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A structural property for reduction 
of biochemical networks
Anika Küken1, Philipp Wendering1, Damoun Langary2 & Zoran Nikoloski1,2*

Large-scale biochemical models are of increasing sizes due to the consideration of interacting 
organisms and tissues. Model reduction approaches that preserve the flux phenotypes can simplify 
the analysis and predictions of steady-state metabolic phenotypes. However, existing approaches 
either restrict functionality of reduced models or do not lead to significant decreases in the number of 
modelled metabolites. Here, we introduce an approach for model reduction based on the structural 
property of balancing of complexes that preserves the steady-state fluxes supported by the network 
and can be efficiently determined at genome scale. Using two large-scale mass-action kinetic models 
of Escherichia coli, we show that our approach results in a substantial reduction of 99% of metabolites. 
Applications to genome-scale metabolic models across kingdoms of life result in up to 55% and 
85% reduction in the number of metabolites when arbitrary and mass-action kinetics is assumed, 
respectively. We also show that predictions of the specific growth rate from the reduced models match 
those based on the original models. Since steady-state flux phenotypes from the original model are 
preserved in the reduced, the approach paves the way for analysing other metabolic phenotypes in 
large-scale biochemical networks.

Advances in phenotyping, quantitative genetics methods, and systems biology have helped characterize function 
of genes embedded in different types of biochemical networks1–3. Generation of large-scale stoichiometric mod-
els, capturing the metabolism of individual cell types and their interactions in an organism or communities1, has 
propelled the development of computational approaches for prediction and analysis of metabolic phenotypes4. 
The sheer size of genome-scale metabolic networks indisputably leads to computational and numerical chal-
lenges when employing them to predict and analyse metabolic phenotypes, particularly when these networks 
are endowed with enzyme kinetics5–7. Against this background we ask: Can large-scale biochemical models be 
reduced in an unbiased, i.e. fully automated fashion, while still guaranteeing that the steady-state flux phenotypes 
are preserved in the resulting models of smaller size?

There already exist several frameworks and theories to reduce biochemical models8,9. These approaches 
can be categorized based on different criteria: (i) whether they only employ the structure of the network (i.e. 
stoichiometry of biochemical reactions)9–13 or also consider the kinetics of reaction fluxes14–23, (ii) whether 
they approximate or provide one-to-one correspondence of the steady-state properties between the original 
and reduced network10,23–25, and (iii) whether the reduction process is fully automated, i.e. unbiased, or semi-
automated (i.e. requires user input)9.

Reduction approaches rooted in the constraint-based modelling framework have been successfully employed 
to arrive at reduced models that approximate steady-state flux properties of large-scale metabolic networks. One 
group comprises approaches based on user-specified input, consisting of pre-selected metabolites, reactions, 
and functions (e.g. biomass production) that must be present or supported by the reduced model and, thus, 
result in reduced models biased by the user’s input24–26. Other approaches in this group start with user-defined 
subsystems that are subsequently connected (and further refined) to obtain a minimal model that can fulfil a 
pre-specified function27. In contrast, using ideas from reaction coupling28, a recent unbiased approach provides 
an efficient reduction of stoichiometric models by reaction removal, while ensuring one-to-one correspondence 
between the elementary flux modes of the original and reduced model10. Since these approaches do not consider 
kinetics of reaction flux, they remain silent about the effects that the reduction has on the concentrations of the 
remaining metabolites.

Approaches for reduction of models with mass action kinetics are particularly important to solve or approxi-
mate different reaction mechanisms (e.g. Michaelis–Menten, Hill)16,29. They usually invoke the quasi-steady state 
assumption (QSSA), whereby the modelled components can be grouped into those with small concentrations, 
referred to as intermediates, and those with large concentrations (i.e. substrates and products), such that the 
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network displays two (or more) timescales. Invoking QSSA implies that the intermediates, that change on the fast 
time scale, are expressed as functions of the slow components16. Therefore, these intermediates are eliminated 
from the original network and, then, the reduced network, capturing the slow dynamics, is further analysed. 
Application of QSSA is not straightforward since it requires data on kinetic parameters that are challenging to 
obtain at a genome-scale level30. Therefore, such approaches cannot be analytically carried out29, and often involve 
approximations that lead to inaccuracies of estimations.

One unbiased technique to eliminate a component in mass action networks requires that the component 
appears only as a sole substrate or product in the reactions in which it participates23. Assuming steady state, the 
concentration of such a component can be readily expressed as a function of the concentrations of the remain-
ing components. This approach guarantees correspondence between the conservation laws of the original and 
reduced network and the respective numbers of positive steady states23. This idea has been generalized to allow 
linear removal of some subsets of components that appear only with stoichiometry at most one in any reaction 
of a given network endowed with mass action kinetics14. Yet, structural conditions ensuring that the steady-state 
flux spaces of the reduced network are subset of the reduced network by removal of components of any stoichi-
ometry in networks endowed with arbitrary kinetics remain elusive.

Here we identify such a structural property for model reduction and show that it can be efficiently computed 
and applied in genome-scale metabolic networks from organisms across the kingdoms of life. The condition 
allows consideration of biochemical constraints and can, therefore, be invoked with or without assumptions 
on optimized biological function. The key advantage of the structural condition is that it can be applied to 
large-scale biochemical networks endowed with mass action kinetics, and under some restrictions, to networks 
endowed with arbitrary kinetics, while guaranteeing that the steady-state flux phenotypes of the original model 
are preserved in the reduced.

Results and discussion
Balancing of complexes as a structural condition for network reduction.  To illustrate the condi-
tion, we first introduce some key concepts from stoichiometric modelling of biochemical networks. A biochemi-
cal network is composed of irreversible reactions through which biochemical species acting as substrates are 
transformed into products. The biochemical network on Fig. 1a is composed of ten reactions that transform six 
species. The network structure is described by nodes that denote complexes, corresponding to the left- and right-
hand sides of the considered reactions, and edges representing the reactions. Therefore, the network on Fig. 1a 
contains eight complexes connected by ten reactions. The incoming and outgoing neighbourhoods of a complex 
are given by the complexes to which it is directly connected via incoming and outgoing reactions, respectively. 
For instance, the incoming neighbourhood of complex 2B is composed of complexes D and F, and the outgo-
ing neighbourhood comprises A + E and F. The stoichiometric matrix of the network, N , is then given by the 
product of the matrix, Y  , describing the species composition of complexes and the incidence matrix, A , of the 
corresponding directed graph (“Methods”, Supplementary Fig. S1)31,32. In addition, the reactions are weighted by 
non-negative numbers which correspond to fluxes of a steady-state flux distribution, v , which satisfies Nv = 0 . 
The steady-state condition implies that the concentrations of species are invariant in time, i.e. the species are 
balanced, whereby the production and consumption rates are the same.

An analogous condition on balancing can be defined for a single complex: Given a biochemical network, a 
complex is balanced in a set of steady-state flux distributions S if the sum of fluxes of its incoming and outgoing 
reactions is the same for every flux distribution in S . Clearly, complexes that act as sinks or sources, that only 
have incoming or outgoing reactions, respectively, cannot be balanced in a network without blocked reactions 
(i.e. reactions which carry no flux in every steady state the network supports). Further, a complex is consid-
ered trivially balanced if it includes a species that appears in no other complex in the network. This result is a 
consequence of the balancing of species due to the steady state assumption. A balanced complex that includes 
species all of which appear in other complexes are termed non-trivially balanced. For instance, complex C cannot 
be balanced as it is a sink, while D, A + E, and F are trivially balanced since species D, E, and F appear only in 
these complexes that have both incoming and outgoing reactions. Note that our definition of trivially balanced 
complexes extends the notion of an intermediate species in other reduction approaches23. Finally, 2A is a non-
trivially balanced complex, since A appears in two complexes of which one, A + E, is trivially balanced. In fact, 
by considering only the steady-state conditions, it is the interlinking of species into complexes that contributes 
to the formation of balanced complexes.

For a set S of steady-state flux distributions, every balanced complex can be readily identified by constraint-
based modelling (“Methods”). The approach amounts to determining that the minimum and maximum total 
fluxes around a complex are zero for all steady-state flux distributions in the set S . These conditions can be verified 
by linear programming that is efficient even for large-scale networks (“Methods”). The identification of balanced 
complexes can be further streamlined by easy screening of trivially balanced as well as sink and source complexes.

Networks in which all complexes are balanced are termed complex balanced, and they can be identified by 
calculating the structural property of deficiency34. Seminal theoretical results pinpoint that complex balanced 
networks do not exhibit exotic properties, like multistationarity and oscillations. However, it has not yet been 
addressed how one can identify individual balanced complexes and what the implications of their presence in 
the network are with respect to the capacity to exhibit particular phenotypic properties.

We next ask if balanced complexes are relevant for reduction of networks which are not complex balanced. To 
answer this question, we first consider the scenario with a network endowed with arbitrary kinetics. If a balanced 
complex has only one outgoing reaction, then the flux of this reaction can be expressed as a sum of the fluxes of 
incoming reactions. The balanced complex can then be safely removed since the flux of the outgoing reaction 
can be substituted with the respective sum of fluxes of the incoming reactions for the balanced complex. This is 
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concomitant to introducing a bipartite directed clique, connecting each complex in the incoming neighbour-
hood with the complex in the outgoing neighbourhood (Fig. 1b,d). Note that any loop edges introduced by this 
transformation can be removed, since they do not contribute to the balancing equations. For instance, A + E, F, 
and 2A can be removed as balanced complexes, resulting in the network on Fig. 1f; however, this cannot be done 
for the balanced complex D since it has more than one outgoing reaction. Since the removal of complexes in this 
way results in expressing one flux as a sum of others, the reduced network is unique and does not depend on 
the order of removing the balanced complexes. A similar idea has been used in the unbiased efficient reduction 
of stoichiometric models10, however, based on the coupling of reactions around balanced species and without 
the rewiring of reactions.

Attempting to remove a balanced complex with more than one outgoing reaction fails in general; however, 
under the constraint that all outgoing reactions are fully coupled (i.e. their flux ratio in every steady state is a 
unique constant) all outgoing reaction fluxes collapse into one and the balanced complex can be removed. Inter-
estingly, this condition is trivially met for networks endowed with mass action kinetics, since the ratio of fluxes 
of reactions outgoing from any complex is given by the ratio of the respective rate constants. Importantly, this 
removal can be carried out even if values for the rate constants are not specified, since the ratio is ensured to be 
constant. Therefore, under mass action, a balanced complex can be removed by introducing a bipartite directed 

Figure 1.   Balanced complexes for network reduction. (a) Toy example network borrowed from Shinar and 
Feinberg33, including six species, A–F, eight complexes, depicted as rectangles, and ten reactions, with rates v1
–v10 , each connecting two complexes. Balanced complexes are shown in orange, while non-balanced complexes 
are depicted in green. Balanced complexes 2A, A + E, and F have one outgoing reaction, while the balanced 
complex D has more than one outgoing reaction. Structural motif allowing removal of the balanced complex 
y (b) with single outgoing reaction, for an arbitrary kinetics and (c) with multiple outgoing reactions, for mass 
action kinetics. Removal of the complex amounts to substitution of variables, either with respect to reaction 
rates v or monomials of species concentrations xy , which can be represented by (d) network rewriting, for 
arbitrary kinetics and (e) additional scaling of reaction rate constants, with mass action kinetics. (f) Reduced 
network obtained by removing the balanced complexes 2A, A + E, and F; the loop reactions are shown in grey 
since they do not contribute to the stoichiometric matrix. (g) Reduced network obtained from the network in 
panel (f) after removal of the balanced complex D, assuming mass action. For simplicity, the rate constants are 
given as functions f (k) and h(k).
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clique of reactions with rescaled kinetic constants (see “Methods”, Fig. 1c,e). For instance, the balanced complex 
D can be removed, like the other balanced complexes in the network, resulting in a mass action network with 
fewer complexes and species, and reactions with modified kinetic parameters, as shown in Fig. 1g.

The usage of balanced complexes to reduce networks with mass action kinetics generalizes the removal of 
trivially balanced complexes in which species appear in a single complex with stoichiometry of one23. However, 
the proposed approach allows removal of species that participate in any number of complexes with any stoi-
chiometry, provided they appear only in balanced complexes. It also provides a sound extension of a reduction 
approach in which complexes are–arbitrarily–assumed to be balanced18—and leads to biases in the model reduc-
tion since the complexes are not demonstrated to be balanced. In our approach, the conservation laws in the 
original network hold in the reduced, but not necessarily vice versa (see “Methods”). Therefore, if the original 
network has at most one positive steady state for any rate constants and values for the conservation moieties, 
then the reduced model also has at most one positive steady state for the rescaled rate constants23. Hence, 
analysis of the reduced model can help identify if multistationarity for the concentration of remaining species 
is precluded in the original, larger model if seminal, well-established conditions apply34. Note that, the removal 
of balanced complexes may result in removal of species, but may lead to an increase in the number of reactions. 
Most importantly, the steady-state concentration of any removed species in the process of model reduction can 
be expressed as a function of the concentrations of the species in the reduced model (Supplementary Fig. S2).

Reduction of a large‑scale kinetic model of Escherichia coli metabolism.  To verify that the pro-
posed approach could lead to reduction of metabolic networks endowed with mass action kinetics, we used the 
genome-scale7 and the so-called core35 kinetic metabolic models of E. coli. The core model is composed of 828 
species, 1474 irreversible reactions, and 1190 complexes, while the genome-scale model consist of 3002 species, 
5237 irreversible reactions, and 4371 complexes. Relying solely on the structure of the network, we identified 
484 and 1639 balanced complexes in the core and genome-scale kinetic models, respectively, of which 77.7% and 
75.4% were trivially balanced. For instance, the complexes ’Phosphoenolpyruvate + FBP-Phosphoenolpyruvate-
complex’, ‘ACALD-acetaldehyde-NAD-CoA-complex’, and ‘3-phospho-glycerate + PGK-3-phospho-glycerate-
complex’ are trivially balanced since the respective enzyme–substrate biochemical complexes appear only in 
these network complexes. In addition, the complex ‘3-phospho-glycerate + ICL’ is non-trivially balanced, since 
the species 3-phospho-glycerate appears only in two complexes (‘3-phospho-glycerate + ICL’ and ‘3-phospho-
glycerate + PGK-3-phospho-glycerate-complex’ x) and the complex ‘3-phospho-glycerate + PGK-3-phospho-
glycerate-complex’ is trivially balanced. From the 484 and 1639 balanced complexes 23% and 26% had only one 
outgoing reaction; for instance, ‘l-aspartate + PRASCS-ATP-complex’, ‘ATP + PRASCS’, and ‘glucose-6-phos-
phate + FBP’ are balanced complexes with such properties (see Supplementary Figure S3). The removal of such 
balanced complexes led to a decrease in the number of species by ~ 14% in comparison to both investigated 
kinetic models. Both models consider elementary reaction steps and, therefore, model species can be of three 
types: metabolite, enzyme or metabolite-enzyme biochemical complex. We observed that ~ 95% of the species 
removed denoted species that represent metabolite-enzyme biochemical complexes. This is in line with the com-
monly applied assumption in deriving kinetics that are based on mass action (e.g. Michaelis–Menten), and is due 
to the fact that metabolite-enzyme complexes, as species, participate in single network complexes that are con-
sequently trivially balanced (as illustrated in the examples above). When considering the additional restriction 
due to mass action kinetics, we could apply the approach in a second round of reduction. This led to the identi-
fication of 694 and 2708 additional non-trivial balanced complexes in the core and genome-scale kinetic model, 
respectively. Removal of these balanced complexes led to ~ 99% decrease in the number of species in comparison 
to the original model for the core as well as the genome-scale model. Therefore, the approach does lead to a sub-
stantial reduction in the number of species even when only the structure of the network was employed.

The reduced core kinetic model comprises: fumarate, succinate as well as ubiquinone-8 and ubiquinol-8, 
interconverted by fumarate reductase (FRD2) and succinate dehydrogenase (SUCDi) together with the related 
substrate-enzyme complexes (Fig. 2). In the reduced genome-scale model extracellular pyruvate, acetate, and 
l-glucose as well as enzymes exchanging those metabolites with the environment extend the set of species around 
fumarate reductase and succinate dehydrogenase that are found in the reduced core kinetic model (Fig. 2). 
Therefore, the steady-state concentrations of all other metabolites in these kinetic models can be expressed as 
functions of the few species that are present in the reduced model.

Reduction of large‑scale stoichiometric metabolic networks.  Motivated by the findings from the 
reduction of the core and genome-scale kinetic models of E. coli metabolism, we next employed the proposed 
approach to inspect the reduction in the number of species in genome-scale metabolic models of different organ-
isms. To this end, we used the metabolic networks of twelve organisms to compare and contrast the reductions 
for the following scenarios: (i) all reactions are assumed to be reversible in contrast to the case when irrevers-
ibility constraints, included in the original models, are used, (ii) all reactions follow arbitrary kinetics or their 
fluxes are described by mass action kinetics, (iii) balanced complexes are determined with respect to the set of 
steady-state flux distributions compatible with reversibility in comparison to steady-state flux distributions at 
optimal specific growth rate. Note that reversible reactions are split into two irreversible reactions before apply-
ing the approach.

With arbitrary kinetics of reaction fluxes, the general observation was that invoking irreversibility led to 
only a small increase (< 7%) in the number of removed species across all organisms (Fig. 3a, Supplementary 
Table S1). The model of M. barkeri is an exception to this finding, with 30% increase in species reduction when 
considering reaction irreversibility. In addition, imposing constraints on biomass had negligible additional effect 
on the balanced complexes in majority of the networks, except in the models of P. putida and N. pharaonis, for 
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which there was an increase by 26 and 30% in the number of removed species, respectively (Fig. 3a). This finding 
demonstrated that the balanced complexes are a property of the network structure and steady-state constraint, 
rather than due to optimality conditions imposed.

Consideration of mass action kinetics led to an increase in model reduction of, on average, 26% in comparison 
to the case of arbitrary kinetics when all reactions are considered reversible (Fig. 3a,b). In contrast to the case of 
arbitrary kinetics, the assumptions of reaction irreversibility has a large effect on the reduction in the number 
of species in comparison to the case when all reactions are assumed to be reversible (Fig. 3b). On average, we 
observed 23% increase in species reduction when reaction irreversibility is considered. Finally, imposing con-
straints on biomass had no effect on the balanced complexes and, thus, on the number of removed species, when 
mass action was considered (Fig. 3b).

Figure 2.   Illustration of the reduced core and genome-scale kinetic models obtained by reduction of a mass 
action kinetic model. The reduced core kinetic model comprises ten components and ten reactions, while the 
reduced genome scale kinetic model consists of 13 compounds and 16 reactions. (fumarate reductase—FRD2, 
succinate dehydrogenase—SUCDi). The concentration of the components present in the reduced networks can 
be used to model the concentration of all other components in the original networks.

Figure 3.   Reduction of genome-scale metabolic networks. Genome-scale metabolic models of twelve 
organisms from all kingdoms of life are used in the reduction (a) with arbitrary kinetics and (b) assuming 
mass action kinetics. The analysis also includes two large, mass-action kinetic models of E. coli. Shown is the 
percentage of reduction in the number of species with respect to the original model.
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Altogether, when irreversibility for reactions in the original model was considered, the proposed approach 
led to no reduction in the number of species in the Arabidopsis thaliana core, M. musculus, N. paharaonis and 
P. putida model and reached up to 55.1% reduction in the model of M. barkeri. On average we observed 18% of 
species being removed across all considered networks. Instead, when mass action kinetics was considered, we 
found a reduction between 24.3% for E. coli to 85.7% in T. maritima, with an average of 44% across the considered 
models. These results demonstrated that substantial reduction in the number of removed species is possible, while 
ensuring that the key network properties at steady state are matched between the original and reduced network. 
In addition, the reduction eliminated up to 17 (12%) species which enter complexes with stoichiometry larger 
than one (Supplementary Table S2), which is not possible with the existing approaches.

As a general note, the differences in the reduction of the considered models is due to the differences in the 
number and positioning of balanced complexes with the specific motif of having one outgoing–many incoming 
reactions (or vice versa) in the specific scenarios considered. In comparison to the reduction of the large-scale 
mass action model of E. coli, its counterpart with arbitrary kinetics can be reduced to a smaller degree since its 
balanced complexes that have the motif structure for reduction are subset of such balanced complexes when 
mass action is employed. Furthermore, the differences between the scenarios are due to the additional constraints 
imposed in each of the scenarios.

Next, we investigate compartment-wise species reduction between the original and reduced models, con-
sidering reaction irreversibility and mass action kinetics. In doing this analysis, we determined the balanced 
complexes in the entire network, and then investigated the effect of the reduction by using information about 
compartments in the respective models. The general observation was that models comprising extracellular space 
show large reduction for this compartment. The reduction ranged from 26% for N. pharaonis to 100% in T. mar-
itima (Supplementary Table S3). On average, the reduction over the ten models including extracellular space 
as a compartment was 65.5%. The average reduction for the cytoplasmic part of bacterial and archaea models 
was 49%. Compartmented models of S. cerevisiae, C. reinhardtii and A. thaliana showed largest reduction in 
mitochondria, chloroplast and cytosol, respectively (Supplementary Table S3).

Using the two genome-scale metabolic models of E. coli and S. cerevisiae we compared the set of metabolites 
in the original and reduced models using Jaccard similarity (see “Methods”). The original models show Jaccard 
similarity of 0.27 for the set of metabolites, while the reduced models have Jaccard similarity of 0.26. A similar 
observation was made comparing bacterial models of E. coli, M. tuberculosis, and N. pharaonis for which at least 
95% of the metabolite names could be translated to a common name space. Here, we found Jaccard similarity 
across the set of metabolites of 0.19 for the original models and 0.16 in the reduced models. These finding dem-
onstrated that the reduction keeps the differences between the original models largely unchanged in comparison 
to the differences between the reduced models across organisms.

Predictions of specific growth rate from reduced models.  To showcase the benefit of the reduc-
tion approach, we considered the reduced models that still include the metabolites (i.e. species) participating 
in the biomass reactions from the original model (with specified irreversibility). This allows us to compare the 
simulated specific growth rate between the original and reduced models. The resulting reduced models included 
4% fewer metabolites in the model of A. thaliana to 28% in the model of M. musculus (Fig. 4b). Our findings 
demonstrate that optimal specific growth rate predicted by the original models are exact match for those of the 
reduced models (Fig. 4a). Thus, this analysis showcases that the proposed property can be used to remove some 
well-defined balanced complexes (e.g. those that do not include the building blocks of biomass) without affect-
ing specific growth rates, thus, allowing more targeted applications.

Analyses of flux variability and essentiality of reactions.  Next, we employed the reduced models 
used in the prediction of specific growth rates to investigate the difference in the ranges derived from flux vari-
ability analysis36. To this end, we calculated the ranges of reactions that are present in the reduced and original 
model following standard procedure (36“Methods”). We found that seven of the reduced models showed the 
same flux ranges at the optimal specific growth rate determined from FBA as those in the original model. In the 
remaining five models of C. reinhardtii, M. acetivorans, M. tuberculosis, T. maritima and S. cerevisiae, 71% to 97% 
of reactions shared between reduced and original model had the same flux ranges at the optimal specific growth 
rate determined from FBA as those in the original model (Supplementary Fig. 4). For the remaining reactions, 
we observed that in C. reinhardtii 94% showed lower flux ranges, while all remaining reactions for T. maritima 
showed larger flux ranges. In models of M. acetivorans, M. tuberculosis and T. maritima we found that 47% to 
76% of the remaining reactions showed larger flux ranges in the reduced models in comparison to the original. 
The reason why fluxes of some reactions are larger is because the steady state flux distributions of the original 
network are also steady state flux distributions in the reduced network; however, the reduced network may admit 
additional steady states (see “Methods”). These findings demonstrate that the model reduction leaves the flux 
variability properties (largely) unchanged.

We also inspected the extent to which the reduction affects the predictions of reaction essentiality. To this 
end, we determined the essential reactions in the reactions shared between the reduced and original models. We 
found that every reaction that is shared between an original model and its reduced counterpart and is essential 
in the original model is also essential in the reduced. In addition, the set of reactions introduced during model 
reduction, e.g. reaction A → C , introduced by removal of balanced complex B from the path A → B → C , 
contains no essential reactions for the models of A. niger and N. pharaonis. In contrast, for the models of M. 
acetivorans and T. maritima all reactions in these sets are essential. For the remaining models, the percentage 
of essential reactions in the set of introduced reactions is between 19 and 50%. The essentiality of reactions 
introduced during model reduction likely results from lumping of at least one essential reaction in the original 
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model. Therefore, we conclude that the proposed reduction does not alter the findings regarding the essentiality 
of shared reactions and can be used to infer biological role of reactions.

Conclusion
The constraint-based modelling framework provides a powerful suite of approaches to study the genotype-
to-phenotype mapping not only in a single cell, but also across multiple unicellular organisms in a microbial 
community and interconnected tissues in a multi-cellular organism. However, these advanced applications are 
associated to increases in the model size which lead to computational and numerical issues in predicting phe-
notypes of interest. Here, we proposed a fully automated (i.e. unbiased) approach for reduction of models with 
arbitrary or mass action kinetics at steady state. The approach is based on identifying balanced complexes which 
contain either a single outgoing reaction, in the case of arbitrary kinetics, or more than one outgoing reaction, 
for mass action kinetics. We also show that the structural condition can be efficiently identified in large-scale 
networks, assuming they operate at steady state. Moreover, such balanced complexes can be safely removed 
from the network as their removal translates into identification of substitution of variables which preserves the 
steady-state flux distributions of the original model. In addition, the variable substitution can be graphically 
represented by rewriting the network, leading to a reduced network, and can be carried out without knowledge 
of kinetic parameters (in the case of mass action kinetics). Most importantly, if a species appears only in bal-
anced complexes, it can be removed from the network and, under the assumption of mass action kinetic, its 
steady-state concentration can be represented as functions of the steady-state concentrations of the metabolites 
that remain in the reduced network.

Our extensive analysis of genome-scale kinetic models endowed with mass action show that more than 
99% of the metabolites can be removed following the proposed reduction. In addition, since the approach is 
constraint-based, it also allows us to examine if reaction reversibility or assumption on cellular tasks (e.g. growth) 
that are optimized have an effect on the size of the reduced model, in terms of number of species. The analysis 
of genome-scale metabolic models across kingdoms of life show that reaction reversibility and assumption of 
kinetics have the largest effect on the size of the reduced models, leading to up to 85% reduction in the number 
of species. Nevertheless, we show that if the reduction is performed such that no metabolite participating in the 
biomass reaction is removed, the reduced model is not affected with respect to predicted growth phenotypes.

We would like to emphasize that once the balanced complexes are identified, it is a choice of the modeller 
which balanced complexes should be removed in the specific analysis case. For instance, we showed that the 
removal of the balanced complexes, that do not include species that participate in a biomass reactions, does not 
affect the prediction of specific growth rates. In this scenario, we also showed that the results from flux variabil-
ity analysis and predictions of essential reactions in reduced and original models are in very good agreement.

Since the proposed approach is based on a property that can be efficiently determined even in large-scale 
networks, it provides the means for reduction of multi-tissue and microbial community models. Moreover, it 
opens the possibility to study the relationship of key properties, such as robustness and multistationarity, between 
the original and reduced models. However, these applications will have to ensure imposing additional constraints 
on the removal of the balanced complexes that do not affect the conservation laws in the network. Finally, our 

Figure 4.   Prediction of specific growth rate in original and reduced models. For direct comparison it is ensured 
that metabolites that comprise the biomass reaction in the original model remain in the reduced model. (a) 
Specific growth rate estimated from the original and reduced models assuming arbitrary kinetics. The red 
marked data point are two overlapping points, as shown by the inlay on a smaller scale. (b) Model reduction on 
the level of metabolites.
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approach opens the possibility for unbiased model reduction by seeking to identify other types of structural 
motifs in large-scale metabolic networks.

Methods
Models and their processing.  The genome-scale metabolic models of twelve organisms (Supplementary 
Table S1), were obtained from their original publications37–48. The blocked reactions, reactions with absolute flux 
values less than 10–9 mmol/gDW/h, in the metabolic network were determined by Flux Variability Analysis36 
and were removed from the original models. Each reversible reaction was split into two irreversible reactions. 
Two cases for the irreversible reactions originally declared in the model were considered: (1) all were treated as 
reversible (and were split, as aforementioned) or (2) were maintained as irreversible. The lower bounds for the 
irreversible reactions were set to zero, while the upper bounds were fixed to the maximum of the upper bounds 
in the original model. Optimum biomass was determined per Flux Balance Analysis49 with the assumed reaction 
reversibility.

Identification of balanced complexes.  Let Y  denote the non-negative matrix of complexes, with rows 
denoting species and columns representing complexes. The entry yij denotes the stoichiometry with which spe-
cies i enters the complex j . Let A denote the incidence matrix of the directed graph with nodes representing 
complexes and edges denoting reactions. The rows of A denote the complexes and its column stand for the reac-
tions. Since the graph is directed, each column of A has precisely one − 1 and one 1 entry, corresponding to the 
substrate and product complexes of the respective reaction. The stoichiometric matrix is then given by N = YA.

The sum of fluxes around the complex i is given by the i th entry of the vector Av , denoted by [Av]i . A com-
plex is balanced in the set of flux distributions S = {v|Nv = 0, vmin ≤ v ≤ vmax} if for every v ∈ S , it holds that 
[Av]i = 0 . This condition can be verified by determining that the minimum and maximum values of [Av]i equal 
to 0 for each complex i , separately. The latter can be ensured by solving two linear programs:

s.t.

The dependence of balanced complexes on the flux bounds is addressed in follow-up studies50.

Removal of balanced complexes.  Suppose that the complex y is balanced and that it participates in l  
incoming and m outgoing reactions as a product and substrate complex, respectively. Let yi1 ,…yil and yj1 ,…yjm 
denote the substrate and product complexes of the l  incoming and m outgoing reactions.

Let us assume that m = 1 , i.e., the complex y is incident on only one outgoing reaction. Due to the balancing of 
y , vj1 =

∑l
p=1vip . The removal of the complex y without affecting the steady-state fluxes entails: (i) removal of the 

l + 1 reactions incident on y from the original network and (ii) insertion of l  reactions with a substrate complex 
from yi1 ,…yil and a product complex yj1 . This amounts to substituting every occurrence of vj1 by 

∑l
p=1vip , preserv-

ing steady-state flux solutions (i.e. the reduced network includes all steady-state flux solutions of the original).
Let us now assume that m ≥ 1 and that the network is endowed with mass action kinetics. The flux of a reac-

tion i with complex y(i) as a substrate is given by vi = kix
y(i) , where xy(i) =

∏

j xj
yji and yji denotes the stoichio-

metric coefficient of species j in the complex y(i) . Due to complex balancing, then, xy(i)
∑m

q=1kjq =
∑l

p=1kipx
y(ip) . 

The removal of the complex y(i) without affecting the steady-state values xyi of the complexes entails: (i) removal 
of the l +m reactions incident on y(i) from the original network and (ii) insertion of ml reactions with a substrate 
complex from y(i1),…y(il) and a product complex from y(j1),…y(jm) . The rate constant of the reaction with y(ip) 
and y(jq) as substrate and product complexes, respectively, is given by 

kip kjq
∑m

q=1kjq
 . This amounts to substituting every 

occurrence of xy(i) by 
∑l

p=1

kip
∑m

q=1kjq
x
y(ip) in NKϕ(x) = 0 , preserving the steady-state flux solutions with respect 

to ϕ(x) (rather than fluxes, in the case for arbitrary kinetics, above). Note that ϕ(x) is a vector collecting xy over 
all complexes, while K is the matrix with as many rows as reactions and as many columns as complexes, whose 
entry kij corresponds to the rate constant of the reaction i having complex j as a substrate or zero, otherwise.

Preservation of steady states in the reduction process.  Let i index any species/metabolite and v be 
any steady state flux distribution. It follows from the steady state property Nv = YAv = 0 that [YAv]i = 0 ; hence 
∑

jYij[Av]j = 0 , where Yij is the stoichiometric coefficient by which metabolite i participates in complex j.
Let us consider a single elimination step in this process, in which a particular balanced complex, say k , is 

being removed as explained above. Due to the specific way this removal was defined, the algebraic sum of fluxes 
for any complex j in the reduced network, that is, [Av]j remains intact, while this sum for the removed complex 
k , that is, [Av]k equals zero like that of any other balanced complex. It follows that the steady state equation for 
metabolite i , that is, 

∑

jYij[Av]j =
∑

j �=kYij[Av]j + Yik[Av]k = 0 still holds after the elimination.

min/max[Av]i

YAv = Nv = 0

vmin ≤ v ≤ vmax .
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Since the same argument holds for any arbitrary metabolite i , it follows that the whole metabolic network will 
remain at steady state after each removal step. Therefore, any steady state of the original network is conserved at 
every elimination step and hence, all along the way up to the last reduced model.

Correspondence of conservation laws.  The removal of a balanced complex corresponds structurally to 
substituting of any directed path of two reactions, N.i and N.j , on which the balanced complex is the middle node, 
with another reaction, given by reaction vector N.i + N.j . Clearly, N.i + N.j ∈ span

({

N.i, N.j

})

 . It follows that 
every new reaction in the reduced network lies in the column span of N . Denoting the stoichiometry matrix for 
the reduced network by N  , im(N) ⊆ im(N) yields ker

(

NT
)

⊆ ker
(

NT
)

.Therefore, for every conservation law, 
�
Tx = θ that satisfies � ∈ ker

(

NT
)

 , one also has � ∈ ker
(

NT
)

 , which means the conservation law is preserved 
in the reduced network. . However, a conservation law µTx = θ in the reduced network may not necessarily 
correspond to one of the original network, unless further constraints are imposed on the balanced complexes 
being removed.

Predictions of specific growth rates.  We calculate optimal specific growth rates by flux balance analysis 
(FBA) in models with considered irreversibility and compare the predictions before and after removal of bal-
anced complexes. Blocked reactions are removed from the original network and each reversible reaction is split 
into two irreversible reactions. To avoid cases where no biomass production is ensured in the original model 
after removal of blocked reactions due to numerical issues, we set the lower bound of the biomass reaction to 
5% of the optimal biomass obtained from the model including blocked reactions. In addition, we ensure that the 
biomass reaction, whose flux is optimized during FBA, is still included in the reduced model. Therefore, we only 
remove balanced complexes that do not include metabolites (i.e. species) participating in the biomass reactions 
from the original model.

Analysis of flux variability and essentiality of reactions.  We conducted flux variability analysis36 at 
99% of optimal biomass for all reactions that appear in both the original and reduced models considering any 
kinetic. We then classified the reactions into those that do and do not show differences in the flux ranges between 
each original and corresponding reduced model. Similar analysis was conducted with respect to reaction essen-
tiality: A reaction that appears in both an original and corresponding reduced model was knocked out and the 
effect on growth was examined. The reactions were classified as those that are essential or not in each model.

Data availability
The approach is implemented and available together with all data needed to reproduce the findings at https://​
github.​com/​ankue​ken/​netwo​rk_​reduc​tion_​by_​balan​ced_​compl​exes.
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