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Abstract

Inherited human long-QT2 syndrome (LQTS) results from mutations in the gene encoding the HERG channel. Several LQT2-
associated mutations have been mapped to the amino terminal cytoplasmic Per-Arnt-Sim (PAS) domain of the HERG1a
channel subunit. Here we have characterized the trafficking properties of some LQT2-associated PAS domain mutants and
analyzed rescue of the trafficking mutants by low temperature (27uC) or by the pore blocker drug E4031. We show that the
LQT2-associated mutations in the PAS domain of the HERG channel display molecular properties that are distinct from the
properties of LQT2-associated mutations in the trans-membrane region. Unlike the latter, many of the tested PAS domain
LQT2-associated mutations do not result in trafficking deficiency of the channel. Moreover, the majority of the PAS domain
mutations that cause trafficking deficiencies are not rescued by a pore blocking drug. We have also explored the in vitro
folding stability properties of isolated mutant PAS domain proteins using a thermal unfolding fluorescence assay and a
chemical unfolding assay.
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Introduction

The human ether-a-go-go (eag) related gene (HERG) [1–2]

encodes the rapidly activating delayed rectifier K+ channel (IKr)

[1,3], an important component in the repolarization of the cardiac

action potential. Mutations in HERG cause human long QT2

syndrome (LQT2) which is a heart condition in which delayed

repolarization of the heart, characterized by a prolongation of the

electrocardiogram QT interval, increases the risk of life threaten-

ing arrhythmias and sudden death [4,5].

Native HERG channels are proposed to be hetero-tetramers

arising from the assembly of 1a and 1b a-subunits encoded by

alternate transcripts of the HERG gene [6,7]. HERG 1a and 1b

subunits have an identical core containing six transmembrane-

spanning helices (S1–S6) and long conserved carboxyl terminal

domains. HERG 1a and 1b subunits differ in the length of their

amino terminus: ,396 residues in the HERG 1a subunit and ,56

residues in the HERG 1b subunit. The crystal structure of the first

,135 residues in the HERG 1a subunit has been determined and

has been shown to contain a conserved Per-Arnt-Sim (PAS)

domain [8]. The functional role of the HERG PAS domain is not

known but it is thought to participate in regulation of channel

function. In other proteins PAS domains have been shown to sense

environmental stimuli (light, ligands, and redox potentials) and

regulate a variety of biochemical processes in both eukaryotic and

prokaryotic systems [9]. In the HERG channel, removal of the

entire PAS domain or the presence of LQT2-associated missense

mutations in the PAS domain region of the HERG channel has

been shown to accelerate the rate of deactivation of the channel

[10,11]. Previous work proposed that this domain interacts with

the body of the channel and a physical interaction between an N-

terminally truncated channel and a soluble PAS domain was

demonstrated by FRET. This interaction was sufficient to restore

regulation of channel deactivation [12]. Over 30 LQT2 associated

missense mutations have been mapped to the amino terminal PAS

domain of the HERG 1a subunit [13,14,15,16,17,18,19,20,21],

eleven of which (K28E, T65P, I31S, F29L, G53R, C66G, L86R,

N33T, R56Q, H70R and A78P) have been characterized by

electrophysiology[21,22,23].

Recent studies have suggested that the underlying cause of

LQT2 is the misfolding and retention of the HERG channel in the

endoplasmic reticulum (ER) resulting in decreased channel density

on the membrane [22,24]. This has been demonstrated in cell

culture to be the case for the majority of missense mutations in the

body of the channel and in its carboxy terminus. Studies have also

shown that LQT2-associated mutated forms of the HERG 1a

subunit are suitable for rescue by temperature or pharmacological

chaperones that promote the proper folding of a protein in an

active form. For example, the defective trafficking of the N470D

mutant is rescued by the addition of the drug E4031 and reduced

temperature in cell culture, promoting the idea that increasing the

stability of unstable variants can alleviate protein dysfunction

[22,25].
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A complete understanding of the molecular properties of LQT2

associated mutations requires not just electrophysiological and cell

culture studies but also a biochemical characterization of the

impact of the mutations on the folding stability of the protein. In

this work, we have focused our attention on nine LQT2-associated

mutations distributed throughout the amino terminal PAS domain

of the HERG 1a subunit; K28E, F29L, G53R, C66G, L86R,

N33T, R56Q, H70R and A78P. We characterized the trafficking

properties in cell culture not just in the HERG 1a subunit but also

in hetero-tetramers formed by HERG 1a and 1b subunits.

Additionally, we measured the thermal and chemicalstability in

vitro of protein variants with mutations in the PAS domain. Lastly,

we explored the ability of the dysfunctional channels to be rescued

by temperature and the drug E4031.

Results

Trafficking Phenotype of HERG Channels Containing
Mutations in the PAS Domain

We characterized the trafficking properties of LQT2 mutant

channels in stable cell culture lines expressing either the WT or

mutant HERG 1a subunits. We focused our attention on nine

LQT2 associated mutations distributed throughout the three

dimensional structure of the PAS domain of the HERG 1a subunit;

K28E, F29L, G53R, C66G, L86R, N33T, R56Q, H70R, A78P.

K28E is a LQT2-mutant that is known to be traffic deficient [21].

The functional characterization of these mutants by electrophysi-

ology has been well described in the literature both in oocytes and

HEK293 cells [26,27]. We also included the mutant E118A. E118A

is a non-LQT2 mutation. This mutation is positioned at the tip of

the long loop between the 4th and 5th b-strands and it is not expected

to alter the structural properties of the domain; moreover, this

mutation had been previously shown by electrophysiology not to

affect the function of the HERG channel [8].

WT HERG 1a subunits show two species on western blot: a band

of 155 kDa corresponding to the complex glycosylated form which

represents the mature channel form on the cell surface and a lower

135 kDa band, representing the immature core glycosylated form.

Figure 1A shows representative western blots of total cell extracts

from stable HEK293 cells expressing WT HERG 1a, 9 LQT2

mutant subunits (K28E, F29L, G53R, C66G, L86R, N33T, R56Q,

H70R and A78P), and the control mutant E118A protein. The WT

and E118A HERG 1a subunits traffic normally as shown by

detection of both the mature and immature species. The LQT2

mutants display two different phenotypes: HERG 1a subunits

harboring the single point mutants, K28E, F29L, G53R, C66G or

L86R show a clear trafficking defect, as only the immature 135 kDa

protein band is detected. In contrast, HERG1a subunits harboring

the N33T, R56Q, H70R and A78P mutations show both the

mature and immature species consistent with a wild-type trafficking

phenotype. The steady state level of immature protein in all cases

does not appear to change suggesting that these mutations do not

affect translation efficiency. To confirm that the two bands detected

by Western blot are the result of a different glycosylation level of the

protein we treated the samples with N-glycosidase F, an enzyme that

removes sugars from asparagine side-chains. This treatment

converted the 155 kDa protein bands to a 140 kDa species

confirming that the larger band in the blot results from N-

glycosylation of the HERG channel (Figure 1B).

It has been proposed that in vivo HERG channels are hetero-

tetramers arising from the assembly of 1a and 1b a-subunits;

importantly, HERG 1b does not include a PAS domain. We

evaluated the impact of HERG 1a PAS domain point mutations on

the trafficking properties of the hetero-tetrameric HERG channel

using transient transfection of both proteins in HEK293 cells; this

approach allows a simultaneous co-translation of the two HERG

subunits. WT HERG 1b subunits show two main species on western

blot analysis; a band of 95 kDa representing the complex

glycosylated subunit of the mature channel and a lower 85 kDa

band, representing the immature core glycosylated form. In order to

facilitate our co-expression studies we added a C-terminal myc tag

to the WT and LQT2 mutant HERG 1a subunits. We first showed

that the LQT2 mutations in HERG 1a cmyc protein are still able to

assemble with HERG 1b subunits by carrying out co-immunopre-

cipitations. Figure 2A shows that immunoprecipitation using an

anti-cmyc specific antibody only recognizes the HERG 1a cmyc

subunit. On co-expression with HERG 1b we can pull-down the

complex formed by both HERG 1a cmyc and HERG 1b proteins.

In all cases where we co-expressed LQT2 mutant HERG 1a cmyc

subunits with HERG 1b subunits we saw co-immunoprecipitation

suggesting that the PAS domain mutations are still able to assemble

with the HERG 1b subunit.

Our analysis of lysates from HERG 1a cmyc/HERG 1b co-

expressing cells show that the trafficking phenotype (both defective

and normal) of the LQT2-associated mutant HERG 1a cmyc

subunits defined above was not altered upon co-expression with

WT HERG 1b subunit (Figure 2B). The converse effect on HERG

1b, reduction in the levels of mature HERG 1b subunit when co-

expressed with trafficking defective HERG 1a mutants, was harder

to verify. It has been reported that in heterologous expression

systems the level of HERG 1b maturation is only slightly enhanced

(up to 3-fold) on co-expression with HERG 1a subunits [28].

Nevertheless, it appears that there is a decrease in HERG 1b

maturation when co-expressed with K28E, F29L, G53R, C66G

and L86R HERG 1a cmyc subunits relative to experiments where

HERG 1b is co-expressed with WT , N33T or H70R HERG 1a

cmyc subunits. We could not reproducibly see an effect on HERG

1b when co-expressed with R56Q or A78P HERG 1a cmyc.

Stability Properties of LQT2-associated PAS Domain
Proteins

Our cell culture studies indicate that some of the LQT2

mutations in the HERG PAS domain affect trafficking of the

Figure 1. Trafficking phenotype of LQT2 mutant in channels
formed by HERG 1a subunit. (A) Western blot of membrane protein
extracts from stable HEK293 cell lines expressing full-length WT or LQT2
mutant forms of HERG 1a channel subunit. Mature fully-glycosylated
HERG 1a subunit (indicated by 155 kDa label) and immature HERG 1a
subunit (indicated by 135 kDa label) are indicated. (B) Western blots of
membrane protein extracts from stable HEK293 cell lines expressing
full-length WT or LQT2 mutant forms of HERG 1a channel subunit
before (2) and after treatment (+) with N-glycosidase F. Western blots
were probed with anti-C terminal HERG antibody and were repeated
twice (n = 2).
doi:10.1371/journal.pone.0032654.g001

Properties of LQT2 Mutations in the PAS Domain.
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channel, while other mutations do not appear to influence this

property. A simple explanation for these effects is that the

trafficking defective mutations alter the structure of the PAS

domain resulting in improperly folded protein and incompletely

processed channel, which does not reach the cell membrane. To

explore the effect of the mutations on the structure and stability of

the PAS domain in more detail we examined the solution

properties of the LQT2 mutations using recombinant PAS domain

protein.

The PAS domain from the HERG 1a subunit can be expressed

and purified as a stable soluble protein from bacteria, providing an

ideal system in which to measure its solution stability properties by

Differential Scanning Fluorimetry (DSF). In this method heat

induced denaturation exposes the hydrophobic residues normally

buried within the core of a protein; binding of the fluorescent dye,

Sypro Orange to these hydrophobic residues results in a sigmoidal

increase in the fluorescence signal of the dye. The increase in

fluorescence is related to the increasing number of protein

molecules in the denatured state; the mid-point of the sigmoidal

curve is defined as the melting temperature (Tm) [29].

All PAS domain proteins analyzed showed a clear single

transition curve; representative thermal melting curves and the

corresponding Tm values are shown in Figure 3A for WT, R56Q,

A78P and K28E PAS domain proteins. The DTm for each mutant

PAS domain compared to the WT domain is shown in Figure 3B

and as can been seen not all of the LQT2-associated mutations

tested destabilized the PAS domain protein to the same extent.

PAS domains containing E118A (control), N33T and R56Q

mutations showed melting temperatures (60.260.2uC,

58.460.6uC and 57.760.6uC, respectively) within 3.3 degrees of

the WT protein (61.060.5uC). These mutations did not alter the

trafficking properties of the HERG channel (Figure 1A). However,

K28E, F29L, G53R, C66G, H70R, A78P and L86R had much

lower melting temperatures; the most extreme being that of the

L86R mutant (45.460.3uC) followed by K28E (48.960.4uC) and

C66G (49.660.3uC) corresponding to Tm values more than 10uC
lower than the WT protein. It is clear from these results that

mutations that cause trafficking deficiency in the channel are the

same that have the most severe effect on the folding stability of the

PAS domain in solution. Conversely, mutations that have little

impact on the folding properties of the PAS domain do not affect

the trafficking properties of the full-length channel.

Interestingly, the DSF experiments show that the melting

temperatures of mutants A78P and H70R (52.960.7uC and

52.760.2uC, respectively) are only mildly different from F29L and

G53R (51.860.8uC and 51.660.8uC, respectively); however, their

Figure 2. Trafficking effects of LQT2 mutations in hetero-tetrameric HERG channels. (A) Western blot analysis of cell lysates from
transiently transfected HEK293 cells co-expressing WT HERG 1a cmyc tagged subunit alone, WT HERG 1b untagged alone, HERG 1a cmyc with HERG
1b or LQT2 mutant HERG 1a cmyc with HERG 1b. Mature forms of HERG 1a cmyc and HERG 1b are indicated by 155 kDa and 95 kDa labels,
respectively. Immature forms of HERG 1a cmyc and HERG 1b are indicated by 135 kDa and 85 kDa labels, respectively. Equal amounts of cell lysate
were loaded in all lanes as assessed using BCA protein assay quantification Western blots were probed with anti-C terminal HERG antibody and were
repeated twice (n = 2). (B) Western blot analysis of immunoprecipitations using anti-cmyc antibody from transiently transfected HEK293 cells co-
expressing WT HERG 1a cmyc tagged subunit alone, WT HERG 1b untagged alone , HERG 1a cmyc with HERG 1b or LQT2 mutant HERG 1a cmyc with
HERG 1b. Western blots were probed with anti-C terminal HERG antibody and were repeated twice (n = 2).
doi:10.1371/journal.pone.0032654.g002
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trafficking phenotypes are drastically different: A78P and H70R

resemble WT channel while F29L and G53R do not give rise to

the mature HERG 1a subunit. To further explore the solution

properties of the WT PAS domain and LQT2 mutant proteins we

used far-UV circular dichroism (CD) (Figure 4). We first evaluated

the impact of all mutations on the secondary structure content of

the domain as measured by circular dichroism. The a-helical

content determined by CD for the WT domain is 23% of the total

secondary structure; this value agrees well with the values

extracted from the three-dimensional X-ray structure (PDB code:

1BYW). All the mutants analyzed affected the helical content

relative to the WT, with reductions between 2 and 6% (Table 1);

the mutants that had the most severe effects were G53R, C66G

and H70R, which showed an a-helical content between 19% and

17%. The magnitude of the impact in the secondary structure of

the domain does not seem to correlate with the trafficking

phenotype seen in cell culture since H70R traffics as WT while

G53R and C66G do not.

Figure 3. Thermal unfolding of LQT2 PAS domain mutants. (A) Representative melting curves for WT PAS domain (filled squares) and R56Q
(open circles), A78P (triangles) and K28E (inverted triangles) PAS domain mutants measured by Sypro Orange fluorescence. (B) Plot of melting
temperature changes of mutant PAS domain proteins relative to WT PAS domain measured by Sypro Orange assay. For each protein at least two
seperate purifications were analyzed on two seperate days, with 14 replicates per experiment. The Tm was extracted for each curve and averages and
standard deviations were calculated for the whole dataset. Standard deviations of the DTm were calculated.
doi:10.1371/journal.pone.0032654.g003

Properties of LQT2 Mutations in the PAS Domain.
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We also measured the folding stability properties by chemical

denaturation with urea of the 4 mutants which show similar

thermal stabilities but markedly different trafficking phenotypes,

(F29L, G53R, H70R and A78P). In these experiments we

prepared protein solutions of each PAS variant at increasing urea

concentrations and evaluated changes in the circular dichroism

spectra; the curves of the CD signal versus urea concentration

were then fit to a two state model from which several stability

parameters were extracted (Table 2). The WT domain is fairly

stable, requiring a high concentration of urea for unfolding (mid-

point concentration is ,6 M) and displaying an unfolding free

energy in water of ,8 kcal/mol. Confirming the thermal

unfolding analysis the 4 mutants analyzed by chemical unfolding

have lower conformational stability than WT protein. The free

energy of unfolding for the mutants is lower, varying between 6.8

and 5.0 kcal/mol, and this is reflected by the lower concentrations

of urea necessary for destabilizing the mutant domains, between

4.5 and 4.9 M. However, just like with the melting temperature

there is no correlation between the chemical unfolding properties

and the trafficking properties of the 4 mutants: the determined

unfolding free energies for H70R, F29L and G53R are very

similar but the H70R HERG channel traffics well while F29L and

G53R do not.

Overall these results show that for the mutants, E118A, N33T,

R56Q, C66G, L86R and K28E, there is a clear correlation

between the magnitude of the changes in the folding stability of the

domain and the trafficking properties of the mutant HERG 1a

subunits observed in cell culture. This fits well with the idea that a

mutation that severely decreases the conformational stability of the

PAS domain results in the recognition of the channel by the

quality control mechanisms in the endoplasmic reticulum and its

subsequent misprocessing. In contrast in the case of F29L, G53R,

H70R and A78P, the impact of the mutation on the structure and

conformational stability of the PAS domain does not determine

the trafficking phenotype of the mutant HERG 1a subunit.

Rescue Phenotype of HERG Channels Containing
Mutations in the PAS Domain

The rescue of the trafficking phenotype can also inform us

about the underlying molecular changes induced by the mutations.

Importantly, it has been shown that the trafficking deficiency

exhibited by HERG 1a subunits with LQT2 mutations in the

transmembrane regions can be reversed by incubation at reduced

temperature or in a large majority by channel blockers such as

E4031 [22]. We therefore asked whether protein processing could

also be corrected by temperature or a blocker in the case of PAS

mutants. Figure 5A shows representative western blots of cells

stably expressing HERG 1a subunits; WT, K28E, F29L, G53R,

C66G, L86R or a previously characterized D456Y [22] (a

Figure 4. Circular Dichroism spectra. Far-UV CD spectra were recorded between 190 and 250 nm, with 1 nm step resolution. The spectra were
averaged over three scans and corrected by subtraction of the buffer signal. Spectra are shown for WT PAS and all nine PAS domain mutants.
doi:10.1371/journal.pone.0032654.g004

Table 1. Estimation of Protein Secondary Structure from CD
data.

% alpha-helix % beta-sheet % unordered

WT-PAS 2360.81 3260.59 4560.44

L86R-PAS 2360.71 3260.52 4560.39

K28E-PAS 2160.74 3560.77 4460.61

A78P-PAS 2160.94 3460.69 4560.52

R56Q-PAS 2160.83 3360.60 4660.45

F29L-PAS 2060.78 3460.57 4660.43

N33T-PAS 2060.82 3460.60 4660.45

G53R-PAS 1960.94 3460.68 4760.51

C66G-PAS 1960.90 3560.74 4660.55

H70R-PAS 1761.00 3660.74 4760.56

Far-UV CD spectra were fit to a linear combination of three contributions
(alpha-helix, beta-sheet, and unordered structure) using the program CONTIN
[32]. Errors result from the fit of the model.
doi:10.1371/journal.pone.0032654.t001

Properties of LQT2 Mutations in the PAS Domain.
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mutation in transmembrane helix S2 which is traffic deficient and

is rescued by lower temperature or by addition of blocker) were

cultured at 37uC or at 27uC, for either 24 hrs or 48 hrs. In all

cases incubation at a decreased temperature results in the

appearance of the 155 kDa mature form of the channel showing

that the trafficking phenotype has been overcome.

We also evaluated the effect of the channel blocker E4031

(Figure 5B); this small molecule binds with high affinity in the cavity of

the ion conduction pathway of the HERG channel [30]. The blocker

was added to the cell culture media for 36 hrs. As previously reported

the presence of the small molecule rescued the control D456Y mutant

since the 155 kDa mature form of the channel is clearly present in the

Western blot. In contrast, 4 (K28E, F29L, C66G and L86R) out of

the 5 PAS domain LQT2 trafficking mutants tested showed no

mature band after the addition of the blocker. Notice that, despite

repeated attempts and unlike previously reported in the literature

[21], mutant K28E was not rescued by E4031. Incubation of E4031

with cells expressing the trafficking mutant G53R results in the

emergence of a higher molecular band.

The rescue experiments show that trafficking defects displayed

by all the PAS mutants studied can be rescued by growth at

reduced temperature. However, the rescue mechanism by channel

blockers that is generally successful for LQT2 mutants positioned

in the transmembrane regions was shown to be ineffective with the

majority of PAS domain mutants tested.

Discussion

LQT2 mutations within the HERG channel are loss of function

mutations which reduce IKr amplitudes and thus prolong cardiac

repolarization. The effect of these mutations on the properties of

the HERG potassium channel have in general been studied from a

functional and cell biology perspective, using electrophysiology

and trafficking assays, and have not included biochemical

characterizations. As a result there is an incomplete understanding

of the molecular changes occurring in the mutant channels. Here

we have focused our study on the properties of LQT2 mutants

present in the PAS domain of the HERG channel and have

coupled an analysis of the trafficking properties with protein

stability changes. Importantly, these mutants have been well

characterized by electrophysiology both in HEK293 cells [27] and

in Xenopus oocytes ([26] and are distributed across the three-

dimensional structure of the PAS domain (Figure 6).

One of the main points concluded from this work is that the

LQT2 mutants in the PAS domain have distinct trafficking

properties from the LQT2 mutations in the transmembrane

regions. This is clearly reflected in the observation that out of the

nine PAS domain mutant channels (K28E, F29L, N33T, G53R,

R56Q, C66G, H70R, A78P and L86R) analyzed in this study only

five mutants K28E, F29L, G53R, C66G and L86R, show a

trafficking defect when expressed in cell culture both in homo-

tetrameric channels formed by the HERG 1a subunit alone as well

as in hetero-tetrameric HERG 1a cmyc/HERG 1b channels. Our

results are consistent with the observations recently reported by

Gianulis and Trudeau [27]. In contrast studies of LQT2 mutants

in the transmembrane regions have shown that by far the majority

of mutants are trafficking deficient [22]. Moreover, the majority of

the trafficking deficient mutants tested in our study were not

rescued by the pore blocking drug E4031. This is also unlike what

Table 2. Protein Conformational Stability Determined from
Urea-Induced Unfolding Experiments.

DG(H20)a

(kcal/mol)
mb

(kcal/mol/M)
Cmc

(M)

WT-PAS 8.260.4 1.460.04 6.360.4

A78P-PAS 6.860.7 1.560.1 4.560.6

F29L-PAS 5.060.4 1.060.1 4.860.4

G53R-PAS 5.560.9 1.260.2 4.660.8

H70R-PAS 5.460.4 1.160.09 4.960.3

aDG(H20)-free energy change of unfolding in the absence of denaturant.
bm-the dependence of the free energy (DG) on the concentration of the
denaturant.
cCm-midpoint of the urea unfolding curve.
The data presented is the result of at least three independent determinations
for each protein variant. The errors are calculated from the fit of equation 1 to
the experimental curves of CD signal versus urea concentration.
doi:10.1371/journal.pone.0032654.t002

Figure 5. Rescue of trafficking deficient LQT2 mutants. (A) Representative western blot analysis of cell lysate from stable HEK293 cells
expressing WT and traffic deficient LQT2 mutations in the HERG 1a subunit grown at 37uC and 27uC. (B) Representative western blot analysis of cell
lysates from stable HEK293 cells expressing WT and traffic deficient LQT2 mutations in the HERG 1a subunit grown in the presence (+) or absence (2)
of 10 mM E4031 for 36 hours. Western blots were probed with anti-C terminal HERG antibody and were repeated twice (n = 2).
doi:10.1371/journal.pone.0032654.g005

Properties of LQT2 Mutations in the PAS Domain.
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has been observed for LQT2 mutants in the transmembrane

regions; January and colleagues report that 17 out of the 22

mutants in this region were rescued by E4031 [22]. The

differences observed between mutations in the transmembrane

region and in the PAS domain most likely reflect the distinct

molecular properties between these domains. These two regions

form independent folding units since it has been shown that the

native channel can be reconstituted by adding the soluble PAS

domain to a functional N-terminally truncated channel [12].

Taking this into consideration it is easy to understand that

mutations in the PAS domain do not have to have the same effect

as mutations in other regions of the channel. It is also easy to

understand that binding of a drug to the pore of the channel

stabilizes the fold of the membrane buried regions but has no effect

on the stability of the cytoplasmic PAS domain. In this context the

rescue of trafficking deficient G53R mutant (in the PAS domain)

by E4031 is at the moment unexplained. Using the thermal assay

we have found that the drug does not directly affect the folding

stabilities of this PAS domain mutant in solution (data not shown).

We evaluated the biochemical impact of the mutations by

measuring thermal stability of the nine soluble PAS domain

mutants and by measuring the chemical stability of a sub-group

(F29L, G53R, H70R and A78P). We also estimated the secondary

structure content of all domain mutants. Our data shows that

mutant PAS proteins K28E, C66G and L86R, which show a

defective trafficking phenotype, also have significantly lower

folding stability in vitro, with melting temperatures more than

10uC lower than the WT PAS domain. This correlation supports

the idea that these specific changes in the amino acid sequence

cause a destabilization of the PAS domain fold, leading to

misprocessing of the channel mutants probably through recogni-

tion by the cellular quality control mechanisms in the endoplasmic

reticulum. Analysis of the PAS domain structure (Figure 6)

suggests reasons for the destabilization of the domain: both Cys66

and Leu86 are part of the hydrophobic core of the PAS domain.

C66G would create a cavity and remove many stabilizing van der

Waals contacts while L86R introduces the very long and positively

charged arginine side-chain in the core, most likely disturbing it.

Lys28 is partially buried in a small crevice just before the first b-

strand and substitution by a glutamate (K28E) will place the

negative charge of the carboxylic group in the crevice possibly

disturbing the packing of the b-sheet.

Conversely, the thermal stability of mutants N33T and R56Q is

very similar to the WT PAS domain, with melting temperatures

that are within ,3uC of the WT, and the corresponding mutant

channels have a normal trafficking phenotype. Moreover,

estimation of secondary structure content by Far-UV CD confirms

that these mutations have a mild structural impact. Strikingly these

mutants have been shown to have the most severe functional

effects in electrophysiological studies in oocytes, in particular in the

kinetics of channel deactivation and activation, as well as in

voltage-dependence of steady-state activation and recovery from

inactivation [26]. Electrophysiological studies in HEK293 cells

also show severe functional effects in these two mutants [27].

These results support the idea that LQT2 in the case of N33T and

R56Q results from direct malfunction of the channel in the

membrane. The chemical character of the side-chain substitutions

in these two cases (polar for polar) as well as the position of the two

mutations (both are exposed on the surface of the PAS domain

structure) (Figure 6) justifies the almost lack of change in the

conformational stability. Interestingly, both mutants are positioned

on the outskirts of a hydrophobic patch on the surface of domain

which is thought to mediate the direct interaction with the rest of

the channel and it is possible that the mutations affect this

interaction. This surface patch was initially revealed by the

structure of the PAS domain and its functional importance has

Figure 6. LQT2 mutants mapped onto HERG PAS domain structure. Two views of HERG PAS domain structure X-ray structure (PDB code
1BYW), related by ,180u vertical rotation. LQT2 mutant positions were mapped: in cyan and stick are mutants included in this study that are not
trafficking deficient, in red and stick are the mutants included in this study that are traffic deficient, in green are the position of LQT2 mutants not
included in this study. LQT2 mutants in this study are labeled. The black star represents the position of E118, where a control mutation was
introduced. The circle roughly indicates the limits of a hydrophobic patch on the surface of domain. The arrow indicates region involved in small
molecule binding in PAS domains from other proteins.
doi:10.1371/journal.pone.0032654.g006
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been recently reinforced by work on the rescue of LQT2 mutants

positioned in this area through co-expression of WT PAS domain

[8,27]. Strikingly many LQT2 mutations in the PAS domain are

clustered in or around this patch. In Figure 6 we have mapped

many of the described LQT2 associated mutations on the

structure of the domain; a view of the domain’s b-sheet clearly

emphasizes the clustering of mutations in the hydrophobic patch

and surrounding areas.

Our results also revealed a group of 4 mutants, H70R, A78P,

F29L and G53R, which have similar folding stabilities, evaluated

either by thermal or chemical unfolding, but display drastically

different trafficking phenotypes. These results suggest that, for

these mutations, it is not the destabilization of the fold that

determines the trafficking fate of the channel. The mapping of the

mutations on the structure reveals that the trafficking deficient

mutants are part (F29L) or on the periphery (G53R) of the

hydrophobic patch that is supposed to mediate the interaction of

the PAS domain with the channel (Figure 6). It is possible that

these two mutations affect this interaction leading to a more global

destabilization of the channel and misprocessing.

In contrast, H70R and A78P are clustered together on the

opposite face of the domain, away from the hydrophobic patch.

Curiously, these two mutants are positioned in a region of the

domain which is known to form the binding pocket of regulatory

small molecules in other PAS domains [31]. Moreover, the

functional effects of H70R and A78P are fairly mild relative to

other LQT2 mutants in the PAS domain [26,27]. The position of

these two mutants in the domain structure together with their mild

functional and trafficking effects raises the possibility that this

region participates in an as yet uncharacterized mechanism of the

channel.

Overall, this work adds to our understanding of the molecular

properties of LQT2-associated mutants. We have directly

evaluated the biochemical effect of PAS domain LQT2 mutations

on the stability of the domain and have related these results to the

trafficking behavior of HERG 1a subunits containing the same

mutations expressed in cell culture. This characterization has

allowed us to show that there is a diversity of molecular effects

associated with LQT2 mutations which most likely have to be

considered when developing therapeutic strategies for LQT2

syndrome.

Materials and Methods

Plasmids and DNA Constructs
For mammalian cell expression the wild-type (WT) HERG 1a

and HERG 1b cDNA’s cloned into pcDNA3.1 vector (Invitrogen)

were a kind gift from Dr. G. Robertson (University of Wisconsin,

Wisconsin). All LQT2 point mutations were generated in the

pcDNA3.1 HERG 1a plasmid using standard overlap extension

PCR methods and sequence verified. A C-terminal myc-tag was

inserted as an FseI/EcoRI fragment downstream of the HERG 1a

sequence in pcDNA3.1 and all LQT2 mutants were sub-cloned

into this vector and sequence verified. For bacterial cell expression,

the corresponding point mutations were introduced by Quik-

Change site-directed mutagenesis into a previously described

construct pGEX4T-PAS [8], encoding the first 135 amino acids of

HERG 1a with an N-terminal glutathione S-transferase (GST) tag;

mutants were sequence verified.

Cell Culture and Drug Exposure
HEK293 cells (American Type Culture Collection, ATCC)

were grown in Dulbecco’s Modified Eagle Medium (DMEM)

supplemented with 10% fetal bovine serum, 1% penicillin-

streptomysin and Glutamax-1 in the presence of 5% CO2.

HEK293 cells were transiently transfected in 6-cm culture dishes

with 1.5 mg each of WT and LQT2 DNA using calcium phosphate

and cell lysates prepared (as outlined below) 48 hrs after

transfection. For co-expression experiments HEK293 cells were

transiently transfected in 6-cm culture dishes with 1.5 mg each of

WT or LQT2 HERG 1a cmyc tagged DNA and untagged WT

HERG 1b DNA. Stable cell lines expressing WT or LQT2 HERG

1a subunits were prepared by calcium phosphate transfection of

HEK293 cells in 10-cm culture dishes with 5 mg of the appropriate

Ssp I linearized DNA with subsequent selection and expansion in

media containing 600 mg/ml G418. Stable cell lines were grown

either at the control temperature of 37uC or at the reduced

temperature of 27uC for 24 or 48 hrs. Incubation with HERG

channel blocker, E4031 at 10 mM was carried out at 37uC for

36 hrs.

Cell Lysate Preparation from HEK293 cells for Western
Blot Analysis

For cell membrane preparations, similarly confluent 6-cm dishes

of cells were washed once with 5 ml of 16 PBS pH 7.5 then

scraped into 1.5 ml of ice cold Homogenization Buffer [200 mM

NaCl; 33 mM NaF; 10 mM EDTA pH 8.0; 50 mM Hepes

pH 7.5; 1 mM PMSF; 1 mg/ml Pepstatin A; 1 mg/ml Leupeptin].

Cells were subjected to 306 strokes of dounce homogenization

then spun at 1,500 rpm in a bench top centrifuge at 4uC. The

supernatant was removed and spun at 35,000 rpm for 1 hr at 4uC
in a Beckman Ti70 rotor. The high speed pellet was resuspended

in 100 ml of Buffer [1% NP-40; 150 mM NaCl; 10% glycerol;

5 mM EDTA; 50 mM Hepes pH 7.5; 1 mM PMSF; 1 mg/ml

Pepstatin A; 1 mg/ml Leupeptin] and stored at 220uC. For whole

cell lysate preparations, similarly confluent 6-cm dishes of cells

were washed once with 5 ml of 16PBS pH 7.5. Whole cell lysates

were prepared by resuspending the cell pellet in 100 ml of Lysis

Buffer [1% NP-40; 150 mM NaCl; 10% glycerol; 5 mM EDTA;

50 mM Hepes pH 7.5] and stored at 220uC. Both the membrane

preparation and cell lysate were mixed with sample buffer such

that the final DTT concentration was 100 mM and samples

heated at 65uC for 10 min before being subjected to 7.5% SDS-

PAGE. Proteins were transferred by semi-dry blotting to a

nitrocellulose membrane and incubated overnight at 4uC with a

rabbit anti-C terminal HERG antibody (Alomone Labs) and

detected by ECL.

Co-immunoprecipitation
Co-immunoprecipitation analysis was carried out essentially as

described, [28] previously; briefly, cell lysates were prepared 48 h

post transfection by resuspending cells in solubilization buffer [

150 mM NaCl, 25 mM Tris-HCl, pH7.4, 20 mM NaEDTA,

10 mM NaEGTA, 5 mM glucose and 0.5% (v/v) TX100, 1 mM

PMSF; 1 mg/ml Pepstatin A; 1 mg/ml Leupeptin] followed by

incubation on a rotator for 30 mins. at 4uC. Cell lysates were

cleared by centrifugation at 10,0006g for 15 mins. at 4uC and

quantified using the BCA protein assay (Pierce Thermo Scientific).

Cell lysates were precleared with 25 ul of 25% protein G PLUS-

agarose slurry (Santa Cruz Biotech.Inc.) for 1 hr at 4uC.

Precleared lysates were incubated with 5 ul of anti-cmyc (9E10)

monoclonal antibody (Santa Cruz Biotech.Inc.) for 3 hrs at 4uC.

Lysates were further incubated with 50 ul of 25% protein G

PLUS-agarose slurry for 2 hrs at 4uC. Beads were washed three

times with solubilization buffer containing 0.1% TX100 before

being eluted in sample buffer containing 200 mM DTT at 65uC
for 10 mins and subjected to 7.5% SDS-PAGE and western blot

analysis as outlined above.
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Endoglycosidase Analysis
Equal volumes of cell lysate were first denatured in 50 mM

sodium phosphate pH 7.5; 0.02% SDS; 10 mM 2-mercaptoeth-

anol at 100uC for 10 min. Triton X100 was added to a final

concentration of 1.5% along with 1.25 units of PNGase F (Sigma)

and the reaction incubated for 2.5 hrs at 37uC. In control

reactions PNGase F was replaced with buffer. Lysates were

processed for western blot analysis as described above.

Protein Expression and Purification from Escherichia coli
Protein purification was as previously described [8]; briefly, the

BL21 (DE3) E.Coli strain expressing either wild-type (WT) or

LQT2 mutant PAS domain clones were grown to 0.9 OD600 at

37uC and then induced overnight at 18uC with 1 mM IPTG. Cells

were harvested and lysed using a cell cracker in 50 mM Hepes

pH 8.0; 150 mM NaCl; 5 mM DTT; 0.1% Tween 20; 1 mM

PMSF; 1 mg/ml Leupeptin and 1 mg/ml Pepstatin A. Cell lysate

was cleared by centrifugation for 45 min at 17,000 rpm in a

Beckman JA25.50 rotor. Cleared lysate was incubated with

Glutathione-Sepharose (GE Healthcare) beads overnight at 4uC
with gentle agitation in buffer containing 50 mM Hepes pH 8.0;

150 mM NaCl; 10 mM DTT; 5 mM n-octyl-b-D-glucoside;

thrombin was added to this slurry to cleave the fusion protein.

Unbound cleaved PAS domain protein was further purified by size

exclusion chromatography on a Sephadex 200 column equilibrat-

ed in buffer containing 50 mM Hepes pH 8.0; 150 mM NaCl;

10 mM DTT. Protein concentration was determined by Bradford

assay (Biorad).

Differential Scanning Fluorimetry (DSF)
Thermal shift assays were performed in the iQ5 Real Time

Detection System (Bio-Rad) using 96 well PCR plates. Each

reaction well contained 50 ml of 3 mM protein in 50 mM Hepes

pH 8.0; 150 mM NaCl; 10 mM DTT and a 2.56 final

concentration of Sypro Orange Dye (Sigma S5692 stock solution

50006). The plate was heated stepwise from 20uC to 85uC with a

heating rate of 1uC/min and a hold step of 30 seconds for

fluorescence reading every 0.5uC. The fluorescence intensity was

measured with excitation at 490 nm and emission at 530 nm.

Data were fitted to a Boltzmann equation using OriginPro 7.5

software and the transition temperatures, or melting temperatures,

were extracted. For each protein at least two separate experiments,

with 14 wells per experiment, were performed. Although the total

fluorescence intensity varied the observed standard error of

transition temperature (Tm) was within 0.8uC over replicates.

Far-UV circular dichroism (CD)
WT and LQT2 PAS domain proteins were expressed and

purified from E. coli cultures as above except that the size exclusion

Sephadex 200 chromatography column was equilibrated with

phosphate buffered saline (PBS) pH 8.0; 10 mM DTT. Finally,

the protein buffer was exchanged by running on a HiTrap

desalting column equilibrated with 100 mM sodium phosphate

buffer pH 8.0 and 1 mM TCEP. Protein concentrations ranged

from 0.60 mg/ml to 0.80 mg/ml. Circular dichroism experiments

were performed on an OLIS DSM-20 CD spectrophotometer. Far-

UV CD spectra were recorded between 190 and 260 nm using a

0.2 mm path length cuvette. CD spectra were run with a step-

resolution of 1 nm, an integration time of 5 sec, and using a

bandwidth of 0.6 nm. The spectra were averaged over three scans

and corrected by subtraction of the buffer signal. The results are

expressed as the mean residue ellipticity [è]MRW, defined as

[è]MRW = èobs (0.1MRW)/(lc), where èobs is the observed ellipticity

in millidegrees, MRW is the mean residue weight, c is the

concentration in milligrams per millilitre and l is the light path

length in centimeters. Protein secondary structure was estimated

from the far-UV CD spectra using the program CONTIN [32].

Chemical Unfolding Experiments
Urea-induced unfolding experiments were performed by

dilution of stock solutions of PAS variants to a final concentration

of approximately 0.75 mg/ml in the presence of increasing

concentrations of denaturant in 100 mM sodium phosphate buffer

and 1 mM TCEP pH 8.0. Fresh stock solutions of urea were

prepared gravimetrically and their concentration checked by the

refractive index. Protein samples with urea were incubated at

25uC for 12 hr to reach equilibrium. The reversibility of the

unfolding process was confirmed by circular dichroism spectra

after extensive dialysis of urea-denatured samples against 100 mM

sodium phosphate buffer, 1 mM TCEP pH 8.0, and compared

with the CD spectra of the native samples. The urea-unfolding

profiles were constructed plotting the CD signal at 222 nm against

urea concentration. Equilibrium unfolding curves were analyzed

using a two-state model [Native (N) « Unfolded (U)]. The

experimentally observed spectroscopic property (y) as a function of

urea concentration is the result of contributions from both the

native (N) and the unfolded (U) protein populations, and may be

directly related to the equilibrium constant and the Gibbs free

energy change [DG (H2O)] for the unfolding reaction by Equation

1, according to the linear extrapolation model (LEM) [33]

y~
YNzmN Urea½ �ð Þz YUzmU Urea½ �ð Þ

|exp m Urea½ �{DG H2Oð Þð Þ=RTð Þ

 !
=

1zExp m Urea½ �{DG H2Oð Þð Þ=RTð Þð Þ

ð1Þ

where YN and mN, YU and mU are the intercept and slope of the

pre- and post-transition baselines, R is the gas constant, and T is

the absolute temperature. The free energy change in the absence

of denaturant [DG (H2O)] and m, the dependence of the free

energy (DG) on the concentration of denaturant, were determined

by a nonlinear least squares fit of Equation 1 to the unfolding data,

using the program Origin (OriginLab Corporation). The concen-

tration of denaturant at the transition midpoint (Cm) was also

determined for each unfolding profile using Equation 2.

Cm~DG H2Oð Þ=m ð2Þ
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