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Abstract: In this study, we proposed a systems biology approach to investigate the pathogenic mech-
anism for identifying significant biomarkers as drug targets and a systematic drug discovery strategy
to design a potential multiple-molecule targeting drug for type 2 diabetes (T2D) treatment. We first
integrated databases to construct the genome-wide genetic and epigenetic networks (GWGENs),
which consist of protein–protein interaction networks (PPINs) and gene regulatory networks (GRNs)
for T2D and non-T2D (health), respectively. Second, the relevant “real GWGENs” are identified by
system identification and system order detection methods performed on the T2D and non-T2D RNA-
seq data. To simplify network analysis, principal network projection (PNP) was thereby exploited
to extract core GWGENs from real GWGENs. Then, with the help of KEGG pathway annotation,
core signaling pathways were constructed to identify significant biomarkers. Furthermore, in order to
discover potential drugs for the selected pathogenic biomarkers (i.e., drug targets) from the core sig-
naling pathways, not only did we train a deep neural network (DNN)-based drug–target interaction
(DTI) model to predict candidate drug’s binding with the identified biomarkers but also considered a
set of design specifications, including drug regulation ability, toxicity, sensitivity, and side effects to
sieve out promising drugs suitable for T2D.

Keywords: type 2 diabetes (T2D); pathogenic mechanism; deep neural network (DNN)-based DTI
model; pathogenic biomarkers; drug design specification; multiple-molecule targeting drug

1. Introduction

In recent years, chronic diseases are major causes of morbidity and mortality world-
wide. As patients’ long-term conditions could deteriorate gradually with age, chronic dis-
eases require continuous monitoring and treatment to maintain quality of life. Diabetes is
one of the prominent chronic diseases caused by either dysfunctional insulin production or
failed deployment of insulin. Among them, type 2 diabetes (T2D) accounts for 90% to 95%
cases in all diabetes and is estimated to impact about 435 million patients around the world
by 2030 [1]. While T2D is considered to be most common in adults, the diagnosis of pedi-
atric T2D increases steadily [2]. Common symptoms for T2D include frequent urination,
thirst, constant hunger, etc. Most importantly, as a risk factor for heart, blood vessels, eyes,
kidneys, and nervous system diseases, T2D might inevitably increase the risk of death and
the medical burden on society.

T2D has been typically seen as insulin-independent, which implies an ineffective
utilization of insulin due to insulin resistance [3]. However, it has been shown that the
pancreatic β-cell destruction due to inflammation and immune response might also give
rise to T2D aggravation [4,5]. Nowadays, albeit much effort has been dedicated to elucidate
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the T2D pathogenic mechanism, few studies discussed how pancreatic destruction occurs in
T2D, let alone its correlation with inflammatory response on β-cells. In fact, the systematic
pathogenic mechanism of T2D still remains unclear. Therefore, we proposed a systems
biology approach to investigate key pathogenic factors in view of genetic and epigenetic
networks through system identification and system order detection methods by genome-
wide RNA-seq data of T2D.

In the past decade, many methodologies have been proposed to identify the com-
plex relations between the gene–gene, gene–protein, and protein–protein interactions.
Although traditional biological experiments have been used to identify the protein–protein
interaction network in the late 1990s [6], some drawbacks were also incurred. First, it is
expensive and time-consuming to execute a large number of experiments for developing
new therapies. Second, the biological experiments have practical limitations on taking the
whole genome into consideration [7]. As a result, some potential pathways for diseases
may not be well detected and studied. For instance, while the genome-wide association
studies (GWAS) have investigated the single nucleotide polymorphisms (SNPs) of the
human genome and found many disease-related variations, such findings alone can not
explain the complex pathogenesis [8,9]. To overcome these challenges, we employed a
systems biology approach to macroscopically analyze the systematic relationship among
the proteins, genes, and microenvironment in the T2D pathogenic mechanism.

The systems biology method has been widely used to investigate the pathogene-
sis of disease such as cancer [10] and the progression of virus infection [11]. Likewise,
in the proposed issues of T2D management, the systems biology method was deployed to
trim off false positives from the candidate genome-wide genetic and epigenetic networks
(GWGENs) as well as identify the disease-based GWGENs. Then, with the help of the
principal network projection (PNP) approach, the core GWGENs were sifted out and fur-
ther projected to KEGG pathways for subsequent analysis. Right after, by comparing the
discrepancy between the non-T2D and T2D core signaling pathways, the pathogenic mech-
anism can be revealed. According to the analyzed pathogenic mechanism in core signaling
pathways, the fat accumulation-dependent signaling pathways and the high glucose-
induced signaling pathways lead pancreatic β-cells to excessive burden, bringing about
cell inflammation and apoptosis during the development of T2D. Such phenomenon re-
duces the production of insulin secretion and disrupts the balance between glucose and
insulin, giving rise to T2D. Hence, we proposed IKK, STAT3, PPAR
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2. Results
2.1. Overview of Systems Biology Method and Systematic Drug Discovery Design in T2D

In this work, we proposed a combination of systems biology method and systematic
drug discovery design (as shown in Figure 1) to gain deeper insight into the T2D patho-
genesis and to identify potential drugs for T2D treatment based on the selected significant
biomarkers (drug targets). By and large, the process can be subdivided into a few steps:
(1) candidate GWGENs construction from big data mining; (2) the system identification
method by RNA-seq data and system order detection method to construct real GWGENs
shown in Figure A1 by pruning the false positives from candidate GWGEN; (3) the principal
network projection method (PNP) for extracting core GWGENs shown in Figure A2 from
the real GWGENs to simplify the network analysis; (4) the pathogenic mechanism of T2D
and the significant biomarkers investigating by comparing the core signaling pathways
between non-T2D and T2D in Figure 2; (5) a pretrained drug–target interaction (DTI) model
to predict candidate drugs for the targets (biomarkers); (6) drug design specifications to
further sieve out promising drugs for the proposed drug combination (multiple-molecule
targeting drug).
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Figure 1. Flowchart of systems biology method and the outline of systematic drug discovery design. The candidate
genome-wide genetic and epigenetic networks (GWGEN) consist of gene regulation network (GRN) and protein–protein
interaction network (PPIN), where candidate GRN was constructed through integrating gene regulation databases and
candidate PPIN was constructed via protein–protein interaction databases. The candidate GWGENs were identified to
obtain real GWGENs by RNA-seq data from GSE81608 through system identification and system order detection. Then,
core GWGENs were extracted from real GWGENs by the principal network projection (PNP) method. Potential drugs were
discovered according to the significant biomarkers determined by investigating the T2D pathogenesis constructed through
comparing core signaling pathways of non-type 2 diabetes (T2D) and T2D.
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Figure 2. The T2D pathogenic mechanism investigation by comparing the T2D and non-T2D core signaling pathways. The genes and proteins in the core signaling 
pathways were chosen from the T2D and non-T2D core GWGENs. The gene regulations and protein interactions were constructed based on the edges in core 
GWGENs. The blocks of light orange, light blue, and light green background color separately indicate the T2D differential signaling pathways, the common signaling 
pathways of both T2D and non-T2D, and the non-T2D differential signaling pathways, respectively. The cellular functions caused by target genes are clustered with 
solid lines in different colors and referred to Uniprot. The bold arrowhead marks in black denote the relatively low and high expression in pathogenic signaling 
pathways in contrast to non-T2D.2.2. The Pathogenic Microenvironment in T2D. 

Figure 2. The T2D pathogenic mechanism investigation by comparing the T2D and non-T2D core signaling pathways.
The genes and proteins in the core signaling pathways were chosen from the T2D and non-T2D core GWGENs. The gene
regulations and protein interactions were constructed based on the edges in core GWGENs. The blocks of light orange,
light blue, and light green background color separately indicate the T2D differential signaling pathways, the common
signaling pathways of both T2D and non-T2D, and the non-T2D differential signaling pathways, respectively. The cellular
functions caused by target genes are clustered with solid lines in different colors and referred to Uniprot. The bold
arrowhead marks in black denote the relatively low and high expression in pathogenic signaling pathways in contrast to
non-T2D.2.2. The Pathogenic Microenvironment in T2D.

Note that, to reinforce the reliability of constructed T2D pathogenic mechanism,
the collected RNA-seq data on the pancreatic β-cell was selected with age greater than or
equal to 50 years due to high incidence, and they were classified into non-T2D and T2D,
as shown in Table 1.

Table 1. Samples of RNA-seq data on pancreatic β-cells from GSE81608 were selected according to
age greater than or equal to 50 years and classified into non-T2D and T2D.

RNA-seq Data Non-T2D T2D

Age ≥ 50 86 123

Based on the information from the accessible bioinformatics databases, the candidate
GWGENs were constructed and identified by system identification and the system order
detection method to prune off the trivial interactions and regulations. Although the
extracted GWGENs (real GWGENs plotted by Cytoscape software in Figure A1) in a
smaller scale could be apparently observed as shown in Table A1, the network complexity
it owns still blocked the further analysis. To deal with this problem, the PNP method was
applied to distill the real GWGENs into the core GWGENs, which effectively reduced the
network size and simplified the subsequent pathogenic markers and pathway analysis of
T2D. Notably, among the core GWGENs as shown in Figure A2, the top 3000 major nodes
from 85% of the real GWGENs after projection were included.
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Thereafter, the core GWGENs for T2D and non-T2D were projected to KEGG pathways
by DAVID software to derive the core signaling pathways in Tables 2 and 3, respectively.
According to the enrichment analysis of core T2D signaling pathways shown in Table 2,
there are 22 genes related to insulin resistance and 11 genes related to type II diabetes melli-
tus. In addition, 14 genes are associated with lipid metabolism. Such findings indicate that
pathogenic factors of diabetes are related to not only high glucose but also fat accumulation.
As a result, with the help of KEGG pathway annotation, core signaling pathways for T2D
and non-T2D were constructed and individually illustrated in Figures A3 and A4.

Table 2. KEGG pathway enrichment analysis of core T2D signaling pathways using DAVID tool.

KEGG Pathway Enrichment Analysis of T2D Core Signaling Pathways

Pathway Gene Number p-Value

mTOR signaling pathway 15 3.1 × 10−3

Insulin resistance 22 5.8 × 10−3

Regulation of lipolysis in adipocytes 14 6.2 × 10−3

PI3K–Akt signaling pathway 50 3.1 × 10−2

Type II diabetes mellitus 11 3.2 × 10−2

Table 3. KEGG pathway enrichment analysis of core non-T2D signaling pathways using DAVID tool.

KEGG Pathway Enrichment Analysis of non-T2D Core Signaling Pathways

Pathway Gene Number p-Value

Jak–STAT signaling pathway 25 3.1 × 10−2

Cell cycle 22 3.3 × 10−2

mTOR signaling pathway 12 5.4 × 10−2

p53 signaling pathway 13 6.6 × 10−2

AMPK signaling pathway 20 8.9 × 10−2

According to the T2D pathogenic signaling pathways (Figure 2), the lipid and glu-
cose metabolism pathways are found to play crucial roles in impairing the pancreatic
functions, leading to the occurrence of T2D. Lipid accumulation in the pancreas owing to
long-term excessive caloric intakes inevitably causes the burden on the pancreas β-cell,
which thereby impacts the insulin production. In our body, lipids are degraded into either
the triglycerides or the free fatty acids (FFAs). Some of them might also transform into
low-density lipoproteins (LDLs). It is known that LDLs and FFAs can act to interfere
with insulin biosynthesis, insulin secretion, and cell proliferation [15]. On the other hand,
serving as a peptide hormone to consolidate the concentration of glucose level in blood
and to stimulate the decomposition of fat, glucagon (GCG) would be suppressed to a lower
concentration due to the high glucose intake. Therefore, the ability of lipid decomposi-
tion is declined. In addition, higher glucose is often accompanied by the enrichment of
glucagon-like peptide-1 (GLP1) and insulin-like growth factor 1 (IGF1). Although the
provoked downstream pathways may expand the cell mass and enhance the capacity of
insulin secretion to balance the blood sugar level, extreme glucose intake often disturbs
homeostasis. As a result, the pancreatic β-cells cannot withstand the impact of high glucose
and lipids, and they eventually cause dysfunction.

Furthermore, the effect of immune and inflammatory responses should not be ne-
glected. When the pancreatic β-cells suffer damage from endoplasmic reticulum stress
(ER stress), the immune response would be activated along with the secretion of cytokine
factors, such as IL6 and FAS or chemokine CXCL10.
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2.2. Pancreatic β-Cell Proliferation and Apoptosis in the T2D Inflammatory Microenvironment

We conducted a literature survey to outline the biological functions implied in Figure 2.
Under high glucose conditions, GLP1 and IGF1 ligands were induced to a higher level
than normal. Catalyzed by GLP1, GLP1R delivered the transduction signal via PIK3R1,
RAS, RAF1, and MEK1 to activate the MAPK pathway. The activated MAPK due to the
overexpression of GLP1 obliquely elevated the level of transcription factor (TF) ETS1,
which subsequently upregulated the target gene FOXO1 but downregulated TF FOXA2.
Emerging studies revealed that the upregulation of FOXO1 contributes to the apoptosis of
the pancreatic β-cell, concurrently alleviating cell proliferation [16]. In addition, serving as
an important TF in pathogenic pathways, FOXO1 could suppress TF GSK3B to elevate
PDX1 expression, where GSK3B is a negative regulator, and its downregulation maintains
PDX1 protein stability to delay its phosphorylated degradation [17]. As a critical regulator
in pancreatic β-cell development, PDX1 is responsible for cell proliferation and insulin
secretion [18]. However, it has been reported that a decreased FOXA2 could reduce its
binding to the PDX1 promoter [19], holding an antagonism. If without sufficient PDX1,
pancreatic β-cells cannot repair the damage from cell apoptosis and peroxide [20]. It has
been validated that the AKT1 activates the downstream protein MTOR through TSC2 and
RHEB and simultaneously upregulates TF FOXO1, which is phosphorylated by kinase
PHKB [21,22]. In T2D, MTOR phosphorylated S6KB1, and it is well documented that this
upregulation expands the cell size and number of pancreas for producing more insulin
and maintaining the pancreatic function to decompose the glucose [23]. Among signaling
transductions associated with pancreatic β-cell survival, upon receiving the signal from
ligand low-density lipoprotein (LDL), receptor LDLR stimulated MIR24 to restrain the
transcription of target gene IRE1. Notably, the inhibition of IRE1 protects the pancreatic
β-cell from ER stress-induced apoptosis while accelerating the impairment of insulin
secretion [24].

Furthermore, the influence of AKT1-dependent immune response, FFA-induced,
and MAPK-relevant pathways occupied a key position on cell survival. In the AKT1 path-
way, PDK1 suppressed TF IKK phosphorylation degradation through SGK1. SGK1 plays
a role in anti-inflammation, since it impedes the apoptotic promoter NF-κB from translo-
cation to mitigate its ability for inflammatory cytokines transcription [25]. In contrast,
the MTOR pathway and CXCL10-mediated MYD88 signaling both enhanced the nuclear
translocation of NF-κB through IKK. It can initiate immune response, contributing to the
cell inflammation and apoptosis [26,27]. NF-κB is a double-edge sword in immune modu-
lation. In general, NF-κB-dependent transcription not only accelerates the anti-apoptosis
mechanism in favor of cell survival but also augments the inflammatory response, lead-
ing to cell death. Nevertheless, in T2D, the absence of anti-apoptosis pathways pertaining
to NF-κB was found.

On top of that, FFA mediated the reduction of AKT1 phosphorylation by JUNB and
XBP1, hence weakening the transcriptional ability of AKT1.

Concerning cell death, the members of the CASP family count for a great deal in
inducing apoptosis when stimulated by exogenous and endogenous environmental factors.
The IGF1 signal indirectly induced the NEDD8 activation and further upregulated the
inflammatory mediator CASP1, resulting in an aggravated inflammation response [28].
Another CASP member, CASP8, could be triggered by the FASL-stimulated apoptotic
pathway as well, causing the inception of cell inflammatory response and apoptosis. On the
other hand, as a typical hallmark of apoptosis in the CASP family, CASP3 could be indirectly
activated by IL6. Although IL6 might upregulate AKT1 activity to raise the cell proliferation
through JAK2-induced demethylation, IL6 inhibited the key controller of anti-apoptosis
BCL2 through STAT3 downregulation. It is worth noting that from the non-T2D signaling
pathway, IL6 was characterized as an anti-inflammatory cytokine and indirectly interacted
with ISL1 and SETD7 to activate PDX1, intensifying cell proliferation. Moreover, the FFA-
dependent ER stress could also interrupt the STAT3-dependent signaling, which causes
the blockade of cellular defensive machinery from BCL2. The inhibited BCL2 activated
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the caspase cleavage TF SP1 and obliquely its target gene CASP3, resulting in apoptosis,
which has been suggested through opening the channel on mitochondria membrane to
secret CYCS [29].

2.3. Abnormality in Insulin Synthesis and Insulin Secretion

Insulin synthesis and secretion are significant and indispensable modulation functions
in the pancreas. Without sufficient insulin, the pancreas is not able to effectively decom-
pose glucose to generate enough energy for cell tissues. In T2D, there exist confrontations
between the glucose-induced promotion of insulin and the apoptosis-triggered reduction
of insulin secretion. From the pathogenic signaling pathways shown in Figure 2, the high
expression of phosphorylated PDK1 interacted with TF SGK1 to prompt the upregulation
of PLD1, which has previously been described to facilitate insulin secretion [30]. Likewise,
the increment of insulin production could also be triggered by GCG-stimulated TF MAFA
activation pathway through signaling cascades GPR52, ABCB1, CAMP, PKA, and CREB1.
This finding is in line with the observation of a study that GCG level rises in response to
lipid metabolism when lipids accumulate in the pancreas [31]. Furthermore, the upreg-
ulated SGK1 inhibited NEDD4 to accelerate the GLUT1 deubiquitylation, promoting the
insulin secretion. On the other hand, as the ubiquitin ligase, COP1, its inhibition induced
by the GLP1-stimulated MAPK pathway could attenuate the degradation of negative
modulator ETV1 and impel its target gene EXOC6 to overexpress, therefore weakening the
ensuing insulin secretion stimulation.

Meanwhile, in contrast to the upregulation of GLUT1, the target gene GLUT2 was
repressed by PPARγ through both the signaling cascades: one via FFA-dependent FFAR1
and FABP5 signal transduction; the other via the decrement of TF PGC1α transcriptional
ability through GLP1-catalyzed deacetylated enzyme SIRT upregulation. Consequently,
the loss of GLUT2 gave rise to a drop on insulin secretion. Furthermore, miRNAs also play a
key role in the pancreas to regulate insulin synthesis and secretion. An abnormal expression
of miRNAs often arouses repercussion. Despite holding the potency to prevent pancreatic
β-cells from apoptosis through IRE1 inhibition [24], MIR24 was inevitably induced by
LDL to dampen insulin synthesis through triggering MAFA downregulation. Aside from
that, acting as a downstream of MAPK signaling cascades, when activated, MIR29B2 kept
its target MCT1 (SLC16A1, a plasma membrane monocarboxylate transporter to manage
the exocrine function of insulin) from expression, thereby resulting in the interruption of
insulin secretion [32].

2.4. Potential Multiple-Molecule Targeting Drug for T2D Utilizing Systematic Drug
Discovery Approach

According to the investigation of the pathogenic mechanism, the primary progression
of T2D stemmed from excessive inflammation and cell apoptosis owing to fat accumulation
in the pancreas. Moreover, an over intake of glucose pressures the pancreas to overwork,
therefore leading to dysfunction. In line with this notion, significant biomarkers related
to fat accumulation, cell inflammation, and apoptosis were selected. Then, we used these
biomarkers to search for favorable compounds that can serve as potential therapy of T2D.
Consequently, we took IKK, STAT3, FAS, ETS1, and PPARγ as biomarkers and sought
to reverse their expression levels. Amongst them, IKK, STAT3, and FAS are pertinent to
pancreas inflammation and death; ETS1 is responsible for pancreas proliferation; PPARγ
can regulate the glucose flux into the pancreas through the channel protein GLUT2 and
therefore stimulate insulin secretion.

After defining these potential biomarkers as drug targets, we select candidate drugs by
drug repositioning, with consideration of their chemical properties. On one hand, a deep
neural network (DNN)-based DTI model was pretrained to predict drug–target binding
likely to exist; on the other, drug design specifications, i.e., regulation ability, toxicity,
sensitivity, and side effect were further exploited to sieve out potential drugs for designing
a multiple-molecule targeting drug for T2D treatment before clinical trials. The flowchart
of systematic drug discovery and design procedure is described in Figure 3.
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Figure 3. The flowchart of systematic drug discovery and design procedure. The drug–target binding datasets were
obtained from BindingDB, which integrated substantial information of drugs and targets from several databases. Then,
the drug and target features were sequentially preprocessed through descriptor transformation, standardization, and PCA
dimension reduction. Afterwards, the processed data were split into training and testing data for deep neural network
(DNN)-based drug–target interaction (DTI) model training and performance evaluation, respectively. During the training
process, the model parameters were updated through the error between the true binding label and predicted binding label
of each drug–target pair. The well-trained DNN-based DTI model was used to predict the binding probability between
drugs and the identified biomarkers to sift out candidate drugs. Finally, with the consideration of drug design specifications
including regulation ability, toxicity, sensitivity, and side effect, potential drugs were selected and integrated for novel
medication therapy curing T2D.

From our DNN-based DTI model (Figure 4), we set four hidden layers, and each of
them is connected with a ReLU activation function layer behind. The ReLU activation
function could avoid vanishing gradient problems and converge much faster than the other
activation functions adopted to deal with classification issues [33]. Meanwhile, to hinder the
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model from overfitting during the training process, the dropout layer is incorporated after
each hidden layer. The dimension of the input layer is 618, corresponding to the features
size of the drug–target pair, and 512, 256, 128, and 64 neurons are embedded respectively
in the four hidden layers. Prior to the output layer, a sigmoid activation function is applied
to limit the value within the range between 0 and 1 (probability). Note that a sigmoid
function is commonly used in binary classification problems. The outcome of DTI indicates
the likelihood of a binding, where a higher value corresponds to a more reliable interaction
(binding) between the drug and target. The loss and accuracy during the training process
are recorded in Figures 5 and 6, respectively. The well-trained DTI model was supervised
through applying the 10-fold cross-validation to evaluate the model performance, as shown
in Table 4. Eventually, we received an average accuracy of 94.89 (%) with the standard
deviation of 0.156 (%), and the model with best testing performance was picked as our
DTI model.
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Table 4. 10-fold cross-validation measure for the DNN-based DTI model.

Model Performance (10-Fold Cross-Validation)

Validation Loss Validation
Accuracy (%) Testing Loss Testing

Accuracy (%)

1 0.148 95.23 0.159 94.87

2 0.151 94.93 0.150 95.05

3 0.159 94.58 0.155 94.69

4 0.155 94.73 0.161 94.68

5 0.154 94.75 0.156 94.91

6 0.147 94.91 0.155 94.95

7 0.164 94.74 0.157 94.96

8 0.162 94.56 0.158 94.82

9 0.151 95.18 0.155 95.06

10 0.142 95.2 0.153 94.94

Average 0.153 94.88 0.156 94.89

Standard
deviation 0.007 0.252 0.003 0.131

The far-left column recorded the numbers of 10-fold cross-validation models. The block with values
in bold denotes the model with best testing accuracy in contrast to the other models and is chosen as
the well-trained DTI model for drug–target binding prediction.

Furthermore, we also compared the DNN-based DTI model with other DTI models
based on machine learning classification approaches, such as random forest, K-nearest
neighbor (KNN), and Support Vector Machine (SVM) by the receiver operating charac-
teristic (ROC) curve measure. The visualization of ROC curve comparison is denoted in
Figure 7. From the figure, the performance of our proposed DTI model is apparently better
than the others, which indicates that the deep learning algorithm greatly adapts to the
calculation of the overwhelming and complicated drug–target interaction data in contrast
to other traditional machine learning methods.
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indicates the virtual model without predicted value due to random prediction and is the boundary for judging whether the
model performs well. On the upper left of the dotted line, the model is better than the randomly predicted model; contrarily,
on the right lower of the dotted line, the model is worse than the randomly predicted model. The “area” in the parenthesis
of each label denotes the AUC score.

Through the prediction of the pretrained DNN-based DTI model, candidate drugs
were sieved out owing to possessing high probability to bind (dock) to the selected biomark-
ers. However, the balance between the drug potency and adverse effect should also be
concerned, since potent drugs are usually accompanied with a high risk of damage. Accord-
ingly, with the consideration of the drug design specifications such as regulation capacity,
toxicity, sensitivity, and side effect, we could further assure the stability and safety of drugs
in clinical trials. For the purpose of measuring the regulation capacity of candidate drugs,
the available data with well-documented regulation ability information was downloaded
from L1000 level 5 dataset, which contains 978 genes treated with 19,811 small molecular
compounds in 78 different cell lines [34]. By referring to LINCS L1000, we can examine
whether a specific gene was upregulated (positive values) or downregulated (negative
values) after being treated with an existing compound. On the other hand, the drug with
lower toxicity often possesses a smaller side effect with reference to the median lethal dose
(LD50) value in DrugBank. Being the numeric index of lethality, LD50 plays a pivotal
role in drug safety evaluation. Further, administering a drug with higher drug sensitivity
(a lower value of half maximal effective concentration (EC50)) could also cut down the
dosage of the drug and further mitigate the ensuing side effect [35]. Within, the drug
sensitivity data were collected from the PRISM dataset, which includes 4518 drugs being
experimented across 578 human cell lines based on the EC50. EC50 is used to measure
the potency of a drug, where a drug with smaller EC50 implies that it could exert the
maximum effect with a lower dose [36]. On top of that, we defined the side effect of each
drug as its additional binding to other targets rather than the desired biomarkers. The fewer
unwanted targets the drug binds, the smaller it affects other pathways. The side effects
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for the candidate drugs are denoted in Table 5, and further information of the proposed
candidate drugs for the identified biomarkers were presented in Table 6. Leveraging these
pharmacological properties from databases, appropriate drugs were plausibly selected
from Tables 5 and 6 to meet the drug design specifications. Ultimately, we suggested a
combination of Sulforaphane and Biotin as our potential multiple-molecule targeting drug
for T2D.

Table 5. The side effect for candidate drugs on core signaling pathways.

Candidate Drugs Binding Biomarkers
Binding Numbers Except

Desired Target Biomarkers
in Core Signaling Pathways

Anisomycin IKK, STAT3, PPARγ, ETS1, FAS 37

* Sulforaphane IKK, STAT3, PPARγ, ETS1, FAS 23

Memantine IKK, STAT3 11

Trimetozine IKK, STAT3, PPARγ 14

* Biotin IKK, STAT3, PPARγ, ETS1 19

Gabexate IKK, STAT3, PPARγ, ETS1 31

Famotidine IKK, STAT3, PPARγ, ETS1 25

Cilostazol IKK, STAT3, PPARγ, ETS1 26

Acetylcysteine IKK, STAT3, PPARγ, ETS1, FAS 41

The side effect of a drug is defined as the number of targets except the desired biomarkers. The
candidate drugs with ‘*’ are selected as our potential drugs for T2D.

Table 6. The candidate drugs for T2D and their corresponding information.

Candidate
Drugs

Regulation Ability to Specific Biomarkers Toxicity
(LD50, moL/kg)

Sensitivity
(EC50)IKK STAT3 PPARγ ETS1 FAS

Anisomycin 0.822 0.809 3.622 5.507 −0.184 3.535 −1.099

*
Sulforaphane −0.029 0.079 0.075 0.089 −0.059 3.110 −0.008

Memantine −0.997 0.707 2.346 −0.383

Trimetozine −0.724 0.650 0.489 2.148 −0.851

* Biotin −1.214 1.075 0.969 −0.986 2.058 −0.249

Gabexate −1.324 −0.942 1.237 −2.151 1.999 −0.229

Famotidine −0.693 0.356 −1.004 −0.119 1.952 −0.548

Cilostazol −0.570 −1.622 0.387 −1.222 1.889 −0.141

Acetylcysteine −0.788 0.645 −0.620 1.923 −1.000 1.294 −0.554

Some of the candidate drugs are denoted and ranked based on their toxicity. The regulation ability block without values represented that no
binding between the drug and target existed. The blocks with values in bold indicate unwanted regulations. The positive value of regulation
ability signifies the positive regulation, whereas the negative value denotes the downregulation. For each drug, the larger LD50 value it possesses,
the lower toxicity it has; the smaller LD50 value it owns, the higher efficacy (sensitivity) it holds. The candidate drugs with ‘*’ are selected as the
potential drugs.

Sulforaphane is a natural edible substance isothiocyanate produced by the enzymatic
action of the myrosinase on glucopharanin, which is a 4-methylsulfinylbutyl glucosino-
late contained in cruciferous vegetables of the genus Brassica such as broccoli, brussel
sprouts, and cabbage. Several experiments have validated that Sulforaphane mitigates
oxidative stress and protects cells from damage by invaded tumors and diseases [37].
Biotin, also called vitamin H, is a water-soluble B vitamin and involves a wide range of
metabolic processes in body. It plays an important role in not only the protein synthesis
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but also the fat and carbohydrate metabolism. A previous experiment in rats documented
that the insulin secretion dysfunction is related to the loss of biotin [38]. The chemical
structures of the T2D multiple-molecule targeting drug and the corresponding drug design
specifications with respect to suitable regulation ability, low toxicity, high sensitivity and
low side effect are given in Table 7.

Table 7. The drug design specifications of a potential multiple-molecule targeting drug for T2D.

Drug Names
Regulation Ability to Specific Biomarkers Toxicity

(LD50, moL/kg)
Sensitivity

(EC50)IKK STAT3 PPARγ ETS1 FAS

Sulforaphane √ √ √ √ 3.110 −0.008

Biotin √ √ √ √ 2.058 −0.249

Sulforaphane Biotin

Binding numbers except their desired target biomarkers in core signaling pathways (side effect)

23 19

Chemical structures of multiple molecular drugs

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 15 of 39 
 

 

the T2D multiple-molecule targeting drug and the corresponding drug design specifica-
tions with respect to suitable regulation ability, low toxicity, high sensitivity and low side 
effect are given in Table 7. 

Table 7. The drug design specifications of a potential multiple-molecule targeting drug for T2D. 

Drug Names 
Regulation Ability to Specific Biomarkers Toxicity 

(LD50, mol/kg) 
Sensitivity 

(EC50) IKK STAT3 PPARγ ETS1 FAS 
Sulforaphane      3.110 −0.008 

Biotin      2.058 −0.249 
Sulforaphane Biotin 

Binding numbers except their desired target biomarkers in core signaling pathways (side effect) 
23 19 

Chemical structures of multiple molecular drugs 

 

 
‘’ denotes the drug could bind to the biomarkers with a desired regulation capacity. Among the chemical structures of 
the multiple molecular drugs, “R(CH2)nH” indicates the alkyl group; “RNCS” means the isothiocyanate group; “RSOR′” 
represents the sulfinyl group; “R′R”NH” is the secondary amine; “RCOR′” means the carbonyl group; ‘RSR′’ is the sulfide 
group; and the “RCOOH” is the carboxyl group.  represents a solid wedge where the bond is pointing out toward the 

viewer and  indicates a hashed wedge where the bond is receding away from the viewer. 

According to Tables 5–7, the combination therapy of Sulforaphane and Biotin has the 
potential to restore the abnormal regulation in T2D. The reversing of STAT3 may reduce 
the cell apoptosis caused by the endogenous damage substances, and the lower expression 
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ment. In addition, the reduction of IKK expression can suppress some phosphorylated 
degradations, hence mitigating the formation of inflammatory environments and the sub-
sequent activation of cell apoptosis. Furthermore, the downregulation of ETS1 by the pro-
posed multiple-molecule targeting drug can facilitate FOXA2 to form the connection with 
FOXO1, therefore enhancing the cell proliferation. The recovery expression of PPARγ can 
achieve the equilibrium between glucose intake and insulin secretion. Taken together, by 
administering the proposed multiple-molecule targeting drug, an upregulation of STAT3 
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When it comes to the T2D pathogenic mechanism, the pancreatic β-cell could not 
withstand the decomposition of excessive glucose in the body from long-term high glu-
cose intakes, leading to pancreatic β-cell exhaustion and insulin resistance. Although the 
accumulation of glucose in the body is a crucial factor for T2D development, it is worth 
noting that the inflammatory-dependent apoptosis stemming from the fat accumulation 
in the pancreatic β-cell is also a pivotal issue. In T2D specific signaling pathways, FFA 
produced by the hydrolysis of oils and fats not only disrupted the glucose homeostasis 
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According to Tables 5–7, the combination therapy of Sulforaphane and Biotin has the
potential to restore the abnormal regulation in T2D. The reversing of STAT3 may reduce the
cell apoptosis caused by the endogenous damage substances, and the lower expression of
FAS can decrease the cell apoptosis by the interference of an exogenous microenvironment.
In addition, the reduction of IKK expression can suppress some phosphorylated degrada-
tions, hence mitigating the formation of inflammatory environments and the subsequent
activation of cell apoptosis. Furthermore, the downregulation of ETS1 by the proposed
multiple-molecule targeting drug can facilitate FOXA2 to form the connection with FOXO1,
therefore enhancing the cell proliferation. The recovery expression of PPARγ can achieve
the equilibrium between glucose intake and insulin secretion. Taken together, by admin-
istering the proposed multiple-molecule targeting drug, an upregulation of STAT3 and
PPARγ accompanied by the downregulation of IKK, ETS1, and FAS can validly be attained,
yielding encouraging results for the treatment of T2D patients.

3. Discussion
3.1. The Association between Macrophage Polarization and Inflammatory Response in T2D

When it comes to the T2D pathogenic mechanism, the pancreatic β-cell could not
withstand the decomposition of excessive glucose in the body from long-term high glucose
intakes, leading to pancreatic β-cell exhaustion and insulin resistance. Although the accu-
mulation of glucose in the body is a crucial factor for T2D development, it is worth noting
that the inflammatory-dependent apoptosis stemming from the fat accumulation in the
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pancreatic β-cell is also a pivotal issue. In T2D specific signaling pathways, FFA produced
by the hydrolysis of oils and fats not only disrupted the glucose homeostasis but also
increased the ER stress to indirectly trigger the follow-up inflammatory response, i.e., IKK-
induced NF-κB pathway and apoptotic pathways related to the CASP family. Additionally,
to form the inflammatory microenvironment, the immune response is initiated to activate
the releasing of pro-inflammatory cytokines such as IL-1β and IL-6 when damage and
infection occur.

Among all types of immune cells, macrophages exert a significant effect on pancreatic
β-cells in T2D. Macrophages are mononuclear phagocytic cells and widely distributed
in human organs. They play an indispensable role in physiological homeostasis, im-
mune surveillance, and cell regeneration. There are mainly two types, M1- and M2-type
macrophage, existing in the pancreas. M1-type macrophages are referred to as “pro-
inflammatory macrophages” that can activate inflammatory response and recruit T-cells
and natural killer cells to eliminate the harmful substance [39]. However, excessive in-
flammation stimulated by cytokine and chemokine often inevitably causes great harm to
health. Conversely, M2-type macrophages named “anti-inflammatory macrophages” can
primarily mediate the side effect arising from the inflammatory and immune response [40].
Under a high glucose and fat environment, glucotoxicity and lipotoxicity in response to the
damage infringe the stability of pancreatic β-cell, so that the accumulation of intracellular
stress including the oxidative and ER stress intensifies [41]. Moreover, the intracellular
stress can modulate the polarization of macrophage from M2-type to M1-type, causing
the imbalance in the ratio of M1-type/M2-type macrophages. Consequently, the num-
ber of M1-type macrophages residing in the pancreatic β-cell outweighs that of M2-type
macrophages to induce pancreatic β-cell toward inflammatory-dependent apoptosis and
pancreatic function impairment, which further strengthens the investigation of pancreatic
β-cell destruction by apoptosis and inflammation in the T2D pathogenic mechanism.

3.2. The Modulation of Ion Channels Involved in Insulin Resistance and Glucose Homeostasis

Nutrients and chemical substances are essential to sustain cell stability and survival.
The ways for substances intakes from the extracellular space into cells consist of the
diffusion across the plasma membrane and the transmission on it via channel proteins.
As modulators of ion channels residing on the plasma membrane, the GLUT family, i.e.,
GLUT1 and GLUT2, stood out as crucial factors to maintain the equilibrium between the
glucose uptake and insulin secretion in the T2D pathogenic mechanism. As the result
of high glucose intakes, GLUT1 and GLUT2 increase the ratio of ATP/ADP, leading to
inducing the electrical and transductive signal to inactivate the KATP+ ion channel protein,
a modulator of K+ flux in cells [42]. Then, the inactivated KATP+ channel further activates
the opening of the Ca2+ ion channel, elevating the concentration of Ca2+ to promote insulin
secretion [43]. However, in the aforementioned pathogenic signaling pathways of T2D,
FFA-dependent pathway inhibited GLUT2 to reduce the sensitivity of insulin secretion via
pancreatic β-cell in response to glucose accumulation. This phenomenon has also been
reported in diseases related to glycogen metabolism and metabolic disorders [44]. It is
also commonly found in T2D and should be taken into consideration when performing its
medical treatment.

3.3. Potential Multiple-Molecule Targeting Drug for to the Identified Biomarkers of T2D

In recent years, pharmacology companies have devoted to the discovery and design of
drugs for T2D treatment, e.g., Metformin, Sulfonylureas, Meglitinides, Thiazolidinediones,
DPP-4 inhibitors, GLP-1 receptor agonists, etc. Metformin is the first-line medication for the
treatment of T2D, working for lowering the production of glucose in liver and improving
insulin sensitivity. In spite of holding promising efficacy, it can give rise to acute pancreatitis
if overdosed [45,46]. Adjuvant medication therapy with either Sulfonylureas such as
Glucotrol or Meglitinides such as Repaglinide can effectively stimulate pancreas β-cells to
secrete more insulin in the short term; however, Sulfonylureas can cause the progressive
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dysfunction of pancreas β-cells in a long-term treatment. Furthermore, they also aggravate
the risk of gaining weight and lowering blood glucose levels [47,48]. Thiazolidinediones
is an analogue of Metformin, rendering tissues more sensitive to the insulin. However,
it may as well result in overweight and even severe side effects, i.e., heart failure and
anemia. DPP-4 inhibitors that prevent DPP-4 from degrading GLP-1, e.g., Sitagliptin,
and GLP-1 receptor agonists that affect GLP-1 to last longer, e.g., Liraglutide, are of
particular interest for their glucose-lowering effects, which are useful to the treatment of
T2D [49]. Although they are at very low risk of hypoglycemia and are also known to help
with weight loss, these medications might lead to gastrointestinal disorders, e.g., nausea,
diarrhea, or constipation, and overdosage often increases the probability of pancreatitis
occurrence [50,51]. SGLT2 inhibitors are one of the newer medications used to lower blood
sugar in patients with T2D. Unlike most anti-diabetic drugs that work by either increasing
insulin in the body or increasing the insulin sensitivity of cells, SGLT2 inhibitors, e.g.,
Dapagliflozin, Canagliflozin, Empagliflozin, etc., cause kidneys to excrete glucose into
urine to reduce the blood sugar level [52]. However, excess sugar in urine creates a cozy
environment for bacteria and fungi to thrive in the urinary tract or genital area, giving rise
to urinary tract infection (about 50% greater in patients with diabetes) [53]. In addition,
some patients may experience increased frequency of urination, which leads to lower blood
pressure due to the loss of fluids; others may notice a slight increase in their cholesterol
values [54]. Therefore, discovering effective treatments and promising medications for T2D
is still needed.

The proposed drug combination of Sulforaphane and Biotin not only is natural and
readily available from daily life but also holds a chance to keep the body from inflammatory-
dependent apoptosis and fat accumulation. Although further evaluation in clinical trials is
still needed and the potential side effects after consuming should be monitored, the new-
found medication indeed brings hope to improve T2D management.

4. Materials and Methods
4.1. Overview the Procedure of Systems Biology and Systematic Drug Discovery and Design for
Type 2 Diabetes (T2D) and Non-T2D

To investigate and gain much more understanding of the T2D pathogenesis, we ap-
plied a systems biology approach [55] to build core signaling pathways and explored
discrepancies between non-T2D and T2D from the perspective of molecular genetics and
epigenetics. Furthermore, a systematic drug discovery procedure was proposed to dis-
cover and design a promising drug combination for treating T2D. Notably, drug design
specifications were further utilized for screening potential drugs from predicted candidate
drugs. The procedure of a systems biology approach and the outline of systematic drug
discovery and design method is shown in Figure 1 and subdivided into a few steps:

4.1.1. The Construction of Candidate GWGENs

The candidate protein–protein interaction network (PPIN) and candidate gene regula-
tory network (GRN) were constructed and integrated into GWGEN for non-T2D and T2D
respectively by mining the protein–protein interaction and gene regulation databases.

4.1.2. The Identification of Real GWGENs

The system identification and system order detection method Akaike information cri-
terion (AIC) are used to remove the false positive protein interactions and gene regulations
in candidate GWGENs to obtain the real GWGENs via the RNA-seq data downloaded
from NCBI GSE81608.

4.1.3. Extracting Core GWGENs by Principal Network Projection (PNP) Method

The core GWGENs were obtained through extracting 85% of the principal network
components consisting of the top 3000 proteins, genes, miRNAs, and lncRNAs by the PNP
method from the viewpoint of network significance.
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4.1.4. The Explorations of Core Signaling Pathways

According to the nodes and edges in core GWGENs and the KEGG pathways annota-
tions, the core signaling pathways were established for T2D and non-T2D. Subsequently,
we investigated the genetic and epigenetic pathogenic mechanism by comparing their core
signaling pathways.

4.1.5. Potential Multiple-Molecule Targeting Drug Discovery

The deep neural network (DNN) was trained for the drug–target interaction model
(DTI) via the drug–target interaction database. With the help of the DTI model, drugs hav-
ing the possible interactions with biomarkers were predicted to be the candidate drugs.
Then, the potential multiple-molecule targeting drug was selected for T2D treatment before
clinical trials from the candidate drugs according to the drug design specifications of drug
regulation ability, toxicity, sensitivity, and side effect.

4.2. Data Mining, Preprocessing and Candidate GWGENs Construction

In our research, the dataset with accession number GSE81608 was downloaded from
the gene expression omnibus (GEO) of the National Center for Biotechnology Information
(NCBI), and its relevant experimental platform was GPL16791. The dataset contained
mRNA expression levels of genes, proteins, miRNAs, TFs, receptors, and lncRNAs in
pancreatic α-cell, β-cell, δ-cell, and PP-cell. The samples of the dataset were assorted
into two categories, i.e., T2D and non-T2D. In this study, to identify the T2D pathogenic
mechanism on the pancreatic β-cell, the samples of the subtype β-cell were specifically
extracted from the original experimental data. Furthermore, according to the WHO report,
the age distribution of incidence in diabetes is at the range of approximately 50 years old
and older. Therefore, 86 and 123 samples were chosen respectively for T2D and non-T2D
with age equal to or greater than to 50 years old. Then, we constructed the candidate PPIN
based on the Database of Interacting Proteins (DIP) [56], IntAct [57], the Biological General
Repository for Interaction Datasets database (BioGRID) [58], the Biomolecular Interaction
Network Database (BIND) [59], and the Molecular INTeraction Database (MINT) [60].
In addition, the candidate GRN was built based on the Integrated Transcription Factor
Platform database (ITFP) [61], the Human Transcriptional Regulation Interactions database
(HTRI) [62], and the TRANScription FACtor database (TRANSFAC) [63]. MiRNAs and
lncRNAs regulations in GRN were referenced to the TargetScanHuman database [64],
CircuitsDB [65], and StarBase2.0 [66].

4.3. Constructing the Systematic Model for the Candidate GWGEN of T2D and Non-T2D

For the purpose of imitating the human cellular system, we built the stochastic inter-
active and regulatory models to describe the candidate GWGEN. The candidate GWGEN
was composed of PPIN containing the protein–protein interactions and GRN containing
the regulations of genes, miRNAs, and lncRNAs. Next, we described the interactions
of proteins and regulations of genes, lncRNAs, and miRNAs using the protein–protein
interactive model (PPIM), gene regulatory model (GRM), lncRNA regulatory model (LRM),
and miRNA regulatory model (MRM) in detail.

First, the q-th protein in PPIM can be described as the following equations:

pq[n] =
Gq

∑
r = 1
r 6= q

κqr pq[n]pr[n] + λq,PPIM + µq,PPIM[n], for q = 1, . . . , Q, n = 1, . . . , N (1)

where pq[n] indicates the expression level of the q-th protein in the n-th sample and
pr[n] indicates the expression level of the r-th protein in the n-th sample; κqr denotes the
interaction ability between the q-th protein and the r-th protein; Gq represents the total
number of proteins that interact with the q-th protein; Q denotes the total number of
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proteins in candidate PPIM; N means the total number of samples in our data; λq,PPIM
shows the basal level in the model of the q-th protein due to unknown protein interactions
of histone modifications such as phosphorylation and acetylation; and µq,PPIM[n] expresses
the data noise of the q-th protein.

Second, the transcriptional regulation of the x-th gene in GRM is given as below:

gx[n] =
Ux

∑
u = 1
u 6= x

αxutu[n] +
Vx

∑
v=1

βxvlv[n]−
Wx

∑
w=1

γxwmw[n]gx[n] + λx,GRM + µx,GRM[n]

, for x = 1, . . . , X, n = 1, . . . , N

(2)

where gx[n] denotes the expression level of the x-th gene in the n-th sample; tu[n], lv[n],
and mw[n] individually indicate the expression level of the u-th TF, the v-th lncRNA and
the w-th miRNA of the n-th sample; Ux, Vx, and Wx separately mean the total binding
number of TFs, lncRNAs and miRNAs; αxu shows the transcriptional regulatory ability
from the u-th TF to the x-th gene; βxv represents the transcriptional regulatory ability from
the v-th lncRNA to the x-th gene; γxw≥ 0 expresses the post-transcriptional regulatory
ability of the w-th miRNA on the x-th gene; X denotes the total number of gene in GRNs; N
indicates the total number of data samples; λx,GRM means the basal level of the x-th gene
because of the unknown gene regulations such as methylation; and µx,GRM[n] is the data
noise.

Third, TFs, lncRNAs, and miRNAs also have a potential impact on the i-th lncRNA
and we can depict this behavior by the LRM in candidate GWGENs. The equation is
obtained as follows:

li[n] =
Ui
∑

u=1
σiutu[n] +

Vi
∑

v = 1
v 6= i

ςivlv[n]−
Wi
∑

w=1
τiwmw[n]li[n] + λi,LRM + µi,LRM[n]

, for i = 1, . . . , I, n = 1, . . . , N

(3)

where li[n] indicates the expression level of the i-th lncRNA; tu[n], lv[n], and mw[n] repre-
sent the expression level of the u-th TF, the v-th lncRNA, and the w-th miRNA of the n-th
sample, respectively; Ui, Vi, and Wi individually show the total binding number of TFs,
lncRNAs and miRNAs. σiu expresses the transcriptional regulatory ability from the u-th TF
to the i-th lncRNA; ςiv means the transcriptional regulatory ability from the v-th lncRNA
to the i-th lncRNA; τiw ≥ 0 denotes the post-transcriptional regulatory ability from the
w-th miRNA to the i-th lncRNA; I is the total number of lncRNAs and N indicates the total
number of samples; λi,LRM denotes the basal level of the i-th lncRNA; µi,LRM[n] expresses
the data noise.

Fourth, the expression of the j-th miRNA is also affected by the TFs, lncRNAs, and
miRNAs. Furthermore, we can illustrate MRM in candidate GWGENs through the follow-
ing equation:

mj[n] =
Uj

∑
u=1

ωjutu[n] +
Vj

∑
v = 1
v 6= j

ξ jvlv[n]−
Wj

∑
w=1

ψjwmw[n]mj[n] + λj,MRM + µj,MRM[n]

, for j = 1, . . . , J, n = 1, . . . , N

(4)

where mj[n] means the expression level of j-th miRNA; tu[n], lv[n], and mw[n] separately
represent the expression level of the u-th TF, the v-th lncRNA and the w-th miRNA,
respectively; Uj, Vj, and Wj show the binding total number of TFs, lncRNAs and miRNAs;
ωju denotes the transcriptional regulatory ability from the u-th TF to the j-th miRNA;
ξ jv expresses the transcriptional regulatory ability from the v-th lncRNA to the j-th miRNA;
ψjw indicates the post-transcriptional regulatory ability from the w-th miRNA to the j-th
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miRNA; J is the total number of miRNAs and N indicates the total number of samples;
λj.MRM is the basal level of the j-th miRNA; µj,MRM[n] denotes the data noise.

4.4. The System Identification and System Order Detection Methods for Real GWGENs
Identification

According to the above stochastic models, PPIM in (1) composed the candidate PPIN;
GRM in (2), LRM in (3), and MRM in (4) constituted the candidate GRN. We made use of
the system identification and system order detection methods to obtain the real GWGENs
of T2D and non-T2D by the corresponding RNA-seq data, respectively. In order to identify
the parameters of these stochastic models, Equations (1)–(4) could separately be rewritten
as the following linear regression forms.

pq[n] =
[

pq[n]p1[n] pq[n]p2[n] · · · pq[n]pGq [n] 1
]
×


κq1
κq2

...
κqGq

λq,PPIM

+ µq,PPIM [n] (5)

gx[n] =
[

t1[n] · · · tUx l1[n] · · · lVx m1[n]gx[n] · · · mWx [n]gx[n] 1
]
×



αx1
...

αxUx

β1
...

βxVx

−γ1
...

−γxWx
λx,GRM



+ µx,GRM[n] (6)

li[n] =
[

t1[n] · · · tUi l1[n] · · · lVi m1[n]li[n] · · · mWi [n]li[n] 1
]
×



αi1
...

αiUi
β1
...

βiVi
−γ1

...
−γiWi
λi,LRM



+ µi,LRM[n] (7)

mj[n] =
[

t1[n] · · · tUj l1[n] · · · lVj m1[n]mj[n] · · · mWj [n]mj[n] 1
]
×



αj1
...

αjUj

β1
...

β jVj

−γ1
...

−γjWj

λj,MRM



+ µj,MRM[n] (8)
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for q = 1, . . . , Q, x = 1, . . . , X, i = 1, . . . , I, j = 1, . . . , J, n = 1, . . . , N, where (5), (6),
(7), and (8) are separately regression forms for PPIM, GRM, LRM, and MRM. Q, X, I, and J
are respectively the total number of proteins, genes, lncRNAs and miRNAs in the candidate
GWGWN, and N is the total number of samples.

The linear regression forms in (5), (6), (7), and (8) could be simplified as the follow-
ing formulas:

pq[n] = φq,PPIM[n] · θq,PPIM + εq,PPIM, for q = 1, . . . , Q (9)

gx[n] = φx,GRM[n] · θx,GRM + εx,GRM, for x = 1, . . . , X (10)

li[n] = φi,LRM[n] · θi,LRM + εi,LRM, for i = 1, . . . , I (11)

mj[n] = φj,MRM[n] · θj,MRM + ε j,MRM, for j = 1, . . . , J (12)

where the Φq,PPIM[n], Φx,GRM[n], Φi,LRM[n], and Φj,MRM[n] individually denote the regres-
sion vectors of proteins, gene, lncRNAs, and miRNAs in the n-th sample; θq,PPIM means the
parameter vector of the protein-protein interaction abilities and protein basal levels; θx,GRM,
θi,LRM, and θj,MRM are the parameter vector of the transcriptional regulatory abilities and
basal levels of the genes, lncRNAs, and miRNAs, respectively; εq,PPIM, εx,GRM, εi,LRM, and
ε j,MRM are individually the data noise for PPIM, GRM, LRM and MRM.

For N samples, the above regression equations are given as below:
pq[1]
pq[2]

...
pq[N]

 =


φq,PPIM[1]
φq,PPIM[2]

...
φq,PPIM[N]

 · θq,PPIM +


εq,PPIM[1]
εq,PPIM[2]

...
εq,PPIM[N]

, for q = 1, . . . , Q (13)


gx[1]
gx[2]

...
gx[N]

 =


φx,GRM[1]
φx,GRM[2]

...
φx,GRM[N]

 · θx,GRM +


εx,GRM[1]
εx,GRM[2]

...
εx,GRM[N]

, for x = 1, . . . , X (14)


li[1]
li[2]

...
li[N]

 =


φi,LRM[1]
φi,LRM[2]

...
φi,LRM[N]

 · θi,LRM +


εi,LRM[1]
εi,LRM[2]

...
εi,LRM[N]

, for i = 1, . . . , I (15)


mj[1]
mj[2]

...
mj[N]

 =


φj,MRM[1]
φj,MRM[2]

...
φj,MRM[N]

 · θj,MRM +


ε j,MRM[1]
ε j,MRM[2]

...
ε j,MRM[N]

, for j = 1, . . . , J (16)

The above equations could be individually represented as the follows:

Pq = Φq,PPIM ·Θq,PPIM + Eq,PPIM, for q = 1, . . . , Q (17)

Gx = Φx,GRM ·Θx,GRM + Ex,GRM, for x = 1, . . . , X (18)

Li = Φi,LRM ·Θi,LRM + Ei,LRM, for i = 1, . . . , I (19)

Mj = Φj,MRM ·Θj,MRM + Ej,MRM, for j = 1, . . . , J (20)

where Φq,PPIM, Φx,GRM, Φi,LRM, and Φj,MRM are separately the regression matrix of pro-
teins, genes, lncRNAs and miRNAs of N samples. Θq,PPIM, Θx,GRM, Θi,LRM, and Θj,MRM
are the corresponding interactive and regulatory parameter vectors. Eq,PPIM, Ex,GRM,
Ei,LRM, and Ej,MRM are the corresponding data noise vectors.
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What is worth noticing is that the maximum degree of the parameter estimation of
proteins in PPIs and genes in GRNs must be less than the samples; otherwise, it would
cause the overfitting problem during the process of system identification.

Firstly, for the purpose of identifying the real GWGENs, we adopted the least square
method to estimate the parameter vectors θq,PPIM, θq,GRM, θq,LRM, and θq,MRM with nega-
tive regulation constraint on miRNA as follows:

Θ̂q,PPIM = argmin
Θq,PPIM

1
2
‖Φq,PPIM ·Θq,PPIM − Pq‖2

2 (21)
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Based on the above constrained optimization problems in Equations (21)–(24), we sought 
out the optimal solution of the interactive ability parameters among proteins ,

ˆ
q PPIMΘ , the 
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where ,q PPIMΩ  means the estimated residual error of the q-th protein for the least square 
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where ,x GRMΩ  denotes the estimated residual error of the x-th gene in (22) and ,x GRMO  
means the number of regulations of the genes, lncRNAs and miRNAs on the x-th gene; 
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where ,i LRMΩ  shows the estimated residual error of the i-th lncRNA in (23) and ,i LRMO  
indicates the number of regulations of the genes, lncRNAs and miRNAs on the i-th 
lncRNA; ,

ˆ
i LRMΘ  expresses the estimated parameters in (23). 

(24)

Based on the above constrained optimization problems in Equations (21)–(24), we
sought out the optimal solution of the interactive ability parameters among proteins
Θ̂q,PPIM, the regulatory parameters of genes Θ̂x,GRM, lncRNAs Θ̂i,LRM and miRNAs
Θ̂j,MRM via the RNA-seq data of non-T2D and T2D, respectively. The above optimization
problems for parameter estimation could be solved by the MATLAB optimization toolbox.
Carefully, the negative inequality constraints in Equations (21)–(24) mean that the regu-
latory parameters of miRNAs should be less than or equal to zero to ensure the negative
regulation of miRNAs on genes, lncRNAs and miRNAs.

After the parameter estimation of candidate GWGENs of non-T2D and T2D by the
corresponding RNA-seq data, we used the system order detection method, AIC, to detect
the system order (the number of interactions of each protein or the number of regulations
of each gene, lncRNA and miRNA). The detailed equations of AIC for each protein, gene,
lncRNA and miRNA are shown below.

AIC(Qq) = log(Ωq,PPIM)+
2(Gq+1)

N

, for Ωq,PPIM =
(Pq−Φq,PPIM ·Θ̂q,PPIM)

T
(Pq−Φq,PPIM ·Θ̂q,PPIM)

N

(25)
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where Ωq,PPIM means the estimated residual error of the q-th protein for the least square
parameter estimation Θ̂q,PPIM in (21) and Qq denotes the number of protein interactions
with the q-th protein.

AIC(Ux, Vx, Wx) = log(Ωx,GRM)+
2(Ox,GRM+1)

N

, for Ωx,GRM =
(Gx−Φx,GRM ·Θ̂x,GRM)

T
(Gx−Φx,GRM ·Θ̂x,GRM)

N , Ox,GRM = Ux + Vx + Wx

(26)

where Ωx,GRM denotes the estimated residual error of the x-th gene in (22) and Ox,GRM
means the number of regulations of the genes, lncRNAs and miRNAs on the x-th gene;
Θ̂x,GRM is the estimated parameters in (22).

AIC(Ui, Vi, Wi) = log(Ωi,LRM)+
2(Oi,LRM+1)

N

, for Ωi,LRM =
(Li−Φi,LRM ·Θ̂i,LRM)

T
(Li−Φi,LRM ·Θ̂i,LRM)

N , Oi,LRM = Ui + Vi + Wi

(27)

where Ωi,LRM shows the estimated residual error of the i-th lncRNA in (23) and Oi,LRM
indicates the number of regulations of the genes, lncRNAs and miRNAs on the i-th lncRNA;
Θ̂i,LRM expresses the estimated parameters in (23).

AIC(Uj, Vj, Wj) = log(Ωj,MRM)+
2(Oj,MRM+1)

N

, for Ωj,MRM =
(Mj−Φj,MRM ·Θ̂j,MRM)

T
(Mj−Φj,MRM ·Θ̂j,MRM)

N , Oj,MRM = Uj + Vj + Wj

(28)

where Ωj.MRM expresses the estimated residual error of the j-th miRNA in (24) and Oj.MRM
represents the number of parameters regulations of the genes, lncRNAs and miRNAs on
the j-th miRNA; Θ̂j,MRM is the estimated parameter in (24).

According to the order detection of AIC in system identification [67], the real order of a
system (i.e., the number of interactions of the q-th protein in (1) or the number of regulations
on the x-th in (2)) is to minimize the AIC. Therefore, the true number of interactions or
regulations for each protein, gene, lnRNA and miRNA in candidate GWGENs can be
obtained by solving the following AIC minimization problems.

Q∗q = argmin
Qq

AIC(Gq), for q = 1, . . . , Q (29)

U∗x , V∗x , W∗x = argmin
Ux ,Vx ,Wx

AIC(Ux, Vx, Wx), for x = 1, . . . , X (30)

U∗i , V∗i , W∗i = argmin
Ui ,Vi ,Wi

AIC(Ui, Vi, Wi), for i = 1, . . . , I (31)

U∗j , V∗j , W∗j = argmin
Uj ,Vj ,Wj

AIC(Uj, Vj, Wj), for j = 1, . . . , J (32)

where Q∗q denoted the true number of protein interactions for the q-th protein; U∗x , V∗x , W∗x
individually indicate the true number of regulations of genes, lncRNAs and miRNAs on
the x-th gene; U∗i , V∗i , W∗i denote the true number of regulations of genes, lncRNAs and
miRNAs on the i-th lncRNA, respectively; U∗j , V∗j , W∗j are separately the true number of
regulations of genes, lncRNAs and miRNAs on the j-th miRNA. Therefore, the protein–
protein interactions and gene, miRNA, and lncRNA regulations out of true order by AIC
minimization problems in (29)–(32) are considered as false positives in candidate GWGEN
of non-T2D and T2D and should be removed one by one to obtain the real GWGEN.

4.5. The Principal Network Projection (PNP) Method for the Core GWGENs Extraction from
Real GWGENs

The real GWGENs of non-T2D and T2D were compared to investigate the genetic and
epigenetic pathogenic molecular mechanism. However, it was still harder to analyze the
two larger scale and complicated real GEGENs so that we applied the principal network
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projection (PNP) method on the basis of the singular value decomposition (SVD) to extract
the core GWGENs from the real GWGENs. Before studying the core network extraction in
depth, we will start by introducing the real GWGEN network matrix H. Network matrix H
consists of interactions among proteins and regulations of the TF-gene, TF-lncRNA, TF-
miRNA, lncRNA-gene, lncRNA-lncRNA, lncRNA-miRNA, miRNA-gene, miRNA-lncRNA,
and miRNA-miRNA in the real GWGEN as the follows:

H =


hprotein⇔protein 0 0

hTF⇒gene hln cRNA⇒gene hmiRNA⇒gene
hTF⇒ln cRNA hln cRNA⇒ln cRNA hmiRNA⇒ln cRNA
hTF⇒miRNA hln cRNA⇒miRNA hmiRNA⇒miRNA

 (33)

where hprotein⇔protein denotes the sub-matrix of PPI of which the bidirectional arrow at
the subscript of the parameter means that the protein interaction is bidirectional; hTF⇒gene,
hTF⇒ln cRNA, hTF⇒miRNA, hln cRNA⇒gene, hln cRNA⇒ln cRNA, hln cRNA⇒miRNA, hmiRNA⇒gene,
hmiRNA⇒ln cRNA and hmiRNA⇒miRNA denote the transcriptional regulatory sub-networks of
TFs on genes, lncRNAs, and miRNAs; lncRNAs on genes, lncRNAs, and miRNAs; and
miRNAs on genes, lncRNAs, and miRNAs, respectively. The detail components of network
matrix H of real GWGENs are given below:

H =
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where ˆqrκ  is the interaction ability of between the q-th protein and the r-th protein; ˆxuα

, ˆ
xvβ , and ˆxwγ  are individually the regulation abilities of the u-th TF on the x-th gene, the 

v-th lncRNA on the x-th gene, and the w-th miRNA on the x-th gene; ˆiuσ , îvς , and îwτ  
represent the regulation abilities of the u-th TF on the i-th lncRNA, the v-th lncRNA on 
the i-th lncRNA, and the w-th miRNA on the i-th lncRNA, respectively; ˆ juω , ˆ

jvξ , and 
ˆ jwψ  separately show the regulation abilities of the u-th TF on the j-th miRNA, the v-th 

lncRNA on the j-th miRNA, and the w-th miRNA on the w-th miRNA. In addition, some 
zeros are omitted in the matrix, which means that there is neither interaction nor regula-
tion between the source and target. 
 Thereafter, the core GWGENs were obtained by applying PNP on the network ma-
trix H  with an energy threshold of 85%. First, the network matrix H  is decomposed by 
singular value decomposition (SVD) as follows [68]: 

 TH SVD=  (35) 



∈ R(Q∗+X∗+I∗+J∗)×(U∗+V∗+W∗) (34)

where κ̂qr is the interaction ability of between the q-th protein and the r-th protein;
α̂xu, β̂xv, and γ̂xw are individually the regulation abilities of the u-th TF on the x-th gene,
the v-th lncRNA on the x-th gene, and the w-th miRNA on the x-th gene; σ̂iu, ς̂iv, and τ̂iw
represent the regulation abilities of the u-th TF on the i-th lncRNA, the v-th lncRNA on
the i-th lncRNA, and the w-th miRNA on the i-th lncRNA, respectively; ω̂ju, ξ̂ jv, and ψ̂jw
separately show the regulation abilities of the u-th TF on the j-th miRNA, the v-th lncRNA
on the j-th miRNA, and the w-th miRNA on the w-th miRNA. In addition, some zeros are
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omitted in the matrix, which means that there is neither interaction nor regulation between
the source and target.

Thereafter, the core GWGENs were obtained by applying PNP on the network matrix
H with an energy threshold of 85%. First, the network matrix H is decomposed by singular
value decomposition (SVD) as follows [68]:

H = SVDT (35)

where S ∈ R(Q∗+X∗+I∗+J∗)×(Q∗+X∗+I∗+J∗) and DT ∈ R(U∗+V∗+W∗)×(U∗+V∗+W∗) are the uni-
tary singular matrices; V = diag(v1, · · · , vii, · · · vU∗+V∗+W∗) ∈ R(Q∗+X∗+I∗+J∗)×(U∗+V∗+W∗)

denotes the diagonal matrix of which the components at the diagonal are the singular
values of H and are arranged in descending order, i.e., v1 ≥ v2 ≥ · · · ≥ vi ≥ · · · ≥
vU∗+V∗+W∗ ≥ 0.

V =



v1 0 · · · 0 · · · 0
0 v2 · · · 0 · · · 0
...

...
. . .

...
. . .

...
0 0 · · · vi · · · 0
...

...
. . .

...
. . .

...
0 0 · · · 0 · · · vU∗+V∗+W∗

0 0 · · · 0 · · · 0
...

...
. . .

...
. . .

...
0 0 · · · 0 · · · 0


(36)

In addition, we defined the normalization of singular values in (36) as below.

Ei =
v2

i
U∗+V∗+W∗

∑
i=1

v2
i

and
U∗+V∗+W∗

∑
i=1

Ei = 1 (37)

I

∑
i=1

Ei ≥ 0.85 (38)

From the above formula, the top I significant singular vector structures were selected
to represent the system with energy equal to or more than 85%. Then we respectively
projected each node of the real GWGEN (i.e., each row of network matrix H) to the top I
singular vectors as follows.

Z(a, b) = ha,: · dT
b,:, for a = 1, . . . , Q∗ + X∗ + I∗ + J∗, b = 1, . . . , I (39)

where Z(a, b) denotes the projection value of the a-th node on the b-th significant singular
vector; ha,: means the a-th row vector of network matrix H, and dT

:,b denotes the the b-th
column of DT . Next, we define the 2-norm projection value to each node such as protein,
gene, lnRNA and miRNA in real GWGEN from the top I significant singular vectors as
below.

S(a) =

√√√√ I

∑
i=1

Z2(a, b), for a = 1, . . . , Q∗ + X∗ + I∗ + J∗ (40)

According to the equation in (40), the top 3000 pivotal proteins, genes, miRNAs,
and lncRNAs with higher projection value were selected to construct the core GWGENs
for T2D and non-T2D, respectively. Afterwards, the core GWGENs were uploaded to
the DAVID website for KEGG pathway enrichment analysis, and the construction of
core signaling pathways for non-T2D and T2D were accomplished with the help of the
annotation of KEGG pathways. The enrichment analysis was used to validate that our
results were associated with T2D. Eventually, the potential biomarkers were chosen through
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investigating the T2D pathogenesis by comparing the non-T2D and T2D core signaling
pathways.

4.6. Systematic Drug Discovery Based on Drug Design Specifications for T2D

Based on drug design specifications, we aimed to discover a potential multiple-
molecule targeting drug for the identified biomarkers. We proposed a DTI model based on
a deep neural network to predict the drug–target interaction between the available drugs
and targets (biomarkers). Since it is not enough to consider the drug–target interaction
alone for drug design, some specifications, i.e., regulation ability, toxicity, sensitivity and
side effect are necessary to sieve the candidate drugs predicted by the DTI model. Then,
with these considerations, we suggested an appropriate multiple-molecule targeting drug
for T2D treatment before clinical trials.

First, based on the flowchart of the systematic drug discovery method in Figure 3, we
accessed an integrated collection of protein–ligand affinity data through BindingDB’s uni-
fied interface [69], which harvests the selected data and information from multiple existing
databases, i.e., PubChem, ChEMBL, UniProt, DrugBank, etc. (for more details, readers can
refer to Appendix B). Recently, the feature-based method, for instance, molecular descriptor,
is broadly used to describe the structural and chemical properties of molecules such as
characteristics from the 2D and 3D spectrum of structure, molecular weight, hydrophilic,
hydrophobicity, etc. It was validated that the chemical properties of the drug and genomic
sequence of the target could be described with the molecular descriptor for the purpose of
convenient analysis in drug design, since the molecular descriptor can transform compli-
cated chemical properties into a simple numerical feature vector [70,71]. On this ground,
we utilized the functions from python package pyBioMed to transform both the drug and
target into a descriptor as their features individually under the python2.7 environment.
The considered drug features of a molecule included constitutional descriptors, connec-
tivity indices, E-state indices, charge descriptors, molecular properties and kappa shape
indices. For the target features, the structural and physicochemical features of proteins and
peptides from amino acid sequence such as amino acid composition, dipeptide composition
. . . , etc. are calculated (for more detailed information about the descriptor transformation,
readers could access the documents of pyBioMed [72]). Then, the descriptor of the drug
and target were combined into a feature vector vdrug-target corresponding to the drug–target
pair as below [73]:

vdrug−target = [D, T] = [d1, d2, · · · , dM, t1, t2, · · · tN ] (41)

Among vdrug−target, 363 features for a drug and 996 features for a target were collected,
where the former features in vdrug-target are for the drug and the latter are for the target. d1
represents the first drug feature; t1 indicates the first target feature; M is the total number of
drug features; and N denotes the total number of target features. Before training the DNN-
based DTI model, we encountered a problem that features are not in the same standing.
Since the variables of the features are measured at different scales, they do not contribute
equally to the model fitting and might end up creating a bias, i.e., the feature with a larger
value would dominate the result. To deal with this potential problem, a feature-wise scaling
is usually implemented prior to model fitting. As powerful techniques of feature scaling,
Min-max Normalization and Standardization methods are commonly used for bringing
every feature in the same footing without any upfront importance. Although Min-max
Normalization can also normalize the data into the same scale, it is much more sensitive
to outliers compared to Standardization. Therefore, Standardization was performed on
the features before applying principal component analysis (PCA) to improve the model
performance, and the corresponding mathematical formulation is shown as follows:

d∗i =
di − µi

σi
, ∀i = 1, . . . , M (42)
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t∗j =
tj − µj

σj
, ∀j = 1, . . . , N (43)

where di is the i-th drug feature and the d∗i is the i-th drug feature after Standardization;
µi and σi individually represent the mean and standard deviation of the i-th drug feature;
tj indicates the j-th feature of the target and t∗j denotes the j-th feature of the target after
Standardization; µj and σj separately signify the mean and standard deviation of the j-th
target feature; M denotes the total number of drug features; and N is the total number of
target features.

h = σ(wx + b) (44)

where x and h denote input and output, respectively; w is the weighting matrix and b is
the bias vector; σ(·) indicates the activation function with Rectified Linear Unit (ReLU) in
the hidden layer and Sigmoid in the output layer. Since the binary classification issue is
concerned, the binary-cross entropy is chosen as the cost function to calculate the model
loss:

Cn(w, b) = −[ p̂n log pn + (1− p̂n)log(1− pn)] (45)

L(w, b) =
1
N

N

∑
n=1

Cn(w, b) (46)

where pn means the truth label of positive interaction; p̂n indicates the predictive probability
of positive interaction, 1− pn shows the truth label of negative interaction, and 1− p̂n
represents the predicted probability of negative interaction. L( p̂n, pn) denotes the average
of total loss C( p̂n, pn). According to the cost function, the backward propagation algorithm
is applied to update the model parameter set θ containing the weighting matrix and bias
vector through calculating the gradient of cost function in (46) to get the result in (50) and
eventually derive the optimal solution θ∗ in (48) as follows.

θ =

[
w
b

]
(47)

θ∗ = argmin
θ

L(θ) (48)

θl = θl−1 − η∇L(θl−1) (49)

where l is the l-th epoch of learning procedure; η is the learning rate; and ∇L(θl−1) is the
gradient of L(θl−1) as below:

∇L(θl−1) =

[
∂L(θl−1)

∂w
∂L(θl−1)

∂b

]
(50)

Based on the backward propagation method, the DNN-based DTI model could adjust
the parameters to fit the drug–target interaction data at each iteration well. In addition,
the hyperparameters were tuned to not only lower the training time but also achieve
the best model performance. We used Adam [74] as an optimizer with a default setting
and set the learning rate as 0.0001 to make the model parameter θ converge faster and
precisely. We set 100 for epochs and 100 for batch size. For the data, we split one-fourth
of the data as testing data and three-fourths of it as training data. Moreover, we further
divided the training data into ten equal folds to perform ten-fold cross-validation, in which
nine-tenths of them were used for model training and one-tenth was used for validation.
Such application is exploited to supervise whether the model was better than that of the
former epoch and to guarantee the model stability. Furthermore, to avoid overfitting,
not only did we embed the dropout layer (dropout rate = 0.4) behind each hidden layer but
also applied the early stopping strategy to monitor whether the test accuracy decreased
with the continuous improvement of training accuracy or not. After accomplishing model
training as shown in Figure 4, we adopted the AUC (area under the curve) score and ROC
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(receiver operating characteristics) curve [75] in Figure 7 as the performance measurement.
It is one of the most useful evaluation metrics to visualize the model performance when it
comes to the binary classification problems. The higher AUC score is that in which the area
under the line is larger; the better accuracy is for the DNN-based DTI model predicting the
true positive and true negative drug–target interaction. The formulas for the AUC score
and ROC curve are shown below.

TPR(True Positive Rate) =
TP

TP + FN
(51)

specificity =
TN

TN + FP
(52)

FPR(False Positive Rate) = 1− specificity =
FP

TN + FP
(53)

where TP (True Positive) means that the real value is true and is judged correctly; TN (True
Negative) shows that the real value is true and is judged by mistake; FP (False Positive)
indicates the real value is false and is judged accurately; FN (False Negative) represents
that the real value is false and is judged in error.

It is worth noting that the majority of previous network approaches use machine
learning (ML)-based methods to perform predictions over the drug–target interaction
space [76–78]. However, such techniques have major limitations. Traditional ML is a time-
consuming process and requires lots of expertise to design and run the algorithms. Without
a good understanding of the domain knowledge and feature engineering, a traditional
machine algorithm can hardly work well.

As a kind of ML-based model with multiple hidden layers and a more complicated
parameter training procedure, the deep learning method attracts lots of attention for its
relatively better performance and ability to learn representations of data with multiple
levels of abstraction [79]. When there is a lack of domain understanding for feature in-
trospection, deep learning techniques outshine others as we do not have to worry much
about feature engineering. Additionally, the comparison of deep-learning methods with
other acceptable ML algorithms in the task of new DTIs identification has previously been
performed as well, where framework based on deep learning could indeed achieve rela-
tively high prediction performance [80]. As a result, for each algorithm compared in our
work, only default parameters without fine-tuning were set to learn features from the data.
However, a disadvantage should be solved that there are no experimental validated nonin-
teracting drug–target pairs so that it is difficult to select negative samples, which would
largely influence the predictive accuracy of the method [81]. Hence, apart from extracting
a great number of samples from the presently largest database, BingdingDB, we further
followed the criteria in Appendix B to abstract negative examples from existing drug–target
interactions, which enabled us to evaluate and manipulate the data more realistically to
achieve better performance.

5. Conclusions

In this study, on the basis of our proposed combination of systems biology and
systematic drug discovery design, we not only investigated the complicated pathogenic
molecular mechanism of T2D from genetic and epigenetic perspectives but also discovered
a potential drug combination for the clinical treatment of T2D based on four drug design
specifications. At first, we constructed the stochastic biological networks by systematic
identification and system order detection methods by exploring big data. After that,
we extracted the core signaling pathways by the PNP method and the annotation of KEGG
pathways to select the significant biomarkers from the pathogenesis of T2D. For the purpose
of discovering candidate drugs interacting with these biomarkers, we trained a DNN-based
DTI model to predict the possible drug–target interactions. Moreover, we considered the
drug regulation ability, toxicity, sensitivity and side effects as the drug design specifications
to better sieve appropriate potential drugs. As a result, a set of combinational multiple
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molecular drugs is proposed as a multiple-molecule targeting drug for T2D treatment.
Since the beginning of this century, the advent of the genomic era has presented researchers
with a myriad of high throughput genome-wide biological data, which can assist in the
interpretation of the indecipherable genetic and epigenetic regulations and the optimization
of drug efficacy. Considering the combination of multiple types of genomics data could
benefit us to gain deeper insight into the pathogenic mechanism of diseases. It is expected
that our systems biology and systematic drug discovery design might provide a new
orientation for T2D therapeutics.

Author Contributions: Conceptualization, S.C., J.-Y.C. and B.-S.C.; Data curation, S.C. and J.-Y.C.;
Formal analysis, S.C., J.-Y.C. and B.-S.C.; Funding acquisition, B.-S.C.; Investigation, S.C., J.-Y.C.
and B.-S.C.; Methodology, S.C., J.-Y.C. and B.-S.C.; Project administration, B.-S.C.; Resources, B.-
S.C.; Software, S.C., J.-Y.C. and B.-S.C.; Supervision, B.-S.C.; Validation, S.C., J.-Y.C. and B.-S.C.;
Visualization, S.C. and J.-Y.C.; Writing—original draft, S.C. and J.-Y.C.; Writing—review and editing,
S.C., J.-Y.C., B.-S.C. and Y.-J.C. All authors have read and agreed to the published version of the
manuscript.

Funding: This research was funded by Ministry of Science and Technology grant number MOST
107-2221-E-007-112-MY3.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
T2D Type 2 Diabetes
GRN Gene Regulatory Network
PPIN Protein-Protein Interaction Network
GWGEN Genome Wide Genetic and Epigenetic Network
PNP Principal Network Projection
DTI Drug–Target Interaction

Appendix A

Table A1. The statistics of the nodes and edges in candidate GWGEN, non-T2D GWGEN, and T2D
GWGEN after identification.

Candidate GWGEN Non-T2D GWGEN T2D GWGEN

LncRNA-TF 158 1 4

LncRNA-Receptor 2 2 0

LncRNA-Protein 142 8 3

LncRNAs 384 121 125

MiRNA-TF 17,052 1 3

MiRNA-Receptor 13,438 3 2

MiRNA-Protein 75,629 8 16

MiRNAs 417 22 29

TF-LncRNA 417 133 162

TF-MiRNA 723 25 31

TF-TF 33,897 2249 1984

TF-Receptor 16,241 1059 1084

TF-Protein 84,634 8336 8887
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Table A1. Cont.

TFs 4351 1086 1057

Receptor-LncRNA 101 29 35

Receptor-MiRNA 78 2 1

Receptor-TF 2520 356 327

Receptor-Receptor 1757 231 183

Receptor-Protein 9111 1991 1737

Receptors 2768 2093 2033

Proteins 19,041 18,101 17,924

PPIs 6,244,695 826,916 814,993

Total nodes 26,961 21,423 21,168

Total edges 6,500,938 841,350 829,452

The content in the table shows the number of nodes or edges. The rows of the table contain different
types of node and edge, e.g., LncRNA-TF indicates that lncRNA regulates the transcriptional factor
(TF), and LncRNAs means the nodes of LncRNA. Also, we count and record the number of proteins
and protein–protein interactions (PPIs).

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 32 of 39 
 

 

 

 

Figure A1. (A) The real GWGEN network of non-T2D; (B) The real GWGEN network of T2D. The real GWGENs were 
constructed by pruning the false positives from candidate GWGENs though system identification and systems order de-
tection methods. The numbers in the figure signify the node numbers of proteins, TFs, Receptors, LncRNAs, and MiRNAs. 
The orange lines indicate the protein–protein interactions and the blue lines denote the gene regulations. 

Figure A1. (A) The real GWGEN network of non-T2D; (B) The real GWGEN network of T2D. The real GWGENs were
constructed by pruning the false positives from candidate GWGENs though system identification and systems order
detection methods. The numbers in the figure signify the node numbers of proteins, TFs, Receptors, LncRNAs, and MiRNAs.
The orange lines indicate the protein–protein interactions and the blue lines denote the gene regulations.
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Figure A2. (A) The core GWGEN network of non-T2D; (B) The core GWGEN network of T2D. The core GWGENs were 
extracted by PNP method the real GWGEN to simplify the pathogenic analysis of T2D. The numbers in the figure signify 
the node numbers of proteins, TFs, Receptors, LncRNAs and MiRNAs. The orange lines indicate the protein–protein in-
teractions and the blue lines denote the gene regulations. 

Figure A2. (A) The core GWGEN network of non-T2D; (B) The core GWGEN network of T2D. The core GWGENs were
extracted by PNP method the real GWGEN to simplify the pathogenic analysis of T2D. The numbers in the figure signify
the node numbers of proteins, TFs, Receptors, LncRNAs and MiRNAs. The orange lines indicate the protein–protein
interactions and the blue lines denote the gene regulations.
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Figure A3. The core signaling pathways of non-T2D based on our result for investigating the non-T2D genetic and epigenetic molecular mechanism. The genes and 
proteins in the core signaling pathways were chosen from the non-T2D core GWGENs. The gene regulations and protein interactions were constructed on the basis 
of the edges in non-T2D core GWGENs. The cellular functions caused by target genes are clustered with solid lines in different colors. 

Figure A3. The core signaling pathways of non-T2D based on our result for investigating the non-T2D genetic and epigenetic
molecular mechanism. The genes and proteins in the core signaling pathways were chosen from the non-T2D core GWGENs.
The gene regulations and protein interactions were constructed on the basis of the edges in non-T2D core GWGENs. The
cellular functions caused by target genes are clustered with solid lines in different colors.
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Figure A4. The core signaling pathways of T2D based on our result for investigating the T2D genetic and epigenetic molecular mechanism. The gene regulations 
and protein interactions were constructed on the basis of the edges in T2D core GWGENs. The cellular functions caused by target genes are clustered with solid 
lines in different colors. The cellular functions caused by target genes are clustered with solid lines in different colors. The bold arrowhead marks in black denote 
the relatively low and high expression in T2D pathogenic signaling pathways in contrast to non-T2D.Appendix B. 

Figure A4. The core signaling pathways of T2D based on our result for investigating the T2D genetic and epigenetic
molecular mechanism. The gene regulations and protein interactions were constructed on the basis of the edges in T2D
core GWGENs. The cellular functions caused by target genes are clustered with solid lines in different colors. The cellular
functions caused by target genes are clustered with solid lines in different colors. The bold arrowhead marks in black denote
the relatively low and high expression in T2D pathogenic signaling pathways in contrast to non-T2D.

Appendix B

BindingDB is a well accessible database of measured binding affinities, focusing chiefly
on the interactions among small molecules and proteins. It provided about one million
binding data for thousands of small molecules and proteins. By the following five criteria,
we collected a binary classification dataset with 33,777 samples for positive examples and
27,493 for negative instances.

1. The chemical identifier (PubChem CID) is recorded, and the small molecule has
chemical structure expressed by SMILES (Although both SMILES and InChI are
recorded in BindingDB dataset, SMILES is easier to read and more supported by
software).

2. The protein identifier (Uniprot ID) is recorded, and the protein is represented by the
sequence in Fasta format.

3. The half maximal inhibitory concentration (IC50) value, a primary measure of binding
effectiveness, is recorded

4. The chemical molecule weight is less than 1000 Da due to our focus on small molecule
drugs.

5. According to the activity threshold discussed by Wang et al. [82], it is recorded as
positive if the IC50 is less than 100 nm and negative if IC50 is greater than 10,000 nm.

Since most drug–target interaction databases do not provide real negative examples,
it is a common solution to randomly sample a small number of unknown interactions as
negative examples. However, unknown interactions do not mean negation, i.e., without
interactions. There might just be no experimental evidence or record at present. There-
fore, we followed the above procedure to evaluate and classify BindingDB samples more
practically.
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