

jj

k
e

=∑ +
1

2 ,  (1)

where Mj, j=1,..,k is the jth mediator variable; c represents the total 
effect from the independent variable X to the dependent variable Y; 

′c  represents the direct effect from X to Y adjusting for the effects of 
multiple mediators; the indirect effect from X to Y mediated by Mj is 

denoted by ajbj. The total mediation effect can be obtained as c c− ′ or 

a bj j
j

k

=∑ 1
. When the response variable Y is a categorical variable, 

method to estimate the total mediation effect based on the product 
measure, ajbj, is less susceptible to the scaling problem since only the 
bj coefficient is from a categorical regression analysis (MacKinnon, 
2008). Model (1) is for continuous Y variable. For a categorical 
response, Model (1) becomes,
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M a X j k
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j j j j
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As we mentioned in the Introduction section, a genomic 
mediation study often involves high-dimensional mediators. In 
many cases, the number of mediators is far beyond the sample 

size (k>>n). For example, the number of DNAm loci can be nearly 
half million, far more than the sample size. Another phenomenon 
for genomic mediators is that they are often correlated. Both the 
curse of dimensionality and correlation between mediators cause 
estimation problems in Model (1) and (2). Classical regression 
analysis cannot be directly adopted to deal with the estimation 
and testing problem appeared in the third equation in Model (1) 
and (2). To solve both the high dimensionality and correlation 
problem, we propose to adopt a high-dimensional testing 
framework which is focused on de-sparsified LASSO estimators 
(Zhang and Zhang, 2014). The detailed estimation and testing 
procedure for the proposed high-dimensional mediation testing 
framework is given as follows:

Step 1: First apply an SIS procedure to reduce the methylation 
dimension from ultra-high to high dimension (Fan and Lv, 
2008). According to the SIS algorithm, the top d=n/log(n) 
methylation variables with the largest effects were remained in 
the model when the response Y is a continuous variable. For 
a binary response, the top d=n/log(n) variables can be kept in 
the model. SIS theoretically guarantees that no true signals are 
removed from the model. The SIS step can be based on the third 
or the second regression equation in Model (2). For a binary 
response Y, Zhang et al. (2016) suggested that SIS can be done 
based on the second equation in Model (2). For a continuous 
response variable, the SIS step can be done based on the third 
regression equation in (2). After SIS, the number of methylation 
loci is reduced from k to d. We then focused our analysis to these 
d methylation variables to test mediation effects. Denote the 
remaining methylation loci after the SIS step as Mj,j=1,…,d.

Step 2: In the second step, we fit the following model,

 E Y c X b Mj j
j

d( ) = + +′
=∑θ2

1  (3)

Other covariates can also be fitted to this model. Since 
the dimension d can still be relatively large after the SIS step, 
regular least squares estimation will not work well. For high-
dimensional data, penalized regressions are commonly applied 
for simultaneous variable selection and estimation. However, 
penalized estimators are biased and cannot be directly used 
for testing or confidence interval construction. Zhang and 
Zhang (2014) first time proposed a de-biased estimator for 
high-dimensional data. Let b̂lasso be the LASSO estimators. For 
a continuous response variable Y, A de-biased estimator, also 
called a de-sparsified estimator, is a bias-corrected estimator 
which can be given as,

 
ˆ ˆ

,b
Z Y

Z M
j l

Z M
Z M

bj
j
T

j
T

j

j
T

l

j
T

j
lasso l= − ≠∑  (4)

where b̂j  is the bias-corrected coefficient of the jth methylation 
Mj; ˆ

,blasso l  is the coefficient of the lth Ml estimated by fitting a 
LASSO regression; Zj is the regularized residuals obtained by 
Z M Mj j j lasso= − − γ̂ , where γ̂ lasso is the regression coefficients 
obtained based on a LASSO regression by regressing Mj on all 
other M except the jth Mj denoted as M j− . Van de Geer et al. 
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(2014) proved the asymptotic normality of the de-sparsified 
estimate, i.e.,
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where γ j
0  represents the true regression coefficient; σ  can be 

calculated by using the scaled LASSO algorithm (Sun and Zhang, 
2012), and Ωjj can be calculated by,
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Under the null that H j0
0 0: γ = , we can get p-values for all the 

d methylation loci based on the asymptotic normality (Van De 
Geer et al., 2014).

For a binary response, Van de Geer et al. (2014) also proved 
the asymptotic normality for the de-sparsified estimates. Let 
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where λ is a tuning parameter. Define ˆ
ˆ
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 and construct 
ˆ ˆΘ Θ= LASSO by doing a nodewise LASSO with Σ̂  as input. Then 

the de-sparsified LASSO estimator is given as  



ββ ββ::==   ˆ
ˆ− Θϕ

βL . van 
de Geer et al. (2014) provided a detailed algorithm for computing 
the de-sparsified LASSO estimators in a generalized linear model 
framework. They also proved the asymptotic normality of the 
de-sparsified estimate, i.e.,
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  . Similarly, we can get a p-value for 

each mediator based on the asymptotic normality property.
Let the p-values for all the d methylation loci denoted 

as Pb=(P1,b,P2,b,…,Pd,b) where Pj,b can be calculated as 
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Step 3: Let S={t:Pt,b < 0.05}, which is based on the high-
dimensional inference in the second step. For testing H0:at = 0, 
we denote the testing p-value as Pt,a

 

P
a

t a
t

t
,

ˆ
ˆ ,= −






















2 1 Φ

σ
 

where t S∈ , ât  is the ordinary least squares estimator for at 
and σ̂ t  is the corresponding estimated standard error, by fitting 
the 2nd regression equation in Model (2).

Step 4: We reject the null hypothesis of no mediation effect for 
Mt only if both at and bt are significant. The p-value for the joint 
significance test is defined as,

 
P P Pt t a t b

*
, ,max ,= ( )  

A methylation locus has a significant mediation effect if 
Pt

* .< 0 05 . This is also a so called intersection-union test (Berger 
and Hsu, 1996).

Remark 1: To make the paper self-contained, here we briefly 
introduce the High-dimensional mediation analysis (HIMA) 
method proposed by Zhang et al. (2016). The HIMA method 
involves three major steps:

Step 1: (Screening) Use the SIS (Fan and Lv, 2008) to identify 
a subset of top mediators.

Step 2. (MCP-penalized estimate). Apply the MCP-based 
penalized regression to do simultaneous variable selection and 
estimation based on the variables from step 1.

Step 3. (Joint significance test). For those mediators with 
non-zero coefficients from step 2, fit a regression model again 
and get a p-value for testing each coefficient, then, taking 
the maximum of this p-value and the p-value for testing the 
α effect as the final p-value to assess the significance of the 
mediation effect.

Remark 2: Our method has two advantages: 1) It fits 
multiple mediators in one regression model and do the testing, 
rather than fitting and testing mediation effect one at a time. 
Statistically speaking, this yields more robust and efficient 
estimation and testing results; and 2) Different from Zhang 
et al. (2016), our method is a simultaneous inference in a 
high-dimensional sparse regression model implemented with 
a de-biasing technique. The de-sparsifying strategy can well 
handle correlations between methylation loci, as demonstrated 
in the simulation study.

SIMULATION STUDIES
We conduct extensive simulations to evaluate the performance 
of the proposed method and compare it with the HIMA method 
proposed by Zhang et al. (2016). In the follows, we denote our 
method as HDMA (high dimensional mediation analysis) and 
the method by Zhang et al. (2016) as HIMA. Data are generated 
following Model (2), where the exposure variable X is generated 
from a binomial distribution, i.e., B(n,0.74) in which the 
probability 0.74 is determined based on the proportion of drinking 
in the first real set (see the real data analysis section for details). 
To have a fair comparison, we follow the simulation setup for the 
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regression coefficients as given in Zhang et al. (2016). The first 8 
elements of b(bj,j = 1,…,8) are given as (0.8,0.7,0.6,0.5,0,0,0.5,0.5)T,  
and the first 8 elements of a(aj,j = 1,…,8)are given as (0.35,0.25, 
0.35,0.55,0.55,0.55,0,0)T. The rest of as and ′b s  are all set to zero. 
Under this setting, the first four methylation loci have significant 
mediation effects while the rest have no effect.

For the intercept terms, we set θ2 = – 4.5 and θ j
' = 1 . We also 

consider different correlations among the mediators, i.e., ρ = 0, 
and 0.8. When the direct effect ′ =c 0 , the model is a complete 
mediation model in which exposures affect outcome only through 

mediators. In this case, the total effect c c a bj j
j

k
= + =′

=∑ 0 94
1

. .  
When the direct effect ′ >c 0 , the model is a partial mediation 
model. For the partial mediation model, we set ′ =c 0 5.  and the 

total effect c c a bj j
j

k
= + =′

=∑ 1 44
1

. .

We simulate k methylation loci which follow a  
multivariate normal distribution, i.e., M MVN a Xi i i~ ,1+( )Σ ,  

where ai
k

=
−

0 35 0 25 0 35 0 55 0 55 0 55 0 0. , . , . , . , . , . , ,...,         
66












T

 and 

Σ st
s t= −ρ . Then we sample the response Yi∼Ber(1,pi), where 

pi i i= + ( )( )exp exp( )/η η1  and ηi i j ij
j

k
c X b M= − + +′

=∑4 5
1

. .

We evaluate the performance of our method (HDMA) in terms 
of false positive rate and power and compare with HIMA. We report 
the power (M1∼M4) and the type I error (M5∼M8) for each locus. 
For the rest of the k-8 loci, we report the averaged type I error rate. 
All simulations are based on 1000 replications under different sample 
sizes, i.e., n = 300 and 600 and different correlations, i.e., ρ = 0 and 0.8.

Table 1 lists the results for binary responses assuming 
a complete mediation effect, i.e., ′ =c 0. There are several 
observations: (i) HIMA and HDMA have very similar power 
and size when there are no correlations between M (ρ = 0) under 
different scenarios. However, HDMA has substantially higher 
power than HIMA does when ρ = 0.8; (ii) The testing power 
decreases as the data dimension increases for both methods. 
For example, the power of testing M1 is 0.754 for HDMA with 
k = 100, but decreases to 0.721 with k = 5000, when fixing n =  
300 and ρ = 0; (iii) The power increases as the sample size 
increases. For example, when fixing ρ = 0.8 and k = 1000, the 
power increases from 0.598 to 0.951 for testing M1 when the 
sample size increases from 300 to 600, a 59% increase; and 
(iv) HDMA is not sensitive to the correlation structures while 
HIMA suffers significantly from power loss when there are high 
correlations between the M variables. The difference is even 
more striking when the sample size increases from 300 to 600. 
For example, the power difference for testing M1 is 0.014 for 
HDMA compared to 0.238 for HIMA when ρ is increased from 
0 to 0.8, when fixing n = 600 and k = 1000. Similar patterns were 
observed for the other three M variables.

Figure 2 summarizes the results with partial mediation, i.e., 
′ =c 0 5. . We consider N = 300 and 600, p = 100, 1000 and 5000, 

and ρ = 0 and 0.8. Corresponding to each mediator, there are four 
power bars. The left two correspond to the case with correlation ρ = 
0, while the right two correspond to the case with ρ = 0.8. For a fixed 
sample size, the power typically decreases as the data dimension (p) 
increases. This is because of the increase of the noise features. When 
ρ = 0 (the independent case), HIMA and HDMA perform very 
similarly under different scenarios. However, when the correlation 
increases to ρ = 0.8, we observe a power gain by HDMA compared 

TABLE 1 | List of the power and type I error rate under different sample sizes and correlations with data analyzed with HDMA and HIMA.

n k Method M1 M2 M3 M4 M5 M6 M7 M8 Mother

300 100 0 HIMA 0.754 0.467 0.723 0.849 0.025 0.022 0.034 0.047 0.001
HDMA 0.754 0.460 0.713 0.825 0.021 0.017 0.034 0.046 0.001

0.8 HIMA 0.502 0.241 0.362 0.377 0.075 0.070 0.028 0.019 0.001
HDMA 0.649 0.348 0.445 0.422 0.062 0.062 0.023 0.012 0.000

1000 0 HIMA 0.763 0.478 0.653 0.702 0.008 0.008 0.049 0.029 0.001
HDMA 0.763 0.476 0.660 0.697 0.008 0.006 0.044 0.032 0.000

0.8 HIMA 0.513 0.194 0.370 0.386 0.078 0.072 0.013 0.023 0.000
HDMA 0.598 0.297 0.399 0.417 0.060 0.055 0.012 0.019 0.000

5000 0 HIMA 0.714 0.437 0.590 0.528 0.003 0.002 0.024 0.029 0.000
HDMA 0.721 0.440 0.589 0.549 0.002 0.002 0.027 0.027 0.000

0.8 HIMA 0.545 0.182 0.374 0.386 0.081 0.076 0.024 0.017 0.000
HDMA 0.577 0.267 0.413 0.388 0.047 0.045 0.017 0.013 0.000

600 100 0 HIMA 0.957 0.769 0.969 0.990 0.008 0.010 0.046 0.051 0.001
HDMA 0.957 0.769 0.969 0.996 0.019 0.015 0.046 0.052 0.001

0.8 HIMA 0.776 0.352 0.505 0.476 0.044 0.047 0.027 0.018 0.001
HDMA 0.950 0.686 0.781 0.602 0.069 0.059 0.022 0.021 0.001

1000 0 HIMA 0.965 0.770 0.967 0.979 0.004 0.004 0.039 0.043 0.000
HDMA 0.965 0.770 0.966 0.977 0.013 0.008 0.040 0.043 0.001

0.8 HIMA 0.727 0.366 0.494 0.443 0.052 0.046 0.037 0.015 0.000
HDMA 0.951 0.685 0.790 0.632 0.060 0.071 0.026 0.021 0.000

5000 0 HIMA 0.962 0.760 0.959 0.945 0.005 0.007 0.057 0.054 0.000
HDMA 0.963 0.761 0.960 0.941 0.005 0.007 0.054 0.054 0.000

0.8 HIMA 0.733 0.391 0.503 0.472 0.068 0.058 0.041 0.025 0.000
HDMA 0.924 0.666 0.759 0.604 0.070 0.067 0.039 0.024 0.000
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to HIMA under a sample size of 300. As the sample size increases 
from 300 to 600, we observe substantial power gain for HDMA. 
This shows the advantage of HDMA which can take care of the high 
correlation structure among the mediators.

Figure 3 displays the type I error rate of the two methods. 
Mother represents all p-8 zero effect mediators. The type I error for 
Mother is calculated as the average type I error of the p-8 mediators. 
Again, each mediator has four bars. The left two correspond to 
ρ=0 while the right two correspond to ρ=0.8. Overall, the type I 
errors for the two methods are reasonably controlled, especially 
under a large sample size (N = 600). When the correlation is 
high, i.e., ρ=0.8, for some mediators such as M5 and M6, HIMA 
has a higher false positive rate than HDMA does. This indicates 

the advantage of HDMA in false positive control when there are 
high correlations among mediators.

In summary, HDMA shows relative advantages over HIMA 
under different scenarios, especially when there are high 
correlations among mediators. As correlations are highly 
expected in real methylation data, HDMA can be an alternative 
strategy to HIMA and is generally safe to apply.

REAL DATA ANALYSIS
We apply the HDMA method to two real data sets with 
methylation loci as the mediators. DNAms play key roles in 

FIGURE 2 | The power of HIMA (light gray) and HDMA (black) under different sample sizes, data dimensions, and correlations. M1∼M4 refer to the first four significant 
mediators. There are four power bars corresponding to each mediator. The left and right two bars correspond to the case with correlation ρ=0 and 0.8 respectively.

FIGURE 3 | The type I error of HIMA (light gray) and HDMA (black) under different sample sizes, data dimensions, and correlations. M1 and M4 refer to the 
first four significant mediators. There are four power bars corresponding to each mediator. The left and right two bars correspond to the case with correlation 
ρ=0 and 0.8 respectively.
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regulating many cellular processes and are associated with human 
diseases (Robertson 2005). The first data set involves DNAm 
mediating the effect of alcohol consumption on epithelial ovarian 
cancer (EOC) status. Alcohol may induce DNAm alterations, 
which could trigger alcohol-induced carcinogenesis (Varela-
Rey et al., 2013). In the second data set, we evaluate the effect 
of childhood maltreatment on post-traumatic stress disorder 
(PTSD) in adulthood, mediated by DNAms. It is hypothesized 
that childhood maltreatment affects biological processes via 
DNAm, which can have negative consequences late in life (e.g., 
Mehta et al., 2013; Klengel et al., 2016).

Case Study 1: Mediation Analysis of 
Alcohol Consumption, DNam, and 
EOC Status
The participants with age ranging from 27 to 91 were recruited 
between the year 1999 and year 2007 in the Mayo Clinic Ovarian 
Cancer. They were women of European ancestry who were 
invasive EOC cases and controls one-to-one matched on the 
basis of age (within 1-year). After eliminating missing values 
and other quality control, 196 cases and 202 controls were 
retained for further analysis. The exposure variable is alcohol 
consumption. Information on alcohol use was obtained via a 
written questionnaire asking “Do you currently drink alcoholic 
beverages?”. DNAms are the mediators and EOC status is the 
outcome. We would like to identify the mediators and further 
quantify the mediation effect. Readers are referred to Koestler 
et al. (2014) and Wu et al. (2018) for more details about the data.

Table 2 summarizes the lifestyle and demographic 
characteristics of the study population. The Student t-test 
or Chi-square test is used for comparisons between groups 
for continuous or categorical variables, respectively. As can 
be seen in the table, alcohol consumption is significantly 
lower in cases compared to controls. Enrollment year shows 
a significant difference in proportions between cases and 
controls. Thus, we include the enrollment year as a covariate 
in further mediation analysis.

Leukocyte-derived DNA was assayed with the Illumina 
Infinium HumanMethylation27 Beadchip platform and underwent 
quality control procedures at the Mayo Clinic Molecular Genome 
Facility (Koestler et al., 2014). The methylation beta values (β) of 
each CpG locus was logit-transformed (log(β/(1-β))) to get the 
M-value for further analysis. A total of 25,926 CpG sites were 
remained for analysis after normalization and adjusting for any 
batch or plate effects. Study shows that heterogeneity in white 
blood cells has the potential to confound DNAm measurements 
and statistical treatment is needed to correct for this confounding 
effect (Adalsteinsson et al., 2012). Similarly, variation in cell-
type proportions across samples has the potential to confound 
the mediation effect of DNAm on the association of alcohol 
consumption and EOC status (Titus et al., 2017). We thus include 
the predicted proportions of the leukocyte sub-types for each of 
the study samples as covariates in the analysis, following a mixture 
deconvolution method by Houseman et al. (2012).

Since the response is a binary variable, we apply a logistic 
regression for the first and third regression equation in Model 
(2), while including enrollment year as a covariate. Note that the 
cell type data should be included whenever methylation signals 
are included in the model. Including the enrollment year (Enroll) 
and the proportion of cell type (CellType), Model (2) becomes,

 

logit )= Alcohol+ Enroll

CpG

(P c

a
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T

j j

θ λ
θ

1 1+

= ′ + jj
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logi

λ δ ε2 1 1. , , ,= 

tt( )= Alcohol EnrollP c b CpGAlcohol j j
j
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3+ ′ + +

=∑ ++ δ 2
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The coefficient estimates for the total effect is given as 
ĉAlcohol=-1.310 (p-value < 0.001), indicating a significant 
protective effect of alcohol consumption on EOC status.

We apply the SIS algorithm to reduce the methylation 
dimension to 34 (n/2log(n)), then apply the HDMA and HIMA 
methods for further inference. Table 3 lists the findings by the 
two methods. Our method identified four CpGs with important 

TABLE 2 | Partial list of covariates and their association with case/control status.

Case (N = 196) Control (N = 202) Total (N = 398) p value

Age at diagnosis/interview
 Mean(SD) 62.31 (12.36) 62.37 (12.69) 62.34 (12.51) 0.965
Enrollment year
 1999–2002 year 76 (38.78%) 91 (45.05%) 167 (41.96%) <0.001
 2003 year 17 (8.67%) 27 (13.37%) 44 (11.06%)
 2004 year 25 (12.76%) 42 (20.79%) 67 (16.83%)
 2005 year 30 (15.31%) 17 (8.42%) 47 (11.81%)
 2006–2007 year 48 (24.49%) 25 (12.38%) 73 (18.34%)
Alcohol use at study enrollment
 Yes 123 (62.76%) 172 (85.15%) 295 (74.1%) <0.001
 No 73 (37.24%) 30 (14.85%) 103 (25.9%)
Minnesota (MN) state
 Other 93 (47.45%) 82 (40.59%) 175 (43.97%) 0.202
 MN 103 (52.55%) 120 (59.41%) 223 (56.03%)
Smoking at study enrollment
 No 178 (90.82%) 192 (95.05%) 370 (92.96%) 0.145
 Yes 18 (9.18%) 10 (4.95%) 28 (7.04%)
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mediation effects while HIMA identified two CpGs. Two CpGs, 
namely cg12278770 and cg03012280, overlap in two methods. A 
heatmap in Figure 4 shows that there are moderate correlations 
among the 34 CpG sites. Thus, it is not surprising to see that 
HDMA identifies more CpG mediators than HIMA does.

CpG site cg18394848 resides in gene K-RAS. Nakayama et al. 
(2008) examined the K-RAS mutations in relation to extracellular 
signal-regulated protein kinase (ERK) activation in 58 ovarian 
carcinomas. Auner et al. (2009) drew a conclusion that K-RAS 
mutation is a common event in ovarian cancer primarily in 
carcinomas of lower grade, lower FIGO stage, and mucinous 
histotype. KEGG pathway shows that this gene is involved in 
the pathogenesis of ovarian cancer (Figure 5). This evidence 
indicates that cg18394848 could be an important epigenetic 
marker which mediates the effect of alcohol consumption on 
EOC pathogenesis.

Elgaaen et al. (2010) found that gene KSP37 correlates strongly 
with histology, stage, and outcome in ovarian carcinomas. 
Thus, cg08132711 (in gene KSP37) can also be a potential 
epigenetic marker associated with the EOC status. Although 
we do not find direct literature support about the two genes 
FAM167B and ZFYVE19 where cg12278770 and cg03012280 
are respectively located in, a two samples t-test results show 
that there are significant differences on methylation signals 

of cg12278770 and cg03012280 between cases and controls. 
The t-test statistics (p-value) are tcg12278770=4.881(P<0.001) and 
tcg0301220=5.415(P<0.001). It suggests that these two CpG sites may 
act as important players to mediate the effect of alcohol intake on 
EOC status (Figure 6).

Case Study 2: Mediation Analysis of 
Childhood Maltreatment, Dnam, and PTSD
The data came from the Grady Trauma Project study recruiting 
Afro-American participants from Atlanta inner-city residents, 
approved by the Institutional Review Board of Emory University 
School of Medicine and Grady Memorial Hospital (Wingo et al., 
2018). A growing body of literature indicates that DNAm plays 
pivotal roles in the disease process of PTSD and in vulnerability 
and resilience to PTSD (Uddin et al., 2011; Lutz and Turecki, 
2014). Studies also show that childhood maltreatment is 
associated with DNAm changes of multiple loci in adulthood 
(Mehta et al., 2013). We apply the proposed method to establish 
the link between childhood maltreatment and PTSD and 
further evaluate the mediating role of DNAm. The data set 
contains baseline information, cell composition, and DNAm. We 
adopt the modified PTSD Symptom Scale (PSS) and the Beck 
Depression Inventory (BDI) to classify cases and controls. Cases 
with current symptoms of comorbid PTSD and depression are 

FIGURE 4 | The correlation structure among the 34 CpG sites.

TABLE 3 | List of significant CpGs identified by HDMA and HIMA.

Method CpG Chr Gene name ˆ̂aa ˆ̂bb ˆ̂ ˆ̂aabb % of total effect p-value

HDMA cg18394848 12 K-RAS −0.076 1.772 −0.136 10.343 0.008
cg08132711 4 KSP37 −0.080 1.207 −0.096 7.313 0.033
cg12278770 1 FAM167B −0.071 −2.045 0.144 11.012 0.005
cg03012280 15 ZFYVE19 −0.175 −0.878 0.153 11.709 0.002

HIMA cg12278770 1 FAM167B −0.071 −0.828 0.058 4.461 0.002
cg03012280 15 ZFYVE19 −0.175 −0.525 0.092 7.010 0.004
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defined as having a PSS score ≥14 and a BDI score ≥14. Controls 
are defined as having neither PTSD nor depressive symptoms, 
as mirrored by a PSS score ≤7 and BDI score ≤7, despite being 
exposed to trauma (Beck et al., 1961; Foa et al., 2000; Wingo 
et  al., 2018). We eliminate observations with missing values 
and exclude those with PTSD treated since the treatment might 
affect DNAm changes which can complicate the mediation effect. 
Finally, 54 controls and 74 cases are retained for further analysis.

Table 4 summarizes the demographic characteristics of the study 
population. Ranges of age in case and control are (27.97, 57.97) 
and (30.69, 56.79), respectively. There is no statistical significance 
among the selected variables such as age, sex, and body mass index 
(BMI), but childhood sexual/physical abuse moderate to extreme 
is significantly higher for cases compared to controls. The same 
analysis plan as detailed in Case Study 1 is applied here. Since no 
clinical factors show statistical significance, we do not include 
any covariates in our mediation model. Next, we apply HDMA 
and HIMA to test which DNAm plays a mediating role between 
childhood maltreatment and PTSD.

The raw methylation beta values from the HumanMethylation 
450k BeadChip (Illumina) are obtained via the Illumina 
Beadstudio program. Samples with probe detection call rates 
<90% and those with an average intensity value of either <50% of 
the experiment-wide sample mean or <2,000 arbitrary units (AU) 
are excluded from further analysis. The beta values are further 
converted to M-values and a total of 335,669 CpG sites are used 
for subsequent analysis. For the details of the data, readers are 
referred to the website http://gradytraumaproject.com/. The data 
set can be downloaded at https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE72680.

Lutz and Turecki (2014) reviewed human studies indicating 
that early-life experiences (e.g., childhood maltreatment) regulate 
life-long stress activities (e.g. psychopathological disorders) 
through epigenetic regulations (e.g., DNAms). Klengel et al. (2014) 
found that exposure to stress can induce long-lasting changes in 
DNAs, which may relate to the pathophysiology of depression and 
PTSD. This evidence suggests that a mediation model can help 
to understand how childhood maltreatment can alter long lasting 
DNAm changes which further affect phycological disorders such 
as PTSD. We fit the following mediation model while adjusting 
for the cell type effect whenever CpG sites are involved, i.e., 

 

logit )= Maltreatment,

CpG

(P cMaktreatment

j j

θ
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1 +

= ′ + aa j j kj
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logi
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Based on the first regression model, we identify an existing 
relationship between childhood maltreatment and PTSD with 
ˆ .cMaltreament = 1 866 (95% CI: [1.091, 2.698]) by fitting a logistic 
regression model. When doing the SIS step to screen CpG sites, 

TABLE 4 | Partial list of covariates and their association with PTSD case/control status.

Variables Case (N = 74) Control (N = 54) Total (N = 128) p-value

Age
Mean (SD) 40.97 (13.00) 43.74 (13.05) 42.141 (13.04) 0.238
Sex
Male 52 (70.27%) 36 (66.67%) 88 (68.75) 0.771
Female 22 (29.73%) 18 (33.33%) 40 (31.25)
BMI
Mean (SD) 31.433 (7.82) 31.614 (8.10) 31.510 (7.91) 0.899
Childhood sexual/physical 
abuse moderate to extreme
No 26 (35.14%) 42 (77.78) 68 (53.13%) <0.001
Yes 48 (64.87%) 12 (22.22) 60 (46.88%)

FIGURE 5 | Partial EOC pathway extracted from the KEGG database 
(https://www.kegg.jp/kegg-bin/show_pathway?hsa05206).
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we keep n/log(n) mediators rather than n/2log(n) to avoid 
missing important loci, due to the small sample size. After the 
SIS step, 27 DNAm sites are left in the model for further analysis. 
Table 5 summarizes the results. HDMA identifies two significant 
CpG sites (cg06998765 and cg16928335) which reside in gene 
RPS6KL1 on chromosome 12 and gene SH2D1A on chromosome 
X, respectively. The two CpG sites, cg06998765 and cg16928335, 
respectively explain 22.73% and 19.95% of the total mediation 
effect. HIMA identifies one CpG site which is a subset of what 
HDMA detected. A heatmap of the 27 methylation signals 
after SIS is shown in Figure 7. It is clear that there are strong 
correlations between some CpG sites and it is not surprising 
that HDMA identified one more CpG site since it can handle 
correlation well. We further test the methylation signal difference 
between cases and controls for the two CpG sites and the results 
show significant differences for cg06998765 (t = 4.109, P<0.001) 
and cg16928335 (t = 2.242, P = 0.027).

Figure 8 plots the methylation signals between cases and 
controls for the two CpG sites. Ward et al. (2017) applied a 
genome-wide analysis method to analyze UK Biobank data 
and identified four loci associated with mood instability. Gene 
RPS6KL1 is located nearby one of these regions, suggesting 
a potential role of this DNAm on PTSD. Although we cannot 
find evidence to support the association between PTSD and 
gene SH2D1A where cg06998765 is located, a two samples t-test 

shows that there is a significant difference on methylation signal 
of cg06998765 between cases and controls. The upshot suggests 
that this CpG site may have an important role to mediate the 
effect of childhood maltreatment on PTSD (Figure 8).

DISCUSSION
A large body of literature has suggested that environmental 
exposures can leave epigenetic tags such as DNAm changes 
which further affect disease risks. Such a causal relationship 
can be better understood with a causal mediation model, with 
the hope to identify important epigenetic players (e.g., DNAm) 
that mediate the relationship between an exposure and a disease 
outcome. As biotechnology getting cheaper and cheaper, the pace 
of generating epigenetic data becomes faster and faster. In many 
applications, the number of epigenetic features can be much 
larger than the sample size, resulting in the so-called (ultra-) 
high dimensional data. These high-dimensional data provide 
unprecedented opportunity to reveal the molecular mechanism 
of many diseases. In the meantime, they also challenge the 
traditional mediation analysis methods which are developed for 
low-dimensional data.

In this work, we propose a high-dimensional mediation model 
to tackle issues due to high dimensionality and high correlation. 
Different from the HIMA approach developed by Zhang et al. 

FIGURE 6 | The DNAm status (β value) of cg18394848, cg08132711, cg12278770, and cg03012280 between EOC cases and controls.

TABLE 5 | List of significant CpGs identified by HDMA and HIMA.

Method CpG Chr Gene name ˆ̂a ˆ̂b ˆ̂ ˆ̂ab % of total effect p-value

HDMA cg06998765 12 RPS6KL1 0.266 1.594 0.424 22.748 0.020
cg16928335 X SH2D1A −0.222 −1.674 0.372 19.933 0.046

HIMA cg06998765 12 RPS6KL1 0.266 0.535 0.142 7.635 0.030
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(2016), our method is built under a high-dimensional inference 
framework where we can simultaneously estimate and test the 
effect of regression coefficients in a regression model. The high-
dimensional testing method implements a debias approach and 
the de-sparsified estimates can well take care of correlations 
between mediators (Zhang and Zhang, 2014). Such correlations 
are naturally arising due to the nature of the epigenetic data. 
We illustrate the performance of the proposed method via 
simulations and case studies and compare with the HIMA 
method (Zhang et al, 2016). The simulation studies show that 
our method (HDMA) outperforms the HIMA method when 
there are high correlations between mediators. Thus, HDMA 
can be safely used in a high-dimensional mediation analysis 
from population studies.

In the first real data analysis, four CpG sites are identified 
to mediate the effects between alcohol consumption and EOC 
status. HDMA identifies two more CpG sites than HIMA does. 
In the second real data analysis, of the two CpG sites identified 
by HDMA, one overlaps with HIMA. These CpG sites may 

mediate the effect of childhood maltreatment to PTSD risk in 
adulthood. In both real data analysis, HDMA identifies more 
CpG sites than HIMA does, demonstrating the superior power 
of HDMA over HIMA. However, further biological verification 
is needed to validate the results, since statistical significance does 
not guarantee a biological significance.

Philibert et al. (2012) found that alcohol intake is linked to 
widespread changes in DNAm in women. Cvetkovic (2003) 
showed that DNAm alterations are an early step in carcinogenesis 
and could represent a mechanism of disease. Many such pieces 
of evidence point to the proper linkage of DNAm mediating 
the relationship between alcohol consumption and EOC 
status. Similar evidence also supports the linkage between 
childhood maltreatment and PTSD mediated by DNAm. 
Mehta et al. (2013) provided epigenetic support that childhood 
maltreatment is likely to carve long-lasting epigenetic marks, 
leading to adverse health outcomes such as PTSD in adulthood. 
Childhood abuse can increase the risk of neuropsychiatric 
and cardiometabolic disease via changes in epigenetic marks 

FIGURE 7 | Heatmap of 27 methylation signals after screening with the SIS procedure.

FIGURE 8 | The DNAm status (β value) of cg06998765 and cg16928335 between PTSD cases and controls.
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(Szyf,  2012; Yang  et  al.,  2013). These studies support the 
mediation role of DNAm between childhood maltreatment and 
the risk of developing PTSD in adulthood.

The mediation effect in this study is based on a linear 
effect assumption, while effects such as interactions including 
magnitude epistasis and sign epistasis are not considered. 
Such kinds of complex interactive mechanisms can complicate 
the model, especially under a high-dimensional setup. For 
example, if there are antagonistic epistatic interactions 
among mediators, the mediation effects between exposure 
and the outcome can be weakened, leading to the failure to 
detect the mediation effects. If there are synergistic epistatic 
interactions among mediators, the existence of mediators can 
produce a synergistic effect to enhance their mediation effect. 
In the event of multiple exposures, models can be even more 
complicated. Under these situations, it is not clear on how to 
model and assess the mediation effect in a high-dimensional 
setup. These issues imply the simplicity of the current method 
and also raise modeling challenges for further methodological 
development. We will take these into consideration in our 

future studies. The R code that implements the method 
can be found in github with weblink: https://github.com/
YuzhaoGao/High-dimensional-mediation-analysis-R/blob/
master/HDMA.R.
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