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The sine qua non of new life is fertilization. However, approximately 50% of

fertilized eggs/blastocysts in cattle and up to 75% of those from human assisted

reproductive procedures fail during the first 3 to 4 weeks of pregnancy, including

peri-implantation periods. In these periods, blastocyst hatching and implantation to

the maternal endometrium proceeds, during which physiological events such as

epithelial-mesenchymal transition (EMT) and trophoblast cell fusion occur. Quite recently,

extracellular vesicles (EVs) with micro RNAs (miRNAs) and long non-coding RNAs

(lncRNAs) have been found to play a pivotal role for the establishment of the proper

uterine environment required for peri-implantation processes to proceed. New findings of

EVs, miRNA, and lncRNAs will be described and discussed to elucidate their connections

with conceptus implantation to the maternal endometrium.

Keywords: extracellular vesicles (EVs), miRNA – microRNA, lncRNA – long non-coding RNA, implantation,

ruminants

INTRODUCTION

Approximately 50% of fertilized eggs and/or blastocysts in cattle fail to continue their pregnancy
during the first 3 to 4 weeks of pregnancy. During these periods, blastocysts and/or conceptuses
(embryo plus extraembryonic membranes) undergo blastocyst hatching, conceptus elongation,
conceptus attachment/adhesion to the maternal endometrium and subsequent placentation. It has
been generally accepted that the communication between conceptus and endometrium in utero is
crucial for the establishment of the proper uterine environment as well as maternal receptivity of
the conceptus for pregnancy to proceed.

Communication between two cell types such as trophectoderm and uterine luminal epithelial
cells is achieved through secretory molecules such as hormones and cytokines. These findings
point to the importance of the analysis of cytokines and their receptor molecules using various
methods including RNA-seq and proteomic analyses. In recent years, however, evidence has
accumulated that extracellular vesicles [EVs, (1)] produced by the conceptus and endometrium
play a role in communication between the two cell types. EVs, covered with a lipid bilayer,
contain surface receptors and ligands, and cargo of proteins, lipids, metabolites, DNAs and RNAs
from the originating cells. EVs with detergent-resistant membrane domains also contain relatively
high concentrations of cholesterol, sphingomyelin, and ceramide, and these vesicles are stable in
extracellular spaces (2).

In this review, recent findings of EVs, miRNA, and lncRNA functioning in utero during the early
stages of bovine pregnancy will be presented and their roles in pregnancy success will be discussed.
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EV CARGOES AND THEIR
EFFECTS/FUNCTION

It has been found that the cargoes of EVs differ according not only
to cellular origin, but also to physiological and/or pathological
conditions. In fact, EVs contain a variety of bioactive molecules
including proteins, lipids, metabolites, DNAs, and RNAs (mRNA,
miRNAs, and other RNA molecules) (3). In addition, there
are numerous proteins and receptors, such as epidermal
growth factor receptor (EGFR), bound onto the lipid layer of
EVs. Through lipidomic analysis, EVs were found to contain
cholesterol, sphingomyelin, ceramide, glycerophospholipids,
phosphatidylcholine, and phosphatidylserine (1, 4–6). Proteomic
analyses have also revealed that EVs contain different types
of proteins such as heat shock proteins (HSP70 and HSP90),
tetraspanins (CD9, CD63 and others), major histocompatibility
complex class I and II (MHC class I and II), endosomal sorting
complex proteins (Alix and Tsg101) and chaperons, most of
which are often used for protein markers (1, 4, 5). Other cargoes
of EVs are membrane trafficking proteins (Annexins, Flotillin
and GTPases), cytoskeletal proteins (actin and tubulin), and
numerous cytosolic proteins.

INVOLVEMENT OF EVs IN PREGNANCY
ESTABLISHMENT

EVs and Conceptus Hatching and
Elongation
It was previously thought that the early pre-implantation
mammalian embryos are relatively autonomous, and that
they control their own development. During the periods
of peri-implantation, fertilized eggs/blastocysts go through
numerous physiological changes including blastocyst migration,
hatching, conceptus elongation, attachment/adhesion to
the uterine epithelium, and placentation. These processes,
particularly conceptus implantation and placentation,
undoubtedly require not only their own gene functions but
also maternal support (7). These two-way communications
result in the generation of a proper uterine environment
for both conceptus and endometrial developments. It was
thought that various cytokines and their receptors play a role
in conceptus-maternal communication (8). However, data
has recently been accumulated that EVs, derived from both
the conceptus trophectoderm and endometrium, play a role
in bilateral communication between the conceptus and the
endometrium (9–12).

The amount of EVs secreted from in vitro-cultured bovine
embryos is correlated with embryo competence (13). In
addition, the bovine embryo-derived EVs were found to
improve the viability and growth of cloned embryos, as well
as improve implantation rates and full-term calving rates (14).
The correlation between EV secretion and in vitro embryo
viability was also explored, and it was found that EV secretion
during blastulation was indicative of viable bovine embryos.
Further, EVs isolated from uterine flushing of pregnant and
non-pregnancy female sheep (ewes) were tested for their ability

to stimulate ovine trophectoderm (oTr1) cell proliferation.
It was also found that EVs from pregnant ewes increased
trophectoderm cell proliferation as well as the secretion of IFNT
(15), the cytokine required for the prevention of corpus luteum
demise in ruminants (16).

Non-invasive and elongated conceptuses initiate their
attachment process to the uterine epithelium on day 16 in sheep
and day 19 in cattle. Recent findings suggest that this is the time
when the amounts of EVs in utero from both conceptus and
uterine epithelium increase and play a role for conceptus growth,
successful implantation and subsequent placentation (17–19).

EVs and Conceptus Cell Fusion
In ruminant trophectodermal cells, the formation of bi-
and multi-nucleate cells begins concurrent with initiation of
conceptus attachment to the uterine epithelium. The cellular
mechanisms associated with the bi- and multi-nucleate cells have
not been well-characterized; at present, however, two theories
on trophectoderm cell fusion exist: consecutive nuclear divisions
without mitotic polyploidy (cytokinesis) (20) or the fusion of
mononucleate cells (21). It has been believed for the last several
decades that tri- or multi-nucleate cells found in the uterine
endometrium of the ruminants result from the cell fusion
between the bi- or multi-nucleate trophectoderm and the uterine
epithelial cells (22). It was quite recently demonstrated that fused
cells in the ovine species comprised all trophectodermal cells (23),
agreeing with results recently published elsewhere (24).

It was demonstrated that endogenous retroviruses (ERVs),
anciently infected and integrated into the genomes of
vertebrates, are involved in the formation of trophoblast
bi- and possibly multi-nucleate cells. In the bovine species,
ERVs of syncytin-Rum1 (25) and BERV-K1/Fematorin-1 (26)
have been found to exhibit cell fusogenic activity. In sheep,
endogenous Jaagsiekte retroviruses (enJSRVs), of which the
envelop genes are transcribed, are expressed in elongating ovine
conceptuses after day 12 of pregnancy (21). Experiments with
loss of enJSRVs function demonstrate that this treatment retards
trophectoderm outgrowth and inhibits trophoblast bi-nucleate
cell formation on day 16. Although these enJSRVs are packaged
into endometrium-derived viral particles, another study on EVs
provided evidence that between day 12 and 16 of gestation,
shortly before the increase in EV exchange, the enJSRVs RNAs
are packaged within the EV cargoes (27). These results support
the idea that EVs could deliver ERVs, in addition to proteins,
miRNA and others, from the endometrium to the conceptus.

EVs and Conceptus Attachment/Adhesion
to the Uterine Epithelium
Even in non-invasive placentation, elongated conceptus adhesion
to the uterine epithelium is a typical prerequisite for placental
formation in ruminant ungulates. It was found that bovine
conceptus adhesion is mediated through a cell adhesion
mediator, vascular adhesion molecule (VCAM-1) (28). Bovine
uterine flushing (UF) containing EVs from the uteri of days 20
and 22 pregnancy has been shown to increase the expression
of VCAM-1 in bovine endometrial epithelial cells (EECs) (29).
Expression of VCAM-1 receptor, ITGA4, increased in day 22
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bovine conceptuses (28). In addition, formation of fibrin at sites
of conceptus adhesion has been demonstrated in the ewe (30).
These observations strongly suggest that the bovine conceptus
does adhere to the EECs on day 22, a couple days following the
initiation of conceptus attachment to the uterine epithelium.

Epithelial-mesenchymal transition (EMT) is seen at the
trophoblasts in the invasive mode of human and murine
placentation. In 2012, however, Yamakoshi et al. found that
most EMT-related factors are expressed in non-invasive bovine
conceptuses on day 22 (31). The molecular mechanisms leading
to conceptus EMT have been identified in the following two
experiments. High expression of follistatin in bovine conceptuses
on day 20 was down-regulated on day 22 and activin A,
an EMT inducer, increased on the same day. Using bovine
trophoblast CT-1 cells (32), a transcription factor OVOL2 was
high on day 20. As OVOL2 expression decreases on day 22,
EMT-related transcription factors, ZEB1 and SNAI2, along with
mesenchymal cell markers, N-cadherin (CDH2) and vimentin
(VIM), increase. Recently, Calle and coworkers executed an
elegant experiment with the establishment of bovine trophoblast
primary cells and endometrial mesenchymal cell lines (33).
These authors demonstrated that interactions of both cell types
through their secretomes (EVs and soluble proteins) lead to
EMT in trophectodermal cells necessary for implantation and
placentation (33). These investigators also found that after EMT,
six proteins associated with the vascular endothelial growth
factor (VEGF) pathway are increased (33), agreeing with the
previous finding in which amicro-angiogenesis process related to
uterine vascularization is necessary for implantation to proceed
in the bovine species (34).

Proteomic analysis on human endometrial epithelial-derived
EVs revealed that several members of the integrin family are
found in these EVs, suggesting that these integrins play a role in
docking these EVs to recipient cells and mediating trophoblast
adhesion to endometrial cells through the interaction with
appropriate ligands (35). In support of these observations, when
EVs’ miR-30d in the mouse endometrial fluid was transferred
to murine embryos, they exhibited the up-regulation of cell
adhesion molecules such as Itgb3, Itga7, and Cdh5 (36). These
results suggest that regardless of invasive or non-invasivemode of
placentation, EVs play a significant role in conceptus attachment
and/or adhesion to the endometrium. Together with secretomes,
the significance of EVs in these processes is on the rise.

EVs and Regulation of Immune Function
One of the crucial events that mammals must establish is
maternal immunologic tolerance to the fetal allograft, which
permits conceptus development in utero as well as the
continuation of pregnancy. During the conceptus implantation
period, EVs carry molecules likely to modulate the local
endometrial (37) and possibly systemic immune systems (38).
It was recently demonstrated that bovine EVs isolated from day
20 uterine flushing media (UFs) down-regulate the expression
of immune-related genes in EECs (39). These investigators
identified bta-miR-98 as a likely maternal immune system
regulator. In dairy cows, Bta-miR-499, derived from placental
exosomes, was found to regulate inflammation locally at

the maternal-fetal annex through the inhibition of NK-kB
signaling. Inhibition of bta-miR-499 results in deregulation of the
inflammatory response at the maternal-fetal interface and fetal
growth retardation (40). These results suggest that miRNA in
intrauterine EVs play a role in the regulation of the local immune
system to facilitate the continuation of pregnancy.

EVs and Their Possible Regulation by
Progesterone
The direct action of progesterone (P4), the essential requirement
for pregnancy in mammals, on conceptus development has not
yet been elucidated, although its action is likely to be mediated
through endometrial gene expression (41, 42). It was found
numerous times that uterine gene expression in ruminants
is regulated by P4 and/or IFNT during the peri-implantation
periods (7, 18, 43–46). One novel experiment has demonstrated
the biological effect of P4 on the production of EVs: EVs found
in endometrial luminal and glandular epithelia increase their
numbers over two-fold when ovariectomized sheep are treated
with P4 (47). In addition, the results from analyses of ovine
endometrial miRNAs and EVs in the uterine lumen revealed that
P4 regulates seven miRNAs, of which three miRNAs are down-
regulated and four miRNAs are up-regulated (47). A similar
experiment in humans found that P4 induces changes in EV
production and their protein cargo of EECs, and these EVs could
increase the adhesive capacity of human and mouse blastocysts
(35). Although P4-regulated EV cargoes have not yet been fully
characterized, these results clearly indicate that P4 increases the
release of EVs from the endometrial epithelium, which can be
detectable in the uterine lumen.

INVOLVEMENT OF MIRNA AND LNCRNA
FOR PREGNANCY ESTABLISHMENT

miRNAs and Their Biogenesis
It has been well-documented that miRNAs originate from large
primary (pri) and precursor (pre) transcripts that undergo
various processing steps till they reach mature and functional
forms (48–50). Primary transcripts can be several kilobases in
length but can be successfully cleaved by two RNase III enzymes,
Drosha and Dicer, to produce approximately 70 nucleotide long
precursor miRNA, and finally become 22–24 nucleotide long
mature miRNAs (51). When delivered into target cells, the
miRNAs are likely to inhibit target mRNAs post-transcriptionally
through the formation of RNA induced silencing complex
(RISC), leading to changes in gene expression and cellular
functions in distant cells (Figure 1).

lncRNA, and Functions of miRNAs and
lncRNAs
Long non-coding RNAs (lncRNAs), defined as non-coding
RNA sequences with a length exceeding 200 nucleotides, have
emerged as important regulators in cellular functions such as
translation of protein coding genes, signaling pathways, and
epigenetic regulation (52, 53). These sequences have limited
coding potential due to a lack of an open reading frame in
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FIGURE 1 | miRNA and lncRNA, produced by both conceptus and endometrium, are present in the uterus. (A) Uterine structure showing both maternal endometrium

and conceptus (embryo plus extraembryonic membranes), from which miRNA and lncRNA are produced and miRNA in EVs and lncRNA are released into the uterine

lumen. (B) Processing of lncRNA and miRNA is shown. Long non-coding RNAs (lncRNAs) are those with a length exceeding 200 nucleotides, some of which translate

proteins/polypeptides (dotted-line arrow). lncRNA can regulate the expression of target genes at the post-transcriptional level through the inhibition of their translation

(solid-line arrow). Primary transcripts of miRNAs can be several kilobases in length, which are successfully cleaved by two RNase III enzymes, Drosha and Dicer, to

produce approximately 70 nucleotide long precursor miRNA, and finally become 22–24 nucleotide long mature miRNAs (51) (solid-line arrow). The dotted-line arrow

indicates that a part of those possibly produce polypeptides. When delivered into target cells, the miRNAs are likely to inhibit target mRNAs post-transcriptionally

through the formation of RNA induced silencing complex (RISC), leading to changes in gene expression and cellular functions in distant cells.

the nucleotide segment. In cancer cells, lncRNAs have been
extensively studied because they are potential regulators of many
cellular mechanisms associated with cancer progression.

By binding to their target genes, miRNAs or lncRNAs regulate
the expression of target genes at the post-transcriptional level, by
inhibiting their translation. The miRNAs and lncRNAs should
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thus be treated with the same importance as those of target
genes in the cellular development and differentiation processes.
Most research related to miRNAs rests on the assumption that
miRNAs exist intrinsically within many cell types. However, the
mechanism by which miRNAs are sorted into EVs or retained in
cells remains largely unknown.

Emerging Role of miRNA in Conceptus
Hatching and Elongation
Hatching from the zona-pellucida is a prerequisite for embryo
implantation and is less likely to occur in vitro for reasons not
yet characterized. In a recent experiment (54), miR-378a-3p,
secreted by individually cultured bovine embryos, is shown
to promote blastocyst hatching. The next event required for
pregnancy establishment in ruminants is the proper conceptus
elongation prior to the initiation of conceptus attachment
to the uterine epithelium (55). Several molecules involved in
the regulation of conceptus elongation have been identified
through loss of function experiments: proline-rich 15 (PRR15),
nuclear peroxisome proliferator activator receptors (PPARs),
hydroxysteroid (11-beta) dehydrogenase 1 (HSD11B1), and
LIN28A/B. Sheep conceptuses treated with the lentivirus
expressing shRNA against PRR15 result in embryonic losses
on day 15 (56). Sheep conceptuses treated with morpholino
antisense oligonucleotide against PPARs or HSD11B1 also result
in severely growth-retarded conceptuses or conceptus fragments
on day 14 (57, 58). Furthermore, trophectoderm-specific
knockdown of LIN28A/B in day 9 ovine blastocysts results in
increased let-7 mRNA and reduced conceptus elongation on day
16 (59). It should be noted that while these three molecules
play a role during the conceptus elongation in utero, sufficient
conceptus elongation in vitro has not been demonstrated.

Emerging Role of lncRNA in Conceptus
Implantation
Expression of lncRNA in female reproductive tracts, particularly
when expressed in utero during peri-implantation periods, has
been characterized in pigs (60–63), goats (64), sheep (65), and
mice (66). Quite recently, Matsuno et al. (67) analyzed the
lncRNA profiles present in utero on days 15, 17, 19 and 21
of pregnancy in sheep. Among 8,808 lncRNAs identified, 3,423
lncRNAs were novel. Using gene ontology analysis, lncRNA
target genes were enriched for cellular processes involved in the
respiratory electron transport chain (RETC) (67). The results
from these analyses suggest that in addition to secretomes,
lncRNA is a potential new regulator in ovine conceptus
development during peri-implantation periods.

RECENT FINDING ON miRNA/lnCRNA
PROCESSING

Quite recently, Garcia-Martin and coworkers (68) have
demonstrated sorting sequences of miRNA that determine their
secretion in EVs (EXOmotifs) or cellular retention (CELLmotifs).
In their observations, insertion or deletion of these CELLmotifs
or EXOmotifs in a miRNA increases or decreases retention

in the cell of production or secretion into EVs. In addition,
two RNA-binding proteins, Alyref and Fus, are involved in the
delivery of miRNA with the EXOmotifs, CGGGAG, resulting in
increased miRNA export, which leads to enhanced inhibition of
target genes in distant cells (68).

Another question is whether non-coding lncRNAs can
translate polypeptides. If this were the case, what would be their
functions? One such example would be the identification of
pri-microRNA encoded polypeptide 133 (miPEP133) (Figure 1).
This protein, encoded by the precursor of miR-34, functions
as the tumor-suppressor in nasopharyngeal and ovarian cancer
cells (69). These findings suggest that polypeptides translated
from lncRNA could also be found in bovine uterine and/or
conceptus cells.

It has been known that the testis expresses the largest
number of tissue-specific lncRNAs (70, 71). A recent publication
by Mise et al. (72) has demonstrated that those previously
annotated as lncRNAs in the mouse can encode for two
small and sperm-specific polypeptides, Kastor and Polluks.
These polypeptides are found in the outer mitochondrial
membrane and directly interact with the voltage-dependent
anion channel (VDAC). Mice without both Kastor and
Polluks expression exhibit severely impaired male fertility due
to abnormal mitochondrial sheath formation. These authors
conclude that cooperative function of these polypeptides in
the regulation of VDAC3 may be essential for mitochondrial
sheath formation in spermatozoa (72).Moreover, the relationship
between lncRNA and spermatogenesis in association with the
extracellular matrix and spermatogenesis (73) and in varicocele-
induced spermatogenic dysfunction has also been demonstrated
(74). These observations suggest that lncRNA, whether non-
coding or coding small polypeptides, may become another
molecule recognized as essential for vital aspects of the
reproductive process.

NEW MODEL OF PREGNANCY
ESTABLISHMENT

It is generally accepted that IFNTs are confined in utero, and
do not escape from the uterine lumen. Romero et al. (44)
identified that the antiviral activity of IFN increases in the
uterine vein during early pregnancy in sheep, of which activity
on day 15 is blocked by anti-IFNT antibody. Accumulated data
recently revealed that Interferon-Stimulated Gene, before (ISG)
expression is up-regulated in peripheral blood mononuclear
cells (PBMC) when IFNT is the only IFN present during this
period (75, 76). Although further experimentation is required,
uterine EVs, originating from both conceptuses and the uterine
endometrium, could be taken up by uterine and conceptus
cells, respectively. It is thus possible that those taken up by the
endometrium enter the blood stream, which could up-regulate
ISGs in PBMC.

Secretory products and their receptors in utero have been
extensively studied for the last 4–5 decades. During the last
decade, RNA-seq and iTRAQ analyses have been extensively used
to identify keymolecules that determine success or failure of early
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pregnancy. However, molecular, biochemical, and/or cellular
mechanisms associated with early embryonic losses during the
first 4 weeks of pregnancy have not been characterized. Recent
data strongly suggest that in addition to those identified and
characterized previously, miRNA in EVs and lncRNA must be
evaluated within the context of the uterine environment required
for pregnancy establishment and maintenance.

CONCLUSION

Much research has been conducted to identify and elucidate
target genes that encode for transcription factors, cytokines and
their receptors. It has become apparent that EVs containing
proteins, lipids, metabolites, DNAs, and RNAs (mRNA,
miRNAs, and other RNA molecules) play a role in many
biological processes, including reproduction. Evidence is
mounting that miRNA and lncRNA are deeply involved
in the regulation of multiple biological processes required
for successful conceptus implantation to the maternal
endometrium and placentation. In addition to paracrine
actions in utero, it is possible that these molecules encapsulated
in EVs could escape from the original cells or tissues and
enter circulation. When these EVs reach target cells, they
undoubtedly change the paradigm of pregnancy-associated
gene regulation as well as phenotypic changes in distant cells
or tissues.
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