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Simple Summary: Nanotechnology enables new ways to diagnose and treat cancer. Nanomedicines
can increase payload concentration at the disease site, reduce toxicity, and enhance therapeutic
effects compared to drugs in their “free” form. Spherical Nucleic Acids (SNAs) emerged as a new
class of oligonucleotide nanotherapeutics that are currently being explored as gene-regulatory and
immunostimulatory architectures to overcome drug resistance and immunosuppression in solid
tumors. This review highlights seminal studies that identified SNAs as a powerful platform for
gene regulation, the activation of innate immunity, and the development of next-generation cancer
vaccines, discusses recent efforts to translate fundamental discovery from the laboratory into the
clinic, and provides an outlook on future research aimed at harnessing the full therapeutic potential
of the SNA platform.

Abstract: Spherical Nucleic Acids (SNAs) emerged as a new class of nanotherapeutics consisting
of a nanoparticle core densely functionalized with a shell of radially oriented synthetic oligonu-
cleotides. The unique three-dimensional architecture of SNAs protects the oligonucleotides from
nuclease-mediated degradation, increases oligonucleotide bioavailability, and in the absence of aux-
iliary transfection agents, enables robust uptake into tumor and immune cells through polyvalent
association with cell surface pattern recognition receptors. When composed of gene-regulatory
small interfering (si)RNA or immunostimulatory DNA or RNA oligonucleotides, SNAs silence
gene expression and induce immune responses superior to those raised by the oligonucleotides
in their “free” form. Early phase clinical trials of gene-regulatory siRNA-based SNAs in glioblas-
toma (NCT03020017) and immunostimulatory Toll-like receptor 9 (TLR9)-agonistic SNAs carrying
unmethylated CpG-rich oligonucleotides in solid tumors (NCT03086278) have shown that SNAs
represent a safe, brain-penetrant therapy for inhibiting oncogene expression and stimulating im-
mune responses against tumors. This review focuses on the application of SNAs as precision cancer
therapeutics, summarizes the findings from first-in-human clinical trials of SNAs in solid tumors,
describes the most recent preclinical efforts to rationally design next-generation multimodal SNA
architectures, and provides an outlook on future efforts to maximize the anti-neoplastic activity of
the SNA platform.

Keywords: nanotechnology; Spherical Nucleic Acids (SNAs); RNA interference (RNAi); toll-like
receptor (TLR) signaling; cancer vaccine development

1. Introduction

Oligonucleotide-based therapeutics for gene regulation and immunostimulation have
merged as a powerful and novel concept of cancer therapy that can address many of the
challenges of conventional drug development [1–4]. The robust delivery of nucleic acid
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payloads to tumor sites, particularly those of the central nervous system (CNS), remains
challenging, as unmodified oligonucleotides are rapidly cleared through degradation by
serum RNases and DNases and inefficiently taken up by cells and tissue [5]. While oligonu-
cleotide carriers, such as polymers, polyplexes, or lipids, display specific safety concerns
and delivery limitations, several nanotechnological platforms emerged as therapeutic
agents for delivering oligonucleotide payloads to tumors. Spherical Nucleic Acids (SNAs)
represent a new class of oligonucleotide-based nanotherapeutics that address the challenges
of effective drug delivery to tumor elements, including brain malignancies.

Invented by Chad Mirkin and colleagues [6], SNAs are composed of a nanoparticle
core functionalized with a radial shell of highly oriented and densely packed oligonu-
cleotides. SNAs represent a new form of matter, as spherical forms of nucleic acids have
properties vastly different from those of their linear counterparts. Unlike linear nucleic
acids, SNAs enter many cell types in high quantities without an auxiliary, positively charged
transfection agent to overcome the negatively charged plasma membrane. Here, SNAs
bind to cell surface pattern recognition receptors, particularly class A scavenger receptors
(SRs-A), via oligonucleotide G-quadruplexes [7], and enter cells through caveolae-mediated
endocytosis [8]. Many different factors impact the SR-A engagement and cell uptake of
SNAs, including oligonucleotide sequence-dependent adsorption of serum proteins [9],
and the conjugation of SNAs with a polyethylene glycol backfill used to increase colloidal
stability [10].

First-generation SNA nanoconstructs were composed of gold nanoparticle templates
modified with a densely packed, highly oriented radial shell of DNA oligonucleotides via
thiol adsorption. Research over the past decade has shown that SNAs are highly tailorable
structures, which can be composed of various types of oligonucleotides and core mate-
rials. Types of oligonucleotides include DNA oligonucleotides [6], locked nucleic acids
(LNAs) [11], peptide nucleic acids (PNA) [12], RNA oligonucleotides [13–16], microRNAs
(miRNAs) [17–19], RNA-DNA hybrids [20], and ribozymes [21]. Core materials used for
SNA synthesis are gold (Au) [6], silver (Ag) [22], iron oxide (Fe3O4) [23,24], quantum dots
(CdSe, CdSe/ZnS) [24], platinum [24], silica (SiO2) [25], core–shell (Au@SiO2) [25], lipo-
somes [26], lipid nanoparticle [27], poly(lactic-co-glycolic acid) (PLGA) [28], micelles [29],
protein cores [30], and T8 polyoctahedral silsesquioxane and buckminsterfullerene C60
scaffolds [31].

The ability to fine-tune core material and oligonucleotide identity has been critical
for developing SNAs as cancer therapeutics and diagnostic tools, with many SNA archi-
tectures commercialized or enrolled in clinical testing. SNA-based Verigene™ (Luminex,
Austin, TX, USA) and SmartFlare™ systems (MilliporeSigma, Burlington, NJ, USA) use
SNA technology to detect pathogens or disease-specific markers and enable RNA detection
and quantification in live cells, respectively, with a degree of sensitivity and selectivity
exceeding that of conventional diagnostic tools [32]. In addition, both gene-regulatory and
immunostimulatory SNAs have been evaluated in first-in-human clinical trials to treat pso-
riasis and solid tumors, including glioblastoma, the most prevalent and aggressive form of
brain cancer. These studies demonstrate that SNAs are potent therapeutics that, in contrast
to linear nucleic acids, have privileged access to different organ systems, e.g., topically to
the skin and systemically to the brain [32]. These studies also highlight the importance
of structure and spatial presentation of nucleic acid payloads and demonstrate that nu-
cleic acids gain novel properties suited for applications in biology and medicine when
restructured on the nanoscale. Figure 1 shows the timeline of preclinical and clinical SNA
development, which is detailed below.
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Figure 1. Timeline of SNA preclinical and clinical development. First-generation SNA architectures
focused on gene-regulation and the delivery of chemotherapeutic and imaging agents. Second
generation SNAs are liposomal structures designed to active anti-tumor immune responses. Next-
generation SNAs are multimodal structures, functionalized with multiple therapeutic cues. Bcl2L12,
Bcl2Like12; TMZ, temozolomide; TLR, Toll-like receptor; TNBC, triple negative breast cancer.

2. Gene-Regulatory SNAs to Reactivate p53 Tumor Suppression in Glioblastoma

SNA-mediated gene regulation represents a powerful therapeutic approach for treat-
ing cancer and other diseases with a defined genetic basis. Here, SNA target specificity is
controlled by the sequence of the gene-regulatory oligonucleotide. Different SNA therapeu-
tics can be generated by modifying the oligonucleotide sequence using digital drug design
to target a broad spectrum of oncogenes. Early studies of gene-regulatory SNAs, i.e., gold
nanoparticles cores functionalized with antisense oligonucleotides or small interfering
RNAs (siRNAs), demonstrated potent knockdowns of model targets (Figure 2). These
include luciferase [13]; enhanced green fluorescent protein (eGFP) [25]; genes implicated
in cancer cell growth and proliferation, such as the receptor tyrosine kinases epidermal
growth factor receptor (EGFR) [33]; and long noncoding RNAs (lncRNAs), e.g., the nuclear-
retained metastasis-associated lung adenocarcinoma transcript 1 (Malat1), a critical onco-
genic lncRNA involved in metastatic spread of several cancers [34]. The molecular mecha-
nism by which siRNA-carrying SNAs silence the gene expression has been elucidated and
includes the helicase Dicer directly accessing the siRNA oligonucleotide on gold nanopar-
ticle templates, followed by the release of the siRNA oligonucleotide and its processing
through the canonical RNAi pathway [35].
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Figure 2. Gold-based SNAs for gene regulation and delivery of chemotherapeutic and imaging
agents. OEG, oligo (ethylene glycol); PEG, poly (ethylene glycol); GdIII, gadolinium III; siRNA, small
interfering RNA; miRNA, microRNA.
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2.1. Preclinical Evaluation of Gene-Regulatory SNAs for the Treatment of Glioblastoma

Building upon these studies, Stegh, Mirkin, and colleagues began evaluating SNAs as
gene-regulatory modalities for delivering siRNAs and miRNAs to glioblastoma, the most
prevalent and aggressive form of brain cancer. Functional genomics investigations have
identified numerous genetic events involved in glioblastoma development. An incomplete
understanding of how these genetic aberrations influence tumor response to therapy,
combined with the lack of effective delivery of drugs across the blood–brain and blood–
tumor barriers (BBBs/BTBs) to the central nervous system, have contributed to making
glioblastoma one of the most challenging cancers for which to achieve improved treatment
outcomes [36]. Although many oncogene and tumor suppressor gene alterations have been
identified in glioblastoma, success in using targeted therapies has yet to be realized [37,38].
The team developed an alternative approach for treating glioblastoma based upon the
use of siRNA- or miRNA-carrying gene-regulatory SNAs to silence the expression of the
atypical Bcl-2 family protein Bcl2-Like12 (Bcl2L12), a proline-rich protein characterized by a
C-terminal 14 amino acid sequence with significant homology to the BH (Bcl-2 Homology)
2 domain found in several members of the Bcl-2 family [39–42]. Bcl2L12 expression is
increased in glioblastoma through multiple mechanisms, including gene amplification (as
seen as a non-focal gain of chromosome 19(q)), transcriptional upregulation in the absence
of gene amplification, and induction of the Bcl2L12-targeting miR-182 [18,39–42]. Tissue
microarray and immunohistochemistry analysis of archived glioblastoma tissue validated
Bcl2L12 protein expression in most human glioblastoma specimens and revealed low or
undetectable levels in cells of glial origin in normal brain surrounding tumor tissue or in
low-grade astrocytoma [42]. Bcl2L12 is a potential prognostic factor, as glioblastoma patients
with high-level overexpression of Bcl2L12 mRNA have shorter progression-free survival
than patients with low or underexpression of Bcl2L12 [43–45]. Molecularly, Bcl2L12 forms
a complex with wild-type p53, and upon DNA damage, selectively impedes transcription
of specific p53 target genes, including p21 and Bax, which are essential regulators of cell
cycling and apoptotic response, respectively [39]. Given the low-level expression of Bcl2L12
in the adult brain, its consistently elevated expression in glioblastoma tumors, the profound
negative correlation of its expression with patient survival, and ability to inhibit the p53
tumor suppressor, the inhibition of Bcl2L12 expression represents a rational therapeutic
strategy to restore wild-type p53 tumor suppression in glioblastoma.

To neutralize Bcl2L12 expression in an established glioma, Jensen et al. [14] and
Kouri et al. [18] comprehensively characterized SNAs with gold nanoparticle templates that
carry Bcl2L12-targeting siRNA or miR-182 oligonucleotides, respectively (Figure 2). Both
siRNA and miRNA-based SNAs robustly penetrated patient-derived glioma initiating cells
(GICs) through SR-A engagement and triggered robust Bcl2L12 target knockdown [14,18].
As SRs are highly expressed on glioma and glioma-associated vasculature [46,47],
Jensen et al. used an in vitro non-contact co-culture BBB model to investigate whether
SNAs, through SR recognition, endocytotic uptake, and transcytosis, cross the BBB/BTB
and infiltrate glioblastoma tumor elements. In this model, which uses human primary brain
microvascular endothelial cells (huBMEC) separated from primary cortical astrocytes by a
semi-permeable filter insert, fluorochrome-labeled SNAs passed through huBMECs and
the filter and rapidly entered the astrocytes [14]. Pharmacological inhibition of SR-A using
polyinosinic acid (Poly-I) or fucoidan antagonized the BBB-penetrating capacity for SNAs,
suggesting that SR-As are required for BBB transcytosis in vitro [14]. In patient-derived
and genetically engineered glioblastoma mouse models, intravenously administered SNAs
crossed the BBB/BTB and accumulated in intracranial glioblastoma, as demonstrated
by IVIS imaging of mice injected with Cy5.5-labeled SNAs by magnetic resonance imag-
ing (MRI) of glioma-bearing mice treated with gadolinium III (GdIII)-conjugated SNAs,
and by quantification of gold content in resected tumor tissue using Inductively Cou-
pled Plasmaresonance Mass Spectrometry (ICP-MS) [14,18]. Accumulation and pervasive
dissemination into extravascular tumor parenchyma translated into robust intratumoral
Bcl2L12 protein knockdown, increased intratumoral apoptosis, impaired tumorigenicity as
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measured by reduced tumor burden, and prolonged survival of glioblastoma PDX-bearing
mice [14,18].

A recent study developed an innovative methodology to optimize SNA gene regu-
latory activity in vivo. Sita et al. [16] used a glioma orthotopic xenograft model stably
co-expressing optical reporters for both luciferase and a near-infrared (NIR) fluorescent
protein (iRFP670), with the latter fused to the DNA repair protein O6-methylguanine-
DNA-methyltransferase (MGMT). Using non-invasive NIR imaging, this model allowed
for a quantitative assessment of MGMT target knockdown and normalization of MGMT
expression by tumor volume, measured non-invasively by bioluminescence. Using this
model system, Sita et al. determined the optimal dosing and treatment schedule of systemi-
cally administered MGMT-targeting RNAi-based SNAs to downregulate the expression
of tumor-associated MGMT in vivo robustly and persistently. The concept of a dual re-
porter xenograft model could be applied to the systematic evaluation and optimization of
RNAi-based SNAs with different core materials, surface chemistries, and target specificities.

2.2. A Phase 0 Clinical Trial of Bcl2L12-Targeting SNAs in Patients with Recurrent Glioblastoma

Building upon these preclinical studies, a first-in-human, window-of-opportunity
phase 0 clinical trial of siBcl2L12-carrying SNAs (drug moniker: NU-0129) in patients with
recurrent glioblastoma (NCT03020017) was conducted to assess SNA safety, pharmacokinet-
ics, biodistribution, and target engagement [48]. This clinical trial showed that intravenous
infusion of SNAs, similar to results obtained in rodents and non-human primates, was safe
at the dose administered and not associated with significant treatment-related toxicities.
ICP-MS and X-ray fluorescence microscopy of resected glioblastoma patient tissue demon-
strated that intravenously administered SNAs reached the patient tumor and accumulated
in the cytoplasm of intraparenchymal tumor cells. Quantification of elemental gold con-
centration across multiple sections from different patients revealed that glioblastoma cells
contained on average 9.1 × 10−3 fg of Au per µm3, with gold also accumulating in tumor-
associated macrophages and the tumor-associated neo-vasculature [48]. SNA uptake into
glioma cells was associated with a reduction in Bcl2L12 protein expression and induction of
active caspase-3 and p53 proteins, suggesting that the uptake of NU-0129 into tumor cells
translated into target knockdown and induction of p53 tumor-suppressive activity [48].
These results establish SNAs as a safe, brain-penetrant precision medicine approach for the
systemic delivery of siRNA oligonucleotides to intracranial tumor sites.

3. SNAs as a Novel Immunotherapeutic Modality for Solid Cancers

Immunotherapy has rapidly become the fourth pillar of cancer treatment, alongside
surgery, radiation, and chemotherapy [49]. It has recently achieved clinical success for
melanoma and lung cancer. Here, the use of monoclonal antibodies to inhibit checkpoints
(e.g., CTLA-4, PD-1/PD-L1) and activate T cell responses highlights the potential of im-
munotherapeutics to mount an immune response against tumors [50]. However, complete
responses from these therapies are typically limited, and disease progression following the
initial response is frequent [51]. The lack of broad clinical success with these agents has
fueled the development of new immunotherapeutic modalities that seek to activate both
innate and adaptative immunity to “turn cold tumors hot,” rather than simply inhibiting
checkpoints. Approaches to stimulate anti-tumor immune responses range from cell-based
vaccines to adjuvant therapy. Cell-based treatments are limited in scope and efficacy, show-
ing success in specific cancers (e.g., acute myeloid leukemia or lymphoma), but require
expensive, labor-intensive processes due to the handling of human cells [52]. Therefore, the
development of effective and easy-to-produce immunotherapies to activate the immune
system against specific targets has not been fully realized, especially for difficult-to-treat
advanced solid tumors. Nanotechnology offers solutions to these limitations, as it provides
a way to orchestrate immune responses by simultaneously triggering multiple pathways.
SNAs are particularly well-suited to address these challenges, as they are modular struc-
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tures that contain various locations for the placement of different immunomodulatory cues
and can present and release these stimuli in a spatially and temporally controlled manner.

3.1. SNAs to Activate TLR Signaling

Immunostimulatory SNAs are well-defined nanostructures that can present multiple
immunostimulatory cues. The prototypic immune-stimulatory SNA architecture con-
sists of a liposomal core conjugated with a radial surface shell of synthetic TLR-agonistic
oligonucleotides at a high density (Figure 3). TLRs are transmembrane proteins that are
important for triggering innate immune responses against invading pathogens and pro-
moting anti-tumor immunity. Within the endosome, TLR3, TLR7, TLR8, and TLR9 sense
different nucleic acids derived from viral or bacterial pathogens. TLR7 and TLR8 are
activated by guanosine (G)- and uridine (U)-rich single-stranded oligoribonucleotides.
TLR9 senses single-stranded oligodeoxynucleotides that contain repeating unmethylated
cytosine-guanosine (CpG) sequences, and TLR3 binds to ∼40–50 base pairs (bp) of non-
sequence-specific double-stranded RNA (dsRNA) [53–55]. SNAs represent ideal and
attractive modalities for activating endosomal TLRs, as SNAs undergo SR-A-dependent
endocytosis and are enriched within the endosomal compartment. Recent studies demon-
strated that SNAs with liposomal cores that carry CpG oligonucleotides activate TLR9 more
potently when compared to linear oligonucleotides and show remarkable activity against
murine lymphoma due to multivalent, high-affinity binding to TLR9 [56]. Here, SNA core
size, surface curvature, anchor chemistry, and type of oligonucleotide represent important
design characteristics for optimal TLR-agonistic activity. SNAs with smaller core templates
achieved higher TLR9 activation. In contrast, mixed-curvature architectures accumulated
along the endosomal membrane and achieved more potent TLR activation than constant-
curvature constructs, which aggregated mainly in the center of the endosomes [57,58].
Furthermore, liposomal SNAs made by directly modifying the surface of a liposomal
core containing azide-functionalized lipids with dibenzocyclooctyl-terminated oligonu-
cleotides showed superior stability, cell uptake, and TLR9 activation when compared to
conventional cholesterol-based structures, suggesting that different oligonucleotide an-
choring chemistries impact SNA performance [59]. In addition, liposomal SNAs were
co-functionalized with two different types of CpG oligonucleotides, i.e., class A and class B
CpG oligonucleotides. Class A oligonucleotides consist of a partial phosphodiester (PO)
backbone with an internal CpG-containing palindrome and a partial phosphorothioate
(PS) backbone with poly(G)-terminated strands. Class B CpG oligonucleotides contain a
PS backbone and a hexamer CpG motif. Previous studies indicated that the combination
of class A and class B CpG oligonucleotide antagonize tumor progression synergistically
by activating distinct TLR9 signaling pathways [60]. SNAs functionalized with defined
stoichiometries of class A and class B CpG oligonucleotides enabled the robust co-delivery
of both CpG classes and synergistically triggered co-stimulatory cues on dendritic cells,
compared to mixtures of the linear oligonucleotides. These data suggest that the SNA
scaffold is ideal for delivering structurally distinct oligonucleotide payloads and enables
the design of multi-sequence oligonucleotide-based combination therapies [61].

Like TLR-9 activating constructs, SNAs carrying TLR7/8-activating RNA, which is
attached to hydrophobic cholesterol moieties of the liposomal core template, can engage
TLR7/8, trigger NF-κB activation in primary immune cells, promote pro-inflammatory
cytokine production, and induce the expression of co-stimulatory molecules more effec-
tively than cationic lipid-transfected RNA of the same sequence [62]. In addition, Mirkin
and colleagues generated liposomal SNAs that can co-activate multiple TLRs. These SNA
architectures contain surface-conjugated CpG oligonucleotides and poly(I:C) encapsulated
in the liposome core for concomitant TLR9 and TLR3 activation [63]. On molecular lev-
els, the co-activation of TLR9 and TLR3 resulted in the downstream activation of distinct
transcriptional programs, the induction of different interferons, and the synchronization
of prolonged expression of co-stimulatory and major histocompatibility complex class
II molecules on the cell surface [63], all resulting in the synergistic activation of antigen-
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presenting cells (APCs). Notably, CpG-carrying TLR9-agonistic SNAs have advanced
through a randomized, combined, single-ascending-dose and multiple-ascending-dose
phase I trial to assess the safety, pharmacokinetics, and pharmacodynamics in healthy
objects (NCT03086278). These structures are currently enrolled in a multi-center phase
Ib/II clinical trial (NCT03684785) to evaluate the safety, tolerability, pharmacokinetics,
pharmacodynamics, and preliminary efficacy of intratumoral SNA injections alone and in
combination with intravenous administrations of the checkpoint inhibitors, pembrolizumab
or cemiplimab, in patients with Merkel cell carcinoma, cutaneous squamous cell carcinoma,
and advanced solid tumors.
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3.2. SNA-Based Vaccines Carrying Oligonucleotide Adjuvant and Antigenic Peptide

Immunostimulatory SNAs can be co-functionalized with peptide antigens in various
structural arrangements to activate APCs and tumor-targeting effector T cells (Figure 3).
Here, SNAs are conjugated with TLR9-agonistic CpG oligonucleotides (i.e., the ‘adjuvant’
to increase the innate immune response to the antigen within APCs). The oligonucleotides,
in turn, are coupled to model peptides derived from tumor-associated antigens via specific
linker chemistries. Initial studies assessed different linker chemistries and determined their
effect on TLR9 activation by the oligonucleotide and antigenicity of the attached peptide.
Using a peptide derived from the melanoma gp100 antigen, Skakuj et al. generated SNAs
using a liposomal core with TLR9-stimulatory CpG oligonucleotides, immobilized on the
core surface through intercalation by using a cholesterol anchor and linked to a peptide
derived from the gp100 model antigen [64]. Three different linker chemistries for attaching
the peptide to the CpG oligonucleotide were explored and evaluated for their effect on the
activation and proliferation of both APCs and CD8+ effector T cells: a non-cleavable linker
(N-(β-maleimidopropyloxy) succinimide ester, BMPS); a cleavable linker (succinimidyl 3-(2-
pyridyldithio)propionate, SPDP), which upon cleavage under reducing conditions within
the endosome, leaves a molecular pendant group (3-mercaptopropionamide) attached to
the antigen; and a traceless linker (4-nitrophenyl 2-(2-pyridyldithio)ethyl carbonate, NDEC),
which upon reduction, engages in intramolecular cyclization followed by the release of the
antigen in an unmodified form. All SNA architectures robustly co-delivered the adjuvant
and antigen to APCs and effectively activated the APCs, suggesting that the linker chemistry
does not impact SNA uptake endosomal TLR9 activation within APCs. Using T cell receptor
transgenic CD8+ T cells that specifically recognize gp100, SNAs with a traceless linker most
effectively induced effector T cell expansion and activation by promoting IFN-γ, TNF-α,
granzyme-B, and IL-6 production [64]. Further optimization of the reduction-labile traceless
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linker showed that accelerating the rates of chemical dissociation of antigens from CpG
oligonucleotide–peptide conjugates resulted in more potent immunostimulatory SNAs [65].
Taken together, these proof-of-concept studies highlight the power of SNA-enabled vaccines
to co-deliver the adjuvant and antigen to immune cells, and to more potently enhance
APC activation and the priming of antigen-specific T cells compared to linear cues. These
data also show that the choice of linker chemistry impacts peptide antigenicity and T cell
activation and expansion and showcase the importance of adjuvant/antigen structural
arrangements for eliciting potent immune responses.

3.3. The Concept of Rational SNA Vaccinology

As a modular and chemically well-defined structure assembled from synthetic compo-
nents, SNA-based vaccines allow for the systematic variation of the vaccine architecture to
optimize the timing of APC activation through the induction of cell surface co-stimulatory
molecules and the intracellular processing of the peptide antigen. Using a ‘rational vac-
cinology’ approach, Wang et al. [66] began to optimize SNA vaccine performance. This
study used three compositionally equivalent but structurally distinct architectures. All
architectures consisted of a unilamellar liposomal core 3’cholesterol-conjugated with a
radial shell of TLR9 agonistic oligonucleotides but differed in the position of the peptide
antigen. ‘Encapsulated’ (E-)SNAs contained the soluble antigen within the liposome core.
‘Anchored’ (A-)SNAs displayed the antigen peptide at the surface via chemical conjugation
to shorter oligonucleotide linkers adsorbed to the liposome surface. ‘Hybridized’ (H-)SNAs
presented the antigen on a linker oligonucleotide that was hybridized to the CpG oligonu-
cleotides. Ovalbumin-1, melanoma-derived antigen gp100, and human papillomavirus-16
oncoprotein E6 antigen were chosen as model antigens. This study demonstrated that
the SNA structure through the adjuvant and antigen’s specific spatial and temporal pre-
sentation profoundly influences vaccine performance. An assessment of SNA uptake
and intracellular trafficking, APC and T cell activation, and anti-tumor responses in vivo
demonstrated the superior activity of H-SNAs, compared to E- and A-SNAs, and a linear
adjuvant/antigen mixture. On a cellular and molecular level, H-SNAs more robustly
co-delivered CpG oligonucleotide and peptide to dendritic cells and demonstrated optimal
kinetics of CpG and antigen processing. In turn, the co-delivery of both immunological
cues resulted in the synchronized presentation of both antigen and co-stimulatory markers,
optimized dendritic cell-T cell interaction, and most effective T cell responses and in vivo
anti-tumor effects [66]. Such a precise architectural control of vaccine components was also
highlighted in two recent studies of immunostimulatory SNAs carrying prostate-specific
antigens, i.e., prostate-specific antigen (PSA), prostate-specific membrane antigen (PSMA),
prostate acidic phosphatase (PAP), and T-cell receptor γ alternate reading frame protein
(TARP) [67,68]. These prostate cancer-specific SNA vaccines more effectively activated
cytotoxic T cells and induced effector memory than the linear mixture of adjuvant and
peptide antigen, suggesting that antigenic peptides with previously reported suboptimal
activity could be reconfigured into a structurally optimized SNA vaccine for more potent
anti-tumor effects [68].

3.4. Tumor-Lysate Loaded SNAs as Cancer Vaccines

Vaccines using specific (neo-)antigen-derived peptides represent a rational approach
for tumor types, which ubiquitously and homogenously express known tumor-associated
antigens. For tumors with less well-defined and heterogeneously expressed antigens, the
use of cell lysates derived from a patient’s tumor represents an alternative approach that
addresses some of the limitations of using a finite set of well-defined antigens. These
include restricted epitope expression by only one of the major histocompatibility com-
plexes (MHCs), inter- and intratumoral heterogeneous expression of antigen, and loss of
antigen expression during tumor progression or recurrence. However, the suboptimal cell
uptake and bioavailability of tumor cell lysates have limited therapeutic efficacy [69]. To
enhance the immunogenicity of tumor cell lysates, Callmann et al. [70] developed liposo-
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mal SNA architectures that were prepared from 1,2-dioleoyl-sn-glycero-3-phosphocholine
(DOPC), loaded with tumor cell lysates derived from triple-negative breast cancer (TNBC)
cell lines, and decorated with a shell of radially oriented TLR9-agonistic CpG oligonu-
cleotides (Figure 3). Immune activation was compared to analogous SNA constructs that
contained hypochlorous acid (HOCl)-oxidized tumor cell lysates, known to have increased
antigenicity in part due to increased proteolytic susceptibility [71] and the presence of
aldehyde-modified antigens that are more immunogenic compared to unmodified anti-
gens [72]. As shown for peptide-based SNA vaccines, tumor cell lysate-loaded SNAs
enhanced the co-delivery of the adjuvant and antigen to immune cells and extended the
survival of syngeneic orthotopic TNBC-bearing mice more robustly compared to non-SNA
conjugated mixtures of lysates and oligonucleotide. Notably, oxidized TNBC lysates in-
creased anti-tumor effects of SNAs through enhanced activation of dendritic cells, more
profound activation of CD8+ T cells, reduced myeloid-derived suppressor cell abundance in
the tumor microenvironment, and the induction of long-term immunological memory [70].
These results demonstrate that immunogenicity and the anti-tumor effect of oxidized tumor
cell lysates can be enhanced when lysates are presented to antigen-presenting cells in an
SNA format. Pending comprehensive assessment of toxicity, tumor lysate-loaded SNAs
may represent a potent vaccine platform for cancers that lack known antigenic targets. An
initial effort to optimize tumor cell lysate-loaded SNA architectures identified the composi-
tion of the liposomal core as a critical design parameter that dictates the overall anti-tumor
effect. Here, diacyl lipid tail chain length and degree of saturation of the liposomal core
represent critical parameters that influence DNA loading, SNA cellular uptake, serum
stability, in vitro immunostimulatory activity, and in vivo biodistribution and anti-tumor
activity [73].

3.5. High-Throughput Screening to Define SNA Structure-Activity Relationships

The seminal studies described above evaluated the impact of a finite number of
structural features on SNA vaccine performance. Now, high-throughput methods for syn-
thesizing and evaluating SNA vaccines combined with machine learning approaches allow
for the systematic, large-scale screening of structural features that contribute to in vitro
potency. Yamankurt et al. [74] developed a self-assembled monolayers for matrix-assisted
laser desorption/ionization mass spectrometry (SAMDI-MS)-based high-throughput as-
say for the rapid and quantitative measurement of cellular responses to TLR9-agonistic
SNAs. RAW-BlueTM macrophages were engineered to secrete NF-κB-inducible embryonic
alkaline phosphatase (SEAP). NF-κB is a major transcription factor that is activated by
innate immune sensing involving TLRs and other DNA sensors [75,76]. Macrophages
were treated with a library of 960 distinct SNA constructs. SEAP-containing media was
supplemented with a phosphorylated peptide substrate, and subsequently, both the sub-
strate and dephosphorylated product were captured on monolayers and then analyzed
by SAMDI. SAMDI-MS, pioneered by Milan Mrksich, represents a label-free assay for
high-throughput, quantitative analysis of enzymatic activity [77–79]. SAMDI-MS uses
monolayers that present a selective capture chemistry against a background of non-binding
tri(ethylene glycol) groups. The monolayers can recognize substrates and products from
a complex mixture. A subsequent analysis of the monolayers by MALDI-MS allows for
the quantification of the substrate and product, directly correlating with SEAP enzyme
concentration. This technology was chosen for its ability to quantify enzyme activities at a
high throughput, without dependence on standard optical methods. SAMDI-MS avoids
artifacts caused by light scattering and absorbance of the nanoparticles, which are difficult
to correct because they are influenced by nanoparticle properties such as size, concentration,
and aggregation.

An analysis of SNA structure-activity relationships provided insights into the impor-
tance of individual SNA design components and how combinations of these components
impact immune activation [74]. The immunostimulatory SNA conjugates chosen for this
study consisted of liposomal nanoparticle cores synthesized from DOPC and 1,2-dioleoyl-
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sn-glycero-3-phosphoethanolamine (DOPE), CpG DNA oligonucleotides, and a peptide
derived from ovalbumin as a model antigen. Results from this screen revealed that the lipid
composition of the core and surface chemistries for oligonucleotide anchoring to liposomal
cores, together with oligonucleotide concentration, orientation, and backbone, influenced
SNA immune-stimulatory activity [74]. Multifactor analysis of variance, together with
the use of machine learning models, revealed that the oligonucleotide concentration heav-
ily influenced SEAP secretion. Second to oligonucleotide concentration, the lipid moiety
conjugated to the oligonucleotide for liposome core attachment had the most significant
impact on immune activation. In addition, the conjugation terminus of the oligonucleotide
also impacted immune activation, as 5′-conjugated SNAs showed significantly higher
activity than 3′-conjugated SNAs, particularly for SNAs with cholesterol conjugation. The
oligonucleotide backbone also influenced the immune stimulatory activity [80], as SNAs
with phosphorothioate backbones generally outperformed their phosphodiester counter-
parts. Subsequently, empirical HTS data were used to train a non-linear machine-learning
algorithm to predict immune activity from SNA properties automatically. In sum, this
study, together with other approaches [81,82], indicate the need to consider the full range
of structure-activity relationships when designing SNAs and other nanomedicines by
high-throughput processes, as nanoconjugate properties can be strongly interrelated in non-
obvious ways. In addition, the combination of experimental and computational methods to
define and predict SNA immune activity will be instrumental in future efforts to optimize
SNA chemistry when consideration is given to more complex architectures, combining
multiple adjuvant oligonucleotides and peptide antigens.

4. Other Multimodal SNA Architectures in Preclinical Development

In addition to SNA vaccines, the most well-defined class of multimodal SNA nanoth-
erapeutics, a series of SNA architectures have been synthesized and evaluated preclinically.
In addition to oligonucleotide payloads, these SNA conjugates co-deliver chemotherapeutic
drugs [83,84], antibodies for tumor cell targeting [85], or imaging agents [14,86].

Platinum (Pt) compounds, such as cisplatin or carboplatin, effectively treat a broad
spectrum of cancer types, including testicular and ovarian cancers [87,88]. To determine
whether Pt compounds, when conjugated to oligonucleotide-functionalized gold nanoparti-
cle cores, are more effective than the free drug, Mirkin, Lippard, and colleagues developed
SNAs functionalized with dodecyl amine-terminated DNA oligonucleotides, which were
linked to the Pt (IV) pro-drug via amide linkages [83]. Oligonucleotide to Pt (IV) linkage
did not affect cell uptake mediated by the oligonucleotide moiety. It also did not alter the
reduction potential of the Pt (IV) warhead, as axial ligands of the Pt (IV) complex were
removed upon cell entry, resulting in the formation of the active Pt (III) drug. Efficacy
testing in human cancer cell lines revealed that SNA-bound Pt (IV) showed a greater than
10-fold reduction in IC50 values than the free drug. These data provided the first proof-of-
concept that SNAs can be used as delivery vehicles for chemotherapeutic drugs to enhance
efficacy and reduce adverse side effects [83]. A similar strategy was used to synthesize
and characterize paclitaxel-loaded SNAs. This study aimed to increase paclitaxel aqueous
solubility, decrease effective drug concentrations required for maximum cell killing, and
reduce adverse side effects associated with drug administration [89]. Here, gold nanopar-
ticle templates were functionalized with amine-terminated DNA oligonucleotides, after
conjugating the oligonucleotide to a paclitaxel carboxylic acid derivative via carbodiimide
linker chemistry. SNA-bound paclitaxel showed a greater than 50-fold enhancement of
aqueous solubility, robust cell uptake, and apoptosis-inducing activity [89].

In addition to increasing chemotherapeutic drug solubilities and efficacies, SNAs
can deliver bioactivated contrast agents, including paramagnetic GdIII complexes. Song
et al. [86] developed GdIII-conjugated SNAs as an MRI agent, enabling high-level GdIII

loading, efficient cellular uptake, and excellent contrast enhancement. GdIII was conjugated
to poly DNA thymine (poly dT) oligonucleotides and linked to gold nanoparticle cores
via thiol adsorption using copper-catalyzed click chemistry. GdIII-SNAs showed high-
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level cell uptake and brighter MRI signal compared to non-SNA-conjugated GdIII. When
intratumorally administered to glioblastoma-bearing mice, these architectures were used
to define SNA pervasive infiltration of intracranial tumors using ex vivo MRI on resected
tumor-bearing mouse brain [14]. In sum, these data demonstrate that SNAs can be used
as a cell and tissue-permeable, biocompatible MR contrast agent with high GdIII loading,
relaxivity, and cell uptake.

5. Conclusions and Outlook

SNAs architectures, i.e., nanoparticle core templates densely packed with highly oriented
oligonucleotides, represent emerging and potentially paradigm-shifting oligonucleotide-based
therapeutics. Comprehensive preclinical characterizations revealed that SNAs are recognized
and endocytosed by scavenger receptors; potently activate endosomal TLRs; deliver peptides
to antigen-presenting cells; and following endosomal escape, can potently and persistently
neutralize gene expression due to increased resistance toward nuclease-driven degradation.
These preclinical studies have now been translated into the clinic, where early phase clinical
trials demonstrate efficacy of gene-regulatory and immunostimulatory SNAs in solid tumors.

What is next? The development of high-throughput screening and machine learning
approaches to investigate SNA structure-activity-relationships and define and predict
critical design parameters to optimize SNA activity demonstrated that the systematic
variations in SNA structure can lead to significant improvements in SNA performance.
Enabled by their modular synthesis and chemically well-defined building blocks, SNAs
will allow for the development of potent gene-regulatory conjugates or vaccines with
well-defined presentation and stoichiometry of components.

For vaccine development, SNAs must be systematically innovated for optimal antigen-
specific T cell activation by incorporating multiple peptide antigens that engage both
MHC-I and MHC-II, by improving tumor cell lysate loading into hollow nanoparticle
cores, by fine-tuning SNA surface and linker chemistries for the most robust co-delivery of
immunostimulatory cues to antigen-presenting cells, and by developing oligonucleotides
that target multiple innate immune receptors or intracellular DNA sensors. In addition
to developing the next generation of SNA vaccines for clinical development, this line of
research will also help us better understand the structural and mechanistic basis for vaccine
function through systematic iterations in SNA synthesis and design (Figure 4).

As concerns the optimization of gene-regulatory SNAs, we must understand, on a fun-
damental level, how SNAs architectures can escape the endosome upon SR-A-dependent
internalization, how to increase cell uptake and cytosolic localization, and augment siRNA
loading on nanoparticle templates to engage the RNAi machinery more effectively. A recent
study exemplified the need to further optimize gene-regulatory SNAs. Vasher et al. [90]
developed a novel SNA architecture in which both strands of a hairpin-like siRNA oligonu-
cleotide were attached to the gold core template to prevent guide strand dissociation from
the passenger strand. Such strand dissociation is typically observed with first-generation
SNAs, in which the passenger strand is attached to the gold core via thiol adsorption,
and the guide strand is linked to the passenger strand via complementary base pair hy-
bridization. This next-generation gene-regulatory SNA construct achieved higher loading
and increased the delivery of active siRNA duplexes, longer siRNA half-life, and more
durable gene knockdown [90]. Another design parameter to consider is the presence of
guanine-rich sequence motifs. Guanine-rich elements can form G-quadruplexes, which
present a negative charge at a higher density due to the unique secondary structure and
folding, and as discussed above, result in more effective engagement of SR-As and cell
uptake [91–93].

Furthermore, we must begin to develop innovative treatment regimens that combine
the power of SNA-enabled gene regulation to neutralize virtually any oncogenic lesion and
the proven efficacy of chemo- and targeted therapeutics. The concept is to design and com-
prehensively characterize multimodal SNA architectures carrying both chemotherapeutic
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drugs and gene-regulatory oligonucleotides to target critical factors that drive chemo- and
targeted therapy resistance (Figure 4).
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Besides optimizing the oligonucleotide shell for the activation of innate immunity,
vaccine development, and gene regulation, future studies must focus on the nanoparticle
template as a therapeutic cue. For example, gold nanoparticle cores were shown to act as a
radiosensitizers [94]. Radiosensitization is based upon the phenomenon that X-rays are
absorbed by gold-based nanostructures, resulting in the release of low-energy electrons
from the nanoparticle template, and the deposition of energy in water in the form of
radicals and electrons. Hydroxyl radicals form, which in turn promote DNA strand breaks
and enhance radiation-induced tumor cell death [94]. Advanced testing in preclinical
mouse models and in clinical trials will determine whether gold-based SNA architectures
can be used as adjuvant to radiation therapy, particularly when carrying gene regulatory
oligonucleotides targeted to radioresistance factors.

Recent studies have shown that proteins can be used as SNA templates, as the ability
of SNAs to enter cells and tissue is mediated by the unique 3D architecture of the oligonu-
cleotide shell and is independent of the type of core material. By densely functionalizing
a protein’s surface with a shell of radially oriented oligonucleotides, protein-based SNAs
(ProSNAs) can delivery cell-impermeable bioactive proteins to cells and tissue, particu-
larly when conjugated with G-quadruplex-containing oligonucleotides [95–97]. Such an
approach can be used to replace dysfunctional proteins, or to inhibit oncogenic signaling
processes, e.g., via the delivery of dominant negative mini-proteins. ProSNAs now await
preclinical testing in murine cancer models.

Taken together, these future preclinical and clinical studies are poised to establish
gene-regulatory and immunostimulatory SNAs as a customizable, on-demand therapeutic
platform that can rapidly be developed to combat a broad spectrum of cancer types.
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6. Patents

A.H.S. is the inventor on patent US20150031745A1, which describes SNA nanoconju-
gates to cross the blood–brain barrier.
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