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Odd Willis coupling induced by broken time-
reversal symmetry
Li Quan1, Simon Yves2, Yugui Peng2, Hussein Esfahlani 2 & Andrea Alù 1,2,3✉

When sound interacts with geometrically asymmetric structures, it experiences coupling

between pressure and particle velocity, known as Willis coupling. While in most instances this

phenomenon is perturbative in nature, tailored asymmetries combined with resonances can

largely enhance it, enabling exotic acoustic phenomena. In these systems, Willis coupling

obeys reciprocity, imposing an even symmetry of the Willis coefficients with respect to time

reversal and the impinging wave vector, which translates into stringent constraints on the

overall scattering response. In this work, we introduce and experimentally observe a dual form

of acoustic Willis coupling, arising in geometrically symmetric structures when

time-reversal symmetry is broken, for which the pressure-velocity coupling is purely

odd-symmetric. We derive the conditions to maximize this effect, we experimentally verify it in

a symmetric subwavelength scatterer biased by angular momentum, and we demonstrate the

opportunities for sound scattering enabled by odd Willis coupling. Our study opens directions

for acoustic metamaterials, with direct implications for sound control, non-reciprocal scatter-

ing, wavefront shaping and signal routing, of broad interest also for nano-optics, photonics,

elasto-dynamics, and mechanics.

https://doi.org/10.1038/s41467-021-22745-5 OPEN

1 Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, USA. 2 Photonics Initiative, Advanced Science Research
Center, City University of New York, New York, NY, USA. 3 Physics Program, Graduate Center, City University of New York, New York, NY, USA.
✉email: aalu@gc.cuny.edu

NATURE COMMUNICATIONS |         (2021) 12:2615 | https://doi.org/10.1038/s41467-021-22745-5 | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-22745-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-22745-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-22745-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-22745-5&domain=pdf
http://orcid.org/0000-0002-4586-6946
http://orcid.org/0000-0002-4586-6946
http://orcid.org/0000-0002-4586-6946
http://orcid.org/0000-0002-4586-6946
http://orcid.org/0000-0002-4586-6946
http://orcid.org/0000-0002-4297-5274
http://orcid.org/0000-0002-4297-5274
http://orcid.org/0000-0002-4297-5274
http://orcid.org/0000-0002-4297-5274
http://orcid.org/0000-0002-4297-5274
mailto:aalu@gc.cuny.edu
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Symmetries and symmetry breaking play a key role in a wide
range of natural phenomena1,2. According to Noether’s
theorem, any symmetry in a physical system corresponds to

a conservation law, and these laws fundamentally define material
responses and constitutive relations. For example, in elastody-
namics energy conservation restricts the elastic modulus tensor to
be even symmetric, Cijmn ¼ Cmnij

3, while in fluid mechanics
Onsager relations require the viscosity to be even symmetric
ηijkl ¼ ηklij

4. Viscosity can support an odd term when time
reversal symmetry is broken, losing its dissipative nature5–8.
Similarly, odd elasticity has been recently discussed in active
solids where energy is not conserved, enabling among other
features exotic elastic wave propagation in overdamped media9.
These forms of material constitutive relations based on broken
symmetries have been opening interesting directions for exotic
wave matter interactions, and the quest to realize these phe-
nomena in engineered materials and metamaterials is ongoing.

In acoustics, geometrical asymmetries in the constituent ele-
ments of metamaterials have been at the basis of the recent
interest in Willis coupling10–16, the analog of bianisotropy in
optics and electromagnetics17, which describes the coupling
between pressure and particle velocity. Although the emergence
of Willis coupling in asymmetric structures has been first dis-
cussed almost 40 years ago, its effects have been broadly con-
sidered a higher-order perturbation of the direct response of
materials separately to pressure and velocity18–20. Recently, our
group showed that the magnitude of Willis coupling can become
very strong in suitably designed metamaterials in which tailored
geometrical asymmetries are combined with resonances21,22. In
electromagnetics, bianisotropy has been exploited to produce
largely asymmetric absorption23,24, topological phenomena25,
and to overcome the limitations of gradient metasurfaces for
wavefront engineering26, among several other opportunities.
Similarly, Willis metamaterials hold the promise to open analo-
gous opportunities for elastic and sound waves21,27–30. Onsager
relations pose restrictions on the nature of these Willis coeffi-
cients, requiring that they are even symmetric with respect to
time-reversal and to the impinging wave vector. In the following,
we introduce and experimentally observe a dual form of Willis
acoustic coupling, which is inherently odd-symmetric in nature
with respect to time reversal, and it arises from non-reciprocal
sound interactions in suitably tailored devices.

Results
Even and odd Willis coupling. For a subwavelength Willis
scatterer, the reaction to an impinging sound wave consists in
acoustic radiation dominated by the monopole M and the dipole
D scattering contributions. These quantities are proportional to
the local pressure p and velocity v through the polarizability

tensor α
$
:21

M

D

� �
¼ αpp α

$pv

α
$vp α

$vv

 !
p

v

� �
; ð1Þ

where αpp and α
$vv represent the direct polarizability coefficients,

relating pressure to monopole and velocity to dipole, as in con-

ventional acoustic scattering, while α
$vp and α

$pv are the cross-
coupling polarizabilities responsible for Willis coupling. In (1), we
have normalized the units as defined in Supplementary Infor-
mation 1, so that all elements of the polarizability tensor share the
same dimensionality. The off-diagonal elements, known as Willis
coefficients, arise in structures that break spatial inversion sym-
metry with respect to the propagation direction15, and are
enhanced when suitably tailored geometrical asymmetries are
combined with strong resonances21. They satisfy the symmetry

condition α
$vp ¼ �α

$pvT , which is required to ensure an even-
symmetric response with respect to the impinging wave vector
and time-reversal.

In this study, we introduce and experimentally observe a dual
form of Willis coupling, inherently odd-symmetric in nature,
arising when time-reversal symmetry is broken in a subwave-
length scatterer, but mirror symmetry with respect to the

incoming wave propagation is preserved, for which α
$vp ¼ α

$pvT .
As schematically shown in Fig. 1a, we consider a circular scatterer
loaded by three small cylindrical cavities located in a mirror-
symmetric configuration with respect to the x axis, with two
oppositely facing outlets (L and R) in the x-direction that allow
sound to interact with the cavities. Because of the outlet location,
we expect a strong acoustic response in the subwavelength limit
only for waves impinging along x, yielding a dipolar response
polarized in the same direction, Dx . Under these assumptions, Eq.
(1) is simplified to

M

Dx

� �
¼ αpp αpvx

αvpx αvvxx

 !
p

vx

� �
: ð2Þ

Given its mirror symmetry, when the subwavelength scatterer
is excited symmetrically from the two sides with a field pressure
maximum at its location, as shown in Fig. 1a (left), the induced
pressure distribution in the three cavities, shown in the same
panel as colored blobs, necessarily obeys mirror-symmetry, and
hence the scattered fields at the outlets L and R are symmetric,
i.e., purely monopolar. Conversely, if the relative phase of the
impinging waves is shifted by π=2, such that the pressure field has
a node at the scatterer location, as in Fig. 1a (right), the scatterer
is dominantly excited by the local velocity, the induced modal
distribution becomes anti-symmetric with x, and the scattered
field is purely dipolar. It follows that the Willis coupling
coefficients for this scenario αpvx ¼ αvpx ¼ 0, as confirmed in the
retrieved polarizability elements shown in Fig. 1b, calculated with
finite-element simulations as detailed in the Methods Section.
The direct terms, as expected, peak around the cavity resonance
frequency.

Willis coupling can be introduced by breaking the mirror
symmetry with respect to the direction of sound propagation, for
instance by making the right cavity larger than the left one, as in
Fig. 1c. In this case, the response at outlets L and R is generally no
longer symmetric for a pressure excitation (left), nor anti-
symmetric for a velocity excitation (right). Both excitations
therefore support the superposition of monopolar and dipolar
distributions inside the scatterer, implying a finite Willis
coupling. Indeed, Fig. 1d shows the retrieved polarizability
coefficients, which, in line with the findings in21, show a resonant
dispersion of the Willis coefficients. Because of the optimal design
of the scatterer of Fig. 1c, they actually hit their maximum
possible value jαpvx j ¼ jαvpx j ¼ 4ω�2 at the scatterer resonance.
This bound, indicated by the black solid lines in Fig. 1, generally
stems from energy conservation, and it therefore applies to any
passive scatterer21 (Supplementary Information 2). The field plots
in Fig. 1c correspond to the excitation at this resonance
frequency, for which the Willis coefficients are maximum. Under
this condition, the fields induced by pressure and velocity
excitations are identical, stemming from their even-symmetric
nature with respect to time-reversal, αvpx ¼ �αpvx , and from their
magnitude being equal to the direct polarizability terms at
resonance when jαpvx j ¼ jαvpx j ¼ 4ω�2. These features are con-
firmed in the retrieved polarizability coefficients in Fig. 1d, where
we also show the real and imaginary parts of the Willis
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coefficients, confirming their even symmetry with respect to time
reversal.

We now introduce a dual mechanism to induce Willis
coupling, as shown in Fig. 1e. Instead of breaking mirror
symmetry, as in panel c, we introduce a circulating air flow in the
symmetric scatterer of panel a. The system has zero even Willis
coupling because of its mirror symmetry along x, but the air flow
(green arrows) biases the system with an odd quantity under
time-reversal31,32, which, when combined with a suitable scatterer
design, can again maximally couple the response to pressure and
velocity excitations. Importantly, in this dual scenario the
superposition of the two modal distributions switches sign,
as shown in the figure, yielding a drastically different modal

distribution inside the scatterer, which translates into scattering
with an odd-symmetric Willis response, αvpx ¼ αpvx , as confirmed
in the retrieved polarizability tensor in Fig. 1f. The odd Willis
coefficients still obey the bound jαpvx j≤ 4ω�2, jαvpx j≤ 4ω�2

(Supplementary Information 2) and hit this bound at the
scatterer resonance for our optimal geometry, with diagonal
and off-diagonal polarizability elements equal in magnitude to
4ω�2 (Supplementary Information 2, 3), because the system
remains conservative as long as the air flow is much slower than
the velocity of sound. At this resonance, the pressure-induced
fields are identical to the even Willis scenario, but when excited
by a velocity field the zero pressure field shifts from the left to the
right cavity.

Fig. 1 Even and odd Willis inclusions. a Induced pressure field distribution inside the scatterer for a local pressure (left) and velocity (right) standing wave
excitation, in the case of a mirror-symmetric scatterer. The colored blobs here and in the other panels indicate the induced pressure inside each of the
cavities loading the scatterer. b Corresponding polarizability dispersion around the resonance frequency. c Similar to A, but for an even Willis scatterer,
obeying time-reversal symmetry. The induced field distributions correspond to a superposition of monopolar and dipolar fields, yielding identical field
distributions for pressure and velocity excitations. d Corresponding polarizability dispersion around the resonance frequency. e Similar to A, but for an odd
Willis scatterer, obeying mirror symmetry along the propagation direction, but biased by a rotating flow. In this case, the pressure-induced fields are
identical to the even Willis scenario, but when excited by a velocity field the zero pressure fields shift from the left to the right cavity. f Corresponding
polarizability dispersion around the resonance frequency.
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In order to get a deeper insight into this dual scattering
phenomenon, explain the results in Fig. 1, outline the conditions
to maximize odd Willis coupling, and explore the associated
exotic scattering features, we model the wave interactions with
the scatterer using coupled mode equations. Consistent with the
previous description, we generally model the scatterer as an open
cavity supporting monopolar and a dipolar modes, with complex
amplitudes aM and aD generally resonating at frequencies ωM and
ωD, with radiative decay rates γM and γD. For simplicity, we
neglect material loss for the moment. The equations of motion
generally become (Supplementary Information 4–11)

d
dt

aM
aD

� �
¼ �iωM � γM � iðβL þ βRÞX �FU0 þ iðβL � βRÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
γD=γM

p
X
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ffiffiffiffiffiffiffiffiffiffiffiffiffi
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ð3Þ
Here SþM , SþD are the incoming scattering harmonics for

monopole and dipole excitation, corresponding to the left and
right column of Fig. 1a, c, e, and S�M , S�D are the corresponding
outgoing monopolar and dipolar scattered waves. The two modes
are coupled through the off-diagonal elements in the first matrix
of Eq. (3), which consist of an odd real term FU0 describing the
biasing flow, where U0 is the rotational flow velocity and F is a
geometrical factor, and an even imaginary term, describing the
asymmetry in sound speeds in the right [c0ð1þ βRÞ] and left
[c0ð1þ βLÞ] cavities, with X being another geometrical factor.
Here c0 is the unmodified sound speed and βL, βR indicate the
perturbation of the sound speed in the left and right cavities,
respectively. A detailed derivation of (3), including explicit
expressions for F and X as a function of the geometrical
parameters of the scatterer in Fig. 1, is provided in Supplementary
Information 4–11. The dual nature of the odd and even Willis
terms in the off-diagonal elements is consistent with their
opposite symmetry with respect to time reversal and the wave
number, reflected also in their real/imaginary nature in the
absence of absorption, stemming from power conservation.

We stress the importance of the third cavity in our design,
which breaks mirror symmetry in the y direction. This is a
necessary feature to have F ≠ 0, and correspondingly the
insurgence of a non-zero odd Willis coupling, as rigorously
proven in Supplementary Information 8. It follows that breaking
reciprocity is not sufficient to enable odd Willis coupling:
removing this third cavity would yield F ¼ 0, hence Willis
coupling would always be zero independent of the bias flow
(Supplementary Information 8).

A general scatterer can support a combination of even and odd
components to the Willis polarizability. A purely odd Willis
scatterer, as in Fig. 1e, has βL ¼ βR ¼ 0 and Eq. (3) yield Willis
coefficients (Supplementary Information 10)

αpvx ¼ αvpx ¼ 8
ω2

FU0
ffiffiffiffiffiffiffiffiffiffiffi
γMγD

p

ðFU0Þ2 � ðω� ωM þ iγMÞðω� ωD þ iγDÞ
: ð4Þ

Equation (4) shows that maximum odd Willis coupling is
achieved with minimum flow speed when the monopole and
dipole resonances are aligned, i.e., for ωM ¼ ωD, as in the case of
Fig. 1 since the two resonances are established within the same
cavity. In this scenario, at resonance we obtain

αpvx ¼ αvpx ¼ 8
ω2

FU0
ffiffiffiffiffiffiffiffiffiffiffi
γMγD

p

ðFU0Þ2 þ γMγD
; ð5Þ

which ensures maximum odd Willis coupling for the rotational
velocity U0 ¼

ffiffiffiffiffiffiffiffiffiffiffi
γMγD

p
=F, a form of critical coupling between the

radiative loss of the system and the angular momentum bias that
breaks time reversal. Under this condition, αvpx ¼ αpvx ¼ 4ω�2, as
derived before. Maximum odd Willis coupling is achieved for
moderate bias flows when the scatterers have a large resonance Q-
factor, i.e., low radiative damping

ffiffiffiffiffiffiffiffiffiffiffi
γMγD

p
, and/or for a large

asymmetry along y, which ensures large F. Figure 1 compares in
every panel the prediction stemming from our analytical model to
full-wave finite-element method (FEM) simulations33, showing
excellent agreement without the need of any fitting parameter.
The optimal bias flow was chosen using Eq. (4), indeed yielding
odd Willis coupling coefficients that reach the maximum value
allowed for a passive scatterer.

Experimental verification. In order to experimentally implement
a scatterer with purely odd Willis coupling, we implemented the
geometry in Fig. 1e in the form of a high-Q subwavelength brass
resonator, as shown in Fig. 2c. A shaft connected to a rotor
controls the rotational flow inside its circular cavity, and we
measured the acoustic scattering in the setup shown in Fig. 2a, b,
with more details provided in the Methods Section. Figure 2d
shows the analytically calculated magnitude of the Willis coeffi-
cients jαpvx j, jαvpx j, as a function of the applied bias flow speed,
according to Eq. (5), and compares it with FEM simulations. For
zero bias, the magnitude of both cross-coupling polarizabilities
are expected to be zero, because the scatterer is mirror and time-
reversal symmetric. As the bias flow increases, however, T-
symmetry is broken and the odd Willis coefficients increase,
reaching the bound for U0= 4.1 m/s. Beyond this point, the
cross-coupling polarizabilities decrease.

In our experiments, we collected the scattered sound around
the object, and retrieved αpvx and αvpx as a function of the applied
voltage on the motor, whose magnitudes are shown in Fig. 2e,
indeed following a similar trend. For an applied voltage around
16.5 V, the cross-coupling polarizabilities reach their maximum,
consistent with the numerical results in Fig. 2d. Figure 2f presents
the frequency dispersion of the measured cross-coupling
polarizabilities for this applied motor voltage, showing a profile
consistent with our analytical and numerical results in Fig. 1f, and
confirming the odd-symmetric nature of the observed Willis
coupling. The curves do not precisely overlap with each other, as
a symptom of small imperfections in our practical implementa-
tion, which introduce unwanted geometrical asymmetries, and
also due to the presence of the fan blades that are not accounted
in our model. However, overall they confirm the observation of
odd-symmetric Willis coupling in a non-reciprocal acoustic
scatterer.

Geometrical and loss asymmetries. Our analytical model can
efficiently capture the effects of geometrical asymmetries and loss
in the system, responsible for the deviations between experiments
and calculations. If both mirror and time-reversal symmetries are
generally broken, the Willis coupling is split into its odd and even
parts, i.e., αpvx ¼ αo � αe and αvpx ¼ αo þ αe. Consider for instance
the case of a denser material loading the left cylindrical cavity in
the scatterer of Fig. 1a, with modified sound speed c0ð1þ βLÞ,
while the right cavity has sound speed c0, as in Fig. 3a. At the
resonance frequency ω ¼ ωM ¼ ωD, by solving Eq. (3) we obtain
(Supplementary Information 11)

αo ¼ 8
ω2

FU0
ffiffiffiffiffiffiffiffiffiffiffi
γDγM

p

ðFU0Þ2 þ i2βLXγD þ γMγD
; αe ¼ 8

ω2

iβLXγD
ðFU0Þ2 þ i2βLXγD þ γMγD

:

ð6Þ

As expected, odd Willis coupling is proportional to the
rotational flow velocity U0, while the even coupling is
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proportional to the geometrical asymmetry βL. At the optimal
flow speed U0 ¼ ffiffiffiffiffiffiffiffiffiffiffi

γMγD
p

=F, Eq. (3) yields

αvpx ¼ 4
ω2

; αpvx ¼ 4
ω2

γM � iβLX
γM þ iβLX

; ð7Þ

indicating that at resonance the magnitude of the Willis
coefficients is still equal and maximum, but their phase is no
longer identical. Figure 3b shows the Willis coefficients as a
function of βL, using Eq. (7) and comparing it to full-wave FEM
simulations. Indeed, we find αvpx ¼ 4ω�2 independent of the
geometrical asymmetry, while the phase of αpvx varies from 0 to π
as βLX increases. As expected, for very large geometrical
asymmetries, the Willis coupling is overall even in nature, as
the geometrical asymmetry dominates, flipping sign. By con-
sidering the opposite asymmetry, i.e., introducing a denser
medium in the right cavity, we obtain the dual response: constant
αpvx ¼ 4ω�2, and a phase variation for αvpx .

This degree of control of the two Willis coefficients through the
asymmetry in the two cavities at the resonance of our optimized
structure is explained by inspecting the field profile at the optimal
velocity flow, shown in Fig. 1e: the interference of monopolar and
dipolar fields in the scatterer ensures that, for pressure excitation,
the left cavity has zero fields, while for velocity excitation the right
cavity is not excited. This result, proven analytically in
Supplementary Information 12, indeed explains why for a left

(right) perturbation αvpx (αpvx ) is not affected, while the other
coefficient changes phase. Interestingly, if we reverse the air flow,
we reverse the field distributions, and hence the overall effect is
reversed.

So far, we have shown full control of the phase of the Willis
coefficients through geometrical asymmetries and bias flow, but
not of their magnitude, consistent with energy conservation. In
Supplementary Information 3, we indeed prove that jαvpx j ¼ jαpvx j
applies generally to any lossless scatterer. The effect of loss can be
also incorporated and modeled in our formulation. An asym-
metric loss distribution can be modeled through an imaginary
value of βL ¼ �iβ00L in (7). In this scenario, we find in Fig. 3d that
αvpx is still not affected by loss, as expected for the previous
considerations, while jαpvx j decreases and becomes identically zero
for β00L ¼ γM=X. This scenario implies a scatterer with extreme
non-reciprocal features, for which a pressure field excites
maximum dipolar scattering, but the velocity field does not
excite any monopole. This operation can only arise in non-
reciprocal and lossy scatterers at the critical coupling condition.

Applications. Bianisotropic scatterers based on geometrical
asymmetries have been opening exciting opportunities in several
scattering problems in optics and electromagnetics, including
asymmetric absorption23,24, topological order25, and wavefront
engineering26, recently extended also to acoustics in the context

Fig. 2 Experimental measurement of odd Willis coupling. a, b Experimental set-up. c Fabricated sample. d Analytical and numerical calculations of the
Willis coefficients as a function of rotational flow speed. e Measured Willis coefficients as a function of applied motor voltage. f Measured frequency
dispersion of the Willis coefficients for a motor voltage of 16.5 V.
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of even Willis coupling21,27–30,34. The dual form of Willis cou-
pling introduced in this paper opens opportunities in this context,
adding non-reciprocity as a knob, with important implications for
scattering theory and applications. For instance, topological
acoustics with non-reciprocal features based on angular
momentum bias has been envisioned in35,36, and the introduced
concepts can enhance these phenomena and achieve topologically
robust transport and one-way flow of sound in optimal ways.

As a striking example of the counterintuitive scattering
phenomena enabled by odd Willis coefficients, Fig. 4 compares
the total scattering width and the scattering pattern measured for
plane waves propagating from the left (green curves) and right
(orange curves), and exciting our even (left panels) and odd (right
panels) Willis scatterers. An even Willis scatterer, despite being
geometrically asymmetric, is bound by reciprocity to support
identical forward scattering when excited from specular direc-
tions. Because of the optical theorem37, this property translates
into the fact that reciprocal scatterers, despite their arbitrary
geometrical asymmetry, have always the same total scattering
width for opposite excitations, i.e., the total scattered power when
excited from opposite directions must be the same. We have
experimentally verified these features in Fig. 4b, c, which indeed
show how, for every frequency the total scattering width
(Supplementary Information 14) is equal for our even Willis
scatterer (Fig. 4b, apart from small deviations due to our
measurements). Similarly, Fig. 4c shows that the angular
dependence f ðθÞ of the scattered pressure fields at the resonance
frequency ω0, is generally different for opposite excitations, but
the forward scattering f 0ð Þ is equal because of reciprocity. In
particular, despite the fact that the backward scattering f πð Þ, and
correspondingly the reflected power, is generally different for an
asymmetric scatterer, the integrated power over all angles is
necessarily the same. These measurements are validated by our
full-wave simulations in Supplementary Fig. S3, and similar
considerations apply to any asymmetric scatterer obeying
reciprocity.

Figure 4d considers the dual scenario of our odd Willis
scatterer. In this case, interestingly we observe the dual scattering
response: the backward scattering f ðπÞ and the reflected power
are necessarily identical for a purely odd Willis scatterer, but the
forward scattering f 0ð Þ can vary widely as a consequence of
broken reciprocity (Fig. 4f). In turn, because of the optical
theorem this property implies that odd Willis scatterers support
largely asymmetric total scattering widths and scattered power
levels for opposite excitations, as experimentally verified in
Fig. 4e. These features highlight the dual scattering properties of
odd Willis scatterers, with exciting potential for scattering
manipulation and sound control.

When combined in arrays, these features also open opportu-
nities for metasurfaces. For instance, a periodic array of odd
Willis scatterers can realize a non-reciprocal meta-grating for
efficient circulation of airborne sound, as recently envisioned in
electromagnetics in ref. 38. Meta-gratings have been recently
introduced to overcome the limitations of gradient metasurfaces
and enable wavefront steering towards extreme angles with
unitary efficiency21,26. This concept, originally discussed in
electromagnetics and relying on bianisotropy, has been recently
extended to acoustics based on suitably tailored geometrically
asymmetric scatterers with even Willis coefficients21,39,40. These
meta-gratings inherently obey reciprocity, i.e., their scattering
matrix is necessarily symmetric, and if efficient wave steering is
achieved from normal incidence to grazing angle, a wave
impinging from the grazing direction necessarily is routed back
towards normal incidence. A meta-grating formed by odd Willis
scatterers with optimal air flow as in Fig. 1e, on the contrary, can
realize efficient wavefront steering with non-reciprocal features.

In Fig. 5a, we consider an array of mirror-symmetric scatterers
with radius of 4 cm and a period of 15 cm, larger than the
wavelength so that the ±1 diffraction orders are supported for
illumination at normal incidence. As shown in Fig. 5c, in the
absence of bias flow in the scatterers, and hence no Willis
coupling, all reflected energy is distributed symmetrically with

Fig. 3 Role of geometrical asymmetries and loss. a, b Evolution of the Willis coefficients as a function of geometrical asymmetry in the left cavity.
c, d Evolution of the Willis coefficients as a function of loss in the left cavity.
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Fig. 4 Sound scattering and Willis coupling. a Even Willis scatterer excited by an incident wave from the left (green case) and right (orange case).
b Measured total scattering width for the even Willis scatterer for an incident wave from the left (green line) and right (orange line). c Measured angular
dependence of the pressure field scattered by an even Willis scatterer in magntiude (top) and phase (bottom). d, e, f Similar to a, b, c for the odd Willis
scatterer.

Fig. 5 Non-reciprocal meta-grating based on odd Willis inclusions. a, b An acoustic grating with geometrically symmetric unit cells. c With no bias flow,
for a normally incident plane wave the reflected power is steered symmetrically towards left and right Floquet channels. d For a bias velocity of 3 m/s, a
normally incident wave is totally reflected into the -1 diffraction order. e For excitation from the -1 diffraction direction, instead, all energy is routed towards
the +1 channel, confirming large non-reciprocity and isolation for free-space airborne sound waves. f For excitation from the +1 order, unitary reflection is
achieved towards normal incidence.
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respect to the normal. We next apply a modest bias flow, with
velocity of 3 m/s, in the scatterers, as shown in Fig. 5b. Maximum
odd Willis coupling is induced, and all incident energy is
redirected to the −1 diffraction order (Fig. 5d). If we now excite
the array with a wave incident from the -1 order, the reflected
wave is not returned to the normal direction, but it is instead re-
routed to the +1 channel (Fig. 5e), confirming large non-
reciprocal response and isolation for airborne sound waves in free
space. Figure 5f shows the case of excitation from the right side,
which is now fully reflected towards the normal, creating an ideal
free-space circulator for sound waves.

Discussion
To conclude, in this paper, we have introduced and experimen-
tally observed a dual form of Willis coupling arising in an
acoustic scatterer whose geometry obeys mirror symmetry along
the direction of propagation, inherently odd-symmetric in nature
with respect to time-reversal, and discussed the opportunities that
it enables in the context of sound control and manipulation.
Through a rotational flow bias that breaks time-reversal sym-
metry combined with the suitable design of a resonant cavity, we
have induced a dual form of coupling between pressure and
velocity for sound, inherently odd-symmetric in nature, which
provides highly exotic sound-matter interactions when suitably
enhanced through resonant excitations. We derived the condi-
tions to enable this effect, which requires broken symmetry in the
plane transverse to the direction of propagation, derived the
optimal bias flow velocity that maximizes its effect, and demon-
strated its application in scattering phenomena, such as the
demonstration of largely asymmetric total scattering widths for
opposite excitation, and next-generation acoustic meta-gratings
supporting circulation for airborne sound and non-reciprocal
wavefront steering with unitary efficiency. Our results pave the
way towards opportunities for sound control and acoustic engi-
neering based on Willis phenomena enabled by time-reversal
symmetry breaking, with exciting opportunities for bio-medical
imaging, sonar technology, and wavefront engineering, such as
exotic asymmetric absorption, transmission, scattering and
topological wave phenomena. More broadly, similar concepts can
be envisioned in elasto-dynamics, mechanics and even optics and
photonics, for instance based on suitably tailored magnetically
biased nanoparticles, or spatio-temporal modulation, opening a
plethora of directions for metamaterial technology and
applications.

Methods
Full-wave simulations. The full-wave numerical simulations in the main text were
performed using the Pressure Acoustic module coupled with Linearized Potential
Flow module of the commercialized finite-element software COMSOL Multi-
physics 5.4, assuming a mathematically imposed, time-independent bias velocity as
the background flow inside the cavity. The walls of the sample were set as rigid wall
as boundary conditions. The simulation was performed in the frequency domain
for background incident field coming from x-, -x-, y-, and -y-directions, respec-
tively. The polarizabilities retrieval is performed according to Ref. 21.

Experimental set-up. The sample was machined with brass through a CNC
machine. The outer radius of the sample is 40 mm. The thickness of the wall is 4
mm and hence the inner radius of the cavity is 36 mm. The height of the cavity is
20 mm. The inner radius of each 3 cylinder is 9 mm. The height of the side cylinder
is 74.3 mm. The total height of the middle cylinder is 90 mm with an adjustment
screw that can change its height. The height of the screw is 28 mm. All three
cylinders’ centers are located in the radius of 27 mm to the center. Two PGN-R8-
2RS sealed ball bearing with standard size 1/2″ × 1–1/8″ × 5/16″ is placed on the
top and bottom of the cavity with a shaft through them. The shaft is connected to a
DC motor with maximum voltage 24 V. The cavity is connected to the outside with
two holes above the side cylinders. The radius of the hole is 4 mm, and the holes are
10 mm above the side cylinders. In the experiment, the sample was placed in a two-
dimensional planar Acrylic sheet waveguide with 1.83 m long by 1.83 m wide, with

height of 2.5 cm. Sound absorbing materials were placed at the boundaries of the
waveguide to ensure a free acoustic field environment. Eight microphones were
placed 38.1 cm away from the center of the scatter to measure the scattered fields.

Measurement and data processing. The acoustic pressure was measured using 8
B&K 1/8″ microphones. We placed 4 loudspeakers in each of 4 corners. During
measurement, we activate each loudspeaker one by one to mimic incident waves
coming from x-, -x-, y-, and -y-directions, respectively. We first measured the
background field without the sample. Then we placed the sample back to measure
the total field. The scattered field is calculated using total field minus the back-
ground field. We align the monopole resonance and dipole resonance by adjust the
screw and adding water into the cylinders. For the measurement performed in the
paper, the screw is moved 2.5 mm away from its top with 8 mL water injected into
the middle cylinder and 10 mL water injected into both side cavities. In real
measurement, the measured centered frequency is 1560 Hz, with Δf ¼ 80Hz. In
data processing, we normalized the polarizabilities by 5 × 10−9. We estimate that
the peak polarizability value in our measurements was about 15% of the maximum
possible value achievable in a lossless, ideal scatterer, due to the presence of
unwanted imperfections, material loss, and noise caused by the motor.

Data availability
All relevant data that support the findings of this study are available from the
corresponding author upon reasonable request.
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