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ABSTRACT
Objectives: The possible occurrence of a highly
pathogenic influenza strain is of concern to health
authorities worldwide. It is known that during past
influenza pandemics developing countries have
experienced considerably higher death rates compared
with developed countries. Furthermore, many
developing countries lack appropriate pandemic
preparedness plans. Mathematical modelling studies to
guide the development of such plans are largely
focused on predicting pandemic influenza spread in
developed nations. However, intervention strategies
shown by modelling studies to be highly effective for
developed countries give limited guidance as to the
impact which an influenza pandemic may have on low-
income countries given different demographics and
resource constraints. To address this, an individual-
based model of a Papua New Guinean (PNG)
community was created and used to simulate the
spread of a novel influenza strain. The results were
compared with those obtained from a comparable
Australian model.
Design: A modelling study.
Setting: The towns of Madang in PNG (population
∼35 000) and Albany (population ∼30 000) in
Australia.
Outcome measures: Daily and cumulative illness
attack rates in both models following introduction of a
novel influenza strain into a naive population, for an
unmitigated scenario and two social distancing
intervention scenarios.
Results: The unmitigated scenario indicated an
approximately 50% higher attack rate in PNG compared
with the Australian model. The two social distancing-
based interventions strategies were 60–70% less
effective in a PNG setting compared with an Australian
setting.
Conclusions: This study provides further evidence
that an influenza pandemic occurring in a low-income
country such as PNG may have a greater impact than
one occurring in a developed country, and that PNG-
feasible interventions may be substantially less
effective. The larger average household size in PNG,
the larger proportion of the population under 18 and
greater community-wide contact all contribute to this
feature.

INTRODUCTION
Novel influenza virus strains have resulted in
pandemics costing millions of lives1 and the
possible occurrence of a highly pathogenic
virus strain is of concern to health authorities
worldwide.

ARTICLE SUMMARY

Article focus
▪ This modelling study investigated the impact of

an influenza pandemic on a community in Papua
New Guinea (PNG) and compared it with that in
a similar-sized community in Australia.

▪ The effectiveness of social distancing interven-
tions was determined using the PNG model and
contrasted with the Australian model.

Key messages
▪ A moderately transmissible pandemic occurring

in PNG may be expected to result in a larger
illness attack rate compared with that in a devel-
oped country setting.

▪ Feasible social distancing intervention strategies
may be significantly less effective in PNG com-
pared with the Australian setting.

▪ Compared with Australia, the larger household
sizes contribute both to the larger attack rates in
PNG and to the lower effectiveness of the
interventions.

▪ The larger proportion of children in PNG and the
fact that 50% do not attend school lessen the
effectiveness of school closure interventions.

Strength and limitations of this study
▪ The findings are a first step in understanding

how an influenza pandemic will impact on a low-
income country.

▪ As with all modelling studies obtaining high-
quality field data with which to ‘populate’ models
is crucial and accessing such data in countries
such as PNG is a challenge.

▪ These results and those from future research will
permit better pandemic planning and allow inter-
vention strategies to be tailored to the specific
demographics and resource constraints found in
developing countries.
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It has been shown under laboratory conditions that
the highly pathogenic H5N1 avian influenza strain may
reassort or mutate to become readily transmissible
between humans.2 In response to the threat of influenza
pandemics, most countries have developed pandemic
preparedness plans.3–8 However, the level of complete-
ness of these plans with regard to WHO guidelines9

varies dramatically between developed high-income
countries and developing low-income countries.7 8

Low-income countries suffer the highest rates of mor-
bidity and mortality from influenza pandemics. Data
from the 1918/1919 pandemic suggest much higher
death rates in India compared with Europe and the
USA. While in northern Europe and the USA death
rates were consistently below 1%, over 4.3% average
mortality was reported from India, with some Indian
provinces exceeding death rates of 7%.10 11 Even in the
mild H1N1 pandemic of 2009, 59% of the estimated
284 500 deaths occurred in Africa and South-East Asia.2

These differences are most likely due to the significant
association of influenza mortality with comorbidities
usually absent in the developed countries (such as
chronic malnutrition, malaria, tuberculosis, pneumonia
and HIV).12 Furthermore it has been shown that the
increased death rate due to an influenza pandemic is
strongly associated with per capita income.11 It is appar-
ent that the burden of the next pandemic will also be
focused overwhelmingly on the developing world, a
point made by the WHO and others.5 11 13–15

A substantial number of pandemic influenza models
have been constructed in the past decade. A key goal of
this effort is to determine the effectiveness of interven-
tions, in terms of their ability to reduce infection and con-
sequential death rates. Although it has been recognised
that the major burden of mortality from influenza pan-
demics is suffered by low-income countries,5 11 16 the
primary focus of the vast majority of these models is on
examining intervention effectiveness in developed (eg, the
USA and European countries17–20) and middle-income
countries (eg, Thailand21 22). Given the markedly differ-
ent demographic and community structure, as well as
resource and infrastructural constraints in comparison
with developed countries, these models have limited cap-
ability to predict the impact of an influenza pandemic on
low-income countries.23 In addition, many low-income
countries are located in tropical or subtropical regions
where the timing and impact of influenza epidemics are
more poorly understood than in temperate regions, where
they are known to have a well-defined winter season.15

To address this ‘modelling gap’ an individual-based
disease transmission model of pandemic influenza has
been developed for Papua New Guinea (PNG), based
on the methods used previously to develop a pandemic
influenza model of Albany, Western Australia.20 24 25

The chosen location of Madang, a town of approxi-
mately 35 000 on the northern coast of the island of
New Guinea has, along with all of PNG, different demo-
graphics and individual-to-individual contact patterns

compared with those in developed countries. PNG has
an annual per capita income of about US$2500—and is
thus at a similar level of development as many African
nations.26

The model was used to describe the spread of a novel
influenza strain after introduction into the community.
The resulting illness attack rate was determined together
with data indicating where person-to-person transmis-
sion occurred. An unmitigated outbreak and two out-
breaks with PNG-feasible intervention strategies activated
were simulated and the results compared with those
obtained using the Albany, Australia model.

METHODS
Census and country-wide data from the PNG National
Statistics Office27 together with data collected in a field
survey in Madang were used to construct the Madang
model. Following the methodology used to construct the
Albany model, each household is explicitly represented,
with occupants in one of seven age categories. Schools,
workplace and other mixing hubs were also explicitly
represented. Individuals were allocated to these mixing
hubs according to their age category, so connecting house-
holds and hubs as shown in figure 1. Using virus intrinsic
transmission characteristics calibrated with the Australian
model, simulations were performed using the Madang
model. These simulations captured the day-to-day suscep-
tible, exposed, infectious and recovered/immune infec-
tion profile of the population following introduction of a
novel strain of influenza into the modelled community,
assuming no existing immunity.28

Madang demographics
Madang model development used the most recent
census data from 2001, other PNG government data and
additional data collected in our field survey.29Census
data provided the location groups of approximately 50
adjacent households, known as the census unit (CU).
The specific demographics of each household in
Madang in terms of number of individuals, their ages
and occupation of adults was also provided by the
census and each individual is uniquely identified in the
model.
From July to September 2011 we also conducted a

survey in Madang to obtain data on the number of
people working in smaller workplaces, school class sizes,
market sizes and the number of people attending the
major tertiary education centres in Madang (Divine
Word University (DWU), Madang Teachers College,
Madang Technical College and Madang Maritime
College). We asked the headmasters of schools and col-
leges, the human resource department at DWU and
business owners of small-to-medium scale businesses
about the respective numbers and, if no records existed
relied on their estimates. We also obtained estimates on
the size of informal settlements within the town bound-
aries from the Madang provincial government. The data
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obtained in the survey are presented in online supple-
mentary table A1.
These data allowed for the construction of an explicit

contact network linking households, schools, workplaces
and other meeting places by allocating individuals to
workplaces and schools, as with the Albany model.10

Contact network
The model captures explicit person-to-person contact
with the contact network describing population mobility
occurring between households, schools, workplaces and
the wider community as shown in figure 1. The virus
spreads through the community due to this mobility, as
transmission occurs between individuals when they are
co-located, possibly following a move from one location
to another.
The number of contacts made by each individual each

day in school, work and community settings were
adjusted to reproduce the proportion of cases occurring
in different settings as reported by empirical studies, spe-
cifically 40% of infections occurred in households, 30%
in schools and workplaces and 30% in the wider com-
munity.30–32 Contacts within schools and workplaces
occurred in fixed-size mixing groups of maximum size
10. Within mixing groups contact was assumed to be
homogeneous. Community contacts occurred between
randomly selected individuals, weighted towards pairs of
individuals located in neighbouring households.
Each household contains uniquely identified indivi-

duals. Children and adults are assigned by an allocation
algorithm to school classes and workplaces according to
age based on class sizes and employee numbers
obtained in the field survey. The field survey described
above revealed that 50% of school-age children do not
attend school, and this percentage is thought to be
similar to most urban areas in PNG, with still lower rates
in rural areas. Of those children not attending school

50% are allocated to neighbourhood hubs, as described
below. In addition to contact occurring in households
and mixing hubs, community contact is introduced to
capture mixing which occurs out with these locales and
in the wider community. The community contact occurs
at a fixed rate, similarly to the Albany model.

Madang-specific contact locations
Census data provided the occupation/activity of indivi-
duals, namely ‘wage-job’, ‘garden’, ‘business’ and
‘unemployed’. This was used to locate individuals
denoted as wage-job with known workplaces. The
numbers in this census category exceeded those found
in the survey of major workplaces and knowledge of
Madang suggested the creation of small, local work-
places to locate these additional adults and those in the
business category. Adults with gardening as their occupa-
tion work in family-owned gardens, subsistence farming
and generating produce for sale. For each household
containing a garden worker, a garden workplace was
created whose members matched those of the
household.
Three significant populations in Madang were not

counted in the 2001 census, namely, those in settlements
(unofficial housing areas also found in other parts of
the developing world), those in the University and
Chinese workers at a mine/processing site on the edge
of the town. The field survey provided numbers resident
in each of these locations: the two settlement areas in
Madang with ∼750 inhabitants each; ∼3000 students and
staff living in hostels at the DWU (a further ∼280 live in
households in town and appeared in the census) and
∼650 overseas workers accommodated in hostels at the
mine/processing site.
To model the settlements new households were

created and individuals allocated to mixing hubs to
match overall Madang demographics. The populations

Figure 1 Schematic diagram of

the Madang model.
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at the University and the mine-site had virtual house-
holds created to replicate friendship groups of average
size 7, and these locations were also designated as the
workplace for these individuals. Contact between the
wider Madang population and those at the University
involved household and neighbourhood contacts for
local students and staff living in town while resident staff
and students were restricted to community contact.
Contact between the mine-site and the town was also
restricted to community contact.
Census data classified a significant proportion (16.2%)

of adults as unemployed and not attending a designated
workplace.27 Knowledge gathered from the field survey
in Madang indicated that these adults do have daytime
contact with others outwith the home, such as working
or visiting the two informal markets. To address this
feature an additional daytime contact location (neigh-
bourhood hubs) was introduced, with unemployed
adults in each CU allocated to neighbourhood hubs of
10 individuals. In addition, these hubs also have 25% of
all local school age pupils allocated to them, accounting
for half of the 50% of school age children which do not
attend school.
The introduction of neighbourhood hubs, which do

not exist in the Albany model, give a model which the
field survey and local knowledge indicate is representa-
tive of the contact patterns found in urban PNG. A
Madang model which omits neighbourhood hubs, called
Madang-nnh (no neighbourhood hubs), is also used in
the simulation experiments and the resulting attack
rates are presented in table 1. This allows influenza
spread dynamics within the three models to be com-
pared and indicates the sensitivity of the Madang model
to the presence of the neighbourhood hubs.
The number of individuals in each of the daytime

locations for the Albany, Madang and Madang-nnh
models are presented in online supplementary table A1.
Additional information on the data used to construct
the Madang model is given in.33

Influenza transmission
Each individual has their influenza infection history
modelled using an SEIR approach and are in one of
four infection states, namely susceptible, exposed, infec-
tious or recovered and thus immune.28 The passage of
infection in each individual reflects the known time-
changing infectiousness profile (ie, virus shedding34) of
influenza at two discrete points-of-time every 24 h,
during a day-time and a night-time period.
Disease transmission is realised using a probabilistic

transmission function, implemented by the simulation
algorithm. Together with mobility data, the transmission
function captures disease spread throughout the modelled
community and may be adjusted to reflect pandemics with
various transmission characteristics, corresponding to the
basic reproduction number R0 of a particular influenza
strain, as discussed further in.20 24 25

It is assumed that infection transmission may occur
when an infectious and a susceptible individual come
into contact, in a stochastic fashion. Once infected, an
individual progresses through a series of infectious states
according to a fixed timeline, taking them from suscep-
tible, to exposed state, to infectious and then to an
immune, recovered state.28

The probability that an infectious individual infects a
susceptible was calculated using the following function.

Ptrans(Ii; Is)¼ bv�susc(Is)�Inf(Ii)�Household(Ii; Is)

The factors which determine probability of transmis-
sion from an infectious individual (Ii) to a susceptible
individual (Is) are the basic virus transmissibility (βv), the
age-based susceptibility of Is the current level of infec-
tiousness of Ii, and, if the contact between Ii and Is occurs
in a household, the household size Household(Ii, Is).
Details of the household size factor are given below;
further details of the influenza transmission model can
be found in ref. 35.
To achieve simulations for a particular basic reproduc-

tion number R0, βv was adjusted; details of the proced-
ure for estimating βv and R0 are given in ref. 20.
A pandemic with a basic reproduction number of 1.5 is
used in this study, and corresponds to some estimations
of the 2009 H1N1 pandemic36–39 and the 1957 and 1968
pandemics.40 41 Since it is virus intrinsic, we assumed
that βv was similar in Madang and thus calculated R0 in
the Madang and Madang-nnh models using the βv corre-
sponding to an R0 of 1.5 in the Albany model. Details of
parameter settings used in each model are given in
online supplementary table A2.

Simulation
A simulation algorithm, realised in the C++ program-
ming language, manipulates the underlying demo-
graphic model and captures both population mobility
and the time-changing infectivity profile of each individ-
ual. Each individual has their infectivity status denoted
by one of the four (S, E, I, R) states at any time point
during the duration of the simulated period. The simu-
lation algorithm captures the state of the whole popula-
tion twice per day, a daytime point-in-time snapshot and
an evening snapshot, with individuals (possibly) moving
locations between successive day or night periods, such
as household to school or workplace for the day phase,
returning home for the night period. Individuals come
into contact with other individuals on a one-to-one basis
in each location, with possible influenza transmission
then occurring.
Individuals in each household and contact hub make

contacts within a close-contact mixing group, taken to
be the entire household or a subset of larger hubs, and
also make additional non hub-based random community
contacts. The individual-to-individual transmission prob-
ability in larger households was moderated by household
size using data from a study by Cauchemez et al42 The
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reduction of the probability of within-household trans-
mission with household size is also shown in online
supplementary figure A1. This reflects the assumed
reduction in pairwise contact in households with greater
than three members and is significant in the Madang
context, where the average household size is 6.32 com-
pared with 2.54 in Albany.
Using the contact, mobility and transmission features

described above, stochastic simulations of influenza
spread in Madang were conducted. All simulations were
repeated 40 times with random numbers controlling the
outcome of stochastic events (the locality of seeded
infected individuals and the probability of transmission)
and the results were averaged. Analysis of this simulation

model has shown that the 40-run mean attack rate is
highly unlikely (95% CI) to differ by more than 1.2%
from the mean attack rate of a much larger set of
experiment repeats.20 Where 95% CIs are reported in
the results, these were calculated from the mean and SD
of 40 randomly seeded simulation runs, using the
normal approximation method.
One new infection per day was introduced into the

population during the whole period of the simulations,
and randomly allocated to a household.
This seeding assumption of one case per day was

chosen to reliably begin a local epidemic in every sto-
chastic simulation. For the transmission characteristics
described above, analysis shows that seeding at this rate

Table 1 Simulation outcomes of no intervention, school closure and rigorous social distancing (School Closure+WR+CCR)

scenarios

Albany model Madang model Madang-nnh model

No intervention

R0 1.5 1.88 1.74

(1.47 to 1.54) (1.84 to 1.93) (1.70 to 1.79)

Illness attack rate 31.7% 46.6% 40.8%

(31.3 to 32.0) (46.4 to 46.7) (40.6 to 41.0)

Illness locations

Households 37.8% 48.7% 51.8%

(37.5 to 38.0) (48.6 to 48.9) (51.6 to 52.0)

Hubs 32.5% 30.5% 25%

(32.3 to 32.7) (30.3 to 30.6) (24.8 to 25.1)

Community 27.9% 20.1% 22.2%

(27.7 to 28.1) (19.9 to 20.1) (22.1 to 22.3)

Imported 1.8% 0.7% 1%

(1.7 to 1.8) (0.72 to 0.76) (0.96 to 1.01)

Intervention: school closure

Illness attack rate 16.3% 42.2% 35.4%

(15.9 to 16.7) (42.0 to 42.4) (35.2 to 35.7)

Illness locations

Households 42.8% 53.2% 56.4%

(42.2 to 43.4) (53.0 to 53.4) (56.2 to 56.6)

Hubs 20.9% 24.9% 19%

(20.5 to 21.3) (24.8 to 25.0) (18.9 to 19.2)

Community 31.8% 21% 23.3%

(31.3 to 32.3) (20.8–21.0) (23.2 to 23.5)

Imported 4.5% 0.9% 1.3%

(4.4 to 4.6) (0.92 to 0.96) (1.26 to 1.32)

Intervention: school closure+WR+CCR

Illness attack rate 5.4% 17.4% 12.5%

(5.2 to 5.7) (17.1 to 17.7) (12.3 to 12.7)

Illness locations

Households 42.1% 67.9% 67.9%

(40.8 to 43) (67.3 to 68.5) (67.0 to 68.5)

Hubs 27.4% 13.2% 10.7%

(25.8 to 28.8) (13.0 to 13.4) (10.4 to 10.9)

Community 15.1% 15.2% 16%

(14.6 to 15.5) (15.0 to 15.4) (15.8 to 16.2)

Imported 15.4% 3.7% 5.4%

(15.1 to 15.7) (3.6 to 3.8) (5.3 to 5.5)

Mean simulation outcomes of no intervention, school closure and rigorous social distancing presented as percentages and their
corresponding 95% CI (presented in parentheses, shaded rows). WR, workforce reduction and CCR, community contact reduction; Hubs
represent schools, workplaces and neighbourhoods together; Community represents general community; Imported represents seeded
cases.
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for 7 days results in a sustained epidemic in >97% of the
simulation runs and 100% with 2 weeks of seeding, with
higher percentages for the higher transmissibility scen-
arios. Seeding at this rate is continued throughout the
simulation to capture the case where an epidemic may
be initially suppressed by a rigorous intervention strat-
egy, but may subsequently break out if intervention mea-
sures are relaxed.
After the beginning of a sustained local epidemic, any

subsequent variation in the amount of seeding has very
little effect on the progress of the local epidemic, as the
number of imported cases is much smaller than those
generated by the local epidemic. Preliminary analyses
using the present model have shown that even if the
seeding rate is increased to five infections per day, after
7 days the number of infections generated from the self-
sustained local epidemic is twice the number of
imported infections, and by 14 days local infections out-
number imported infections by a factor of 8.
The simulation period was divided into 12 h day/night

periods and during each period a nominal location for
each individual was determined. This took into consider-
ation the cycle type (day/night, weekday/weekend), infec-
tion state of each individual and whether child supervision
was needed to look after a child at home. Individuals occu-
pying the same location during the same time period were
assumed to come into potential infective contact. Details
of the simulation procedure are presented in ref. 20.

Interventions
The effectiveness of social distancing interventions, such
as school or workplace closure, may be quantified by com-
paring the passage of the influenza virus in the community
with and without interventions activated, and presented as
the reduction in the daily and cumulative illness attack
rates. Pharmaceutical-based interventions were not consid-
ered as antiviral agents may only be available in limited
quantities in a PNG setting, while a vaccination campaign
would face significant delay, supply and delivery con-
straints. Two intervention strategies considered feasible in
a PNG setting were examined. These were: school closure
involving all schools, with home isolation of all affected
children; and a more rigorous strategy involving school
closure coupled with 50% reductions in community-wide
contact, workplace participation and contact in neighbour-
hood hubs.
Both Madang models, (with and without neighbour-

hood hubs), were used to compare a pandemic in PNG
with one occurring in Albany, Australia. Simulations
were conducted involving: no interventions; only school
closure applied; and rigorous social distancing, for each
of the three models.

RESULTS
Synopsis
General comparative trends are presented in table 1,
were the Albany and Madang models are compared. For

a pandemic in a developed country setting having a basic
reproduction number R0 of 1.5 and an illness attack rate
of 31.7%, the same pandemic characteristics applied in a
PNG setting with no interventions activated resulted in
higher rates of influenza transmission, with an attack rate
of 46.6% and reproduction number R0=1.88 (table 1).
Comparing the attack rates when interventions were acti-
vated, both intervention strategies (solely school closure
and rigorous social distancing) were much less effective
in the PNG setting compared with the Australian one.
The mitigated illness attack rates in the PNG model were
approximately three times higher than those in the
Australian model with the interventions being 60–70%
less effective. Table 2 indicates where transmission that
resulted in illness occurred, showing a significantly
higher number and proportion of transmissions occur-
ring in households, as opposed to other contact/trans-
mission locations, in the Madang compared with the
Australian model (table 1). The average household size
in the PNG model is 2.5 times larger than that in Albany
and this had a significant impact on the overall infection
rate, making it noticeably higher in the PNG model.
We also conducted experiments with the Madang-nnh

model, where neighbourhood contact hubs were
omitted, to contrast the transmission characteristics with
and without these contact hubs. The results of these
simulation experiments are included in tables 1 and 2.
It should be noted that the Madang model with neigh-
bourhood hubs included is believed to be more repre-
sentative of population mixing characteristics in PNG,
following local knowledge. Neighbourhood hubs were
introduced to reflect the known mixing patterns occur-
ring with adults not working in designated workplaces,
such as those found in the regular contact which may
occur among individuals in marketplaces. The addition
of such contact hubs increased individual-to-individual
contacts and hence infection transmission opportunities
(see table 2) with approximately 2000 additional symp-
tomatic infections resulting, for all three (mitigated and
non-mitigated) scenarios. In terms of cumulative illness
attack rate, the Madang model gave a basic reproduction
number R0 of 1.88 and an illness attack rate of 46.6%,
compared with that of the Madang-nnh (no neighbour-
hood hub) model with R0=1.74 and an illness attack rate
of 40.8%. The daily case incidence resulting from simu-
lating the Albany, Madang and Madang-nnh models is
presented in figure 2 for the three scenarios.

No intervention scenario
The results given in table 1 show that there is an
approximately 47% increase in the illness attack rate in
the Madang setting compared with that resulting from
the Albany model; from 31.7% to 46.6%. If no neigh-
bourhood hub contact occurs, as with the Madang-nnh
model, there is still an increase in illness attack rate com-
pared with that resulting from the Albany model, with
an approximately 29% increase in the attack rate; from
31.7% to 40.8%.
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It is apparent from the results presented in table 1
that there is a greater proportion of influenza cases
occurring within households in both Madang models
compared with that of the Albany model. This arises
from the average Madang household size being larger
than that in Albany. The number of cases occurring
in Madang due to household transmission is ∼8000

compared with ∼3500 in Albany; note that Madang has
a total population of ∼35 000 compared with ∼30 000 in
Albany.

School closure scenario
The school closure intervention in the Madang model is
found to be approximately five times less effective

Table 2 Number of symptomatic influenza cases at different locations

Locations Albany model Madang model Madang-nnh model

No intervention

Households 3511 (3487 to 3536) 8028 (8004 to 8053) 7476 (7442 to 7498)

Child care 88 (84 to 91) – –

Neighbourhood – 1258 (1249 to 1267) to

Child education 1269 (1256 to 1285) 990 (980 to 1001) 950 (939 to 962)

Adult education 157 (152 to 161) 270 (261 to 280) 253 (244 to 262)

Work place 1508 (1494 to 1521) 2495 (2481 to 2510) 2395 (2380 to 2410)

Community 2594 (2572 to 2616) 3300 (3281 to 3317) 3199 (3182 to 3216)

Imported 167 (162 to 169) 122 (119 to 125) 144 (139 to 148)

Total 9294 (9199 to 9390) 16463 (16407 to 16521) 14417 (14350 to 14486)

Intervention: school closure

Households 2048 (2019 to 2075) 7939 (7914 to 7964) 7070 (7042 to 7098)

Child care 3 (2 to 4) – –

Neighbourhood – 1172 (1162 to 1181) –

Child education 38 (35 to 43) 13 (11 to 15) 15 (14 to 18)

Adult education 80 (76 to 84) 196 (190 to 202) 182 (176 to 189)

Work place 879 (861 to 897) 2334 (2318 to 2349) 2186 (2169 to 2202)

Community 1522 (1500 to 1545) 3121 (3105 to 3141) 2923 (2906 to 2941)

Imported 215 (211 to 219) 141 (137 to 143) 162 (158 to 165)

Total 4785 (4672 to 4899) 14916 (14856 to 14987) 12538 (12456 to 12613)

Intervention: school closure+WR+CCR

Households 672 (654 to 689) 4181 (4143 to 4218) 2992 (2960 to 3026)

Child care 19 (15 to 22) – –

Neighbourhood – 213 (209 to 218) –

Child education 272 (249 to 295) 17 (15 to 20) 18 (16 to 21)

Adult education 29 (26 to 31) 116 (110 to 121) 97 (91 to 101)

Work place 117 (112 to 124) 468 (458 to 478) 355 (348 to 364)

Community 242 (234 to 248) 935 (925 to 948) 707 (696 to 717)

Imported 246 (242 to 252) 228 (224 to 233) 237 (233 to 243)

Total 1597 (1524 to 1679) 6158 (6065 to 6254) 4406 (4334 to 4506)

Mean number (italic face) of symptomatic influenza cases and their corresponding 95% CI (in parentheses) at different locations for no
intervention, school closure and rigorous social distancing presented. WR, workforce reduction and CCR, community contact reduction.

Figure 2 Daily case incidence for different intervention scenarios. Daily case incidence for the no intervention, school closure

and rigorous social distancing (school closure and workplace and community contact reductions) scenarios is shown. The blue,

red and green curves represent the Albany, Madang and Madang-nnh models, respectively.
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compared with that of the Albany model. Simulation
results suggest a 9.4% reduction (46.6% to 42.2%) in
the illness attack rate can be achieved in Madang due to
school closure whereas a 48.6% reduction (31.7–16.3%)
can be achieved in Albany (see table 1). For the
Madang-nnh (no neighbourhood hub) model, school
closure is approximately 3.5 times less effective com-
pared with the Albany model.
Table 2 (middle panel) indicates an illness attack rate of

∼15 000 in Madang compared with ∼4800 in Albany. Much
higher case numbers occur in households, workplaces and
the wider community (including neighbourhood hubs)
than in Albany, highlighting the poorer efficacy of this
intervention strategy in a PNG setting. The Madang-nnh
model also results in higher household and workplace
transmission than the Albany model. Note that while there
is a significantly higher proportion of under 17-year-old
children in Madang (40%) compared with Albany (28%),
our field survey indicates that 50% of school age children
in Madang do not attend school, hence school closure is
less effective in disrupting the transmission chain (ie,
household 1-to-school-to-household 2) compared with
Australia. This feature is also present in the rigorous social
distancing intervention.

Rigorous social distancing scenario
Previous simulation studies 20 43 44 show that rigorous
social distancing interventions involving school closure
coupled to contact reductions in other locations may be
highly effective in reducing the attack rate within a devel-
oped country setting. Comparing the effectiveness of
rigorous social distancing between the Albany and
Madang models, an ∼83% reduction (from 31.7% to
5.4%) reduction may be achieved in Albany whereas a
smaller ∼62.7% reduction (from 46.6% to 17.4%), is
achieved in the Madang model; see table 1. In the
Madang-nnh model a ∼69.4% reduction in the attack
rate (40.8–12.5%) can be achieved by this rigorous social
distancing intervention.
Table 2 (bottom panel) indicates an illness attack rate

of ∼6000 in Madang (and ∼4400 for Madang-nnh) com-
pared with ∼1600 for the Albany model. Much higher
case numbers occur due to household transmission,
∼4200 in Madang versus ∼670 in Albany (and ∼3000 in
Madang-nnh). Workplace and community-wide transmis-
sion are also higher in the two Madang models com-
pared with Albany.
These results suggest that both social distancing strat-

egies are much less effective in a PNG setting compared
with what might be achieved in a developed country.
Figure 2 also reveals this clear trend, with peak case inci-
dence and the area under the curves (the attack rate)
being higher in both Madang models compared with
the Albany model.

Sensitivity analysis
The sensitivity of key model parameters, such as school
contact group size, illness withdrawal rates and

intervention duration have been extensively examined
for the Albany model.44 45 These indicate that while the
model is sensitive to some parameter settings, the rela-
tive effectiveness of social distancing interventions
remains unchanged, a feature also shared by the
Madang models.
The major difference between the Albany and

Madang models is the presence of neighbourhood hubs.
We have included a Madang model which has no neigh-
bourhood hubs (Madang-nnh) and present comparative
results for all three models in tables 1 and 2, figure 2
and online supplementary tables A3–A6. Simulations
comparing neighbourhood mixing group sizes 10 (base-
line), 20 and 30 indicate that for hubs of size 20 and 30,
the increased transmission results in higher attack rates,
as expected (see online supplementary table A3).
The effect of varying compliance with home isolation

of school children following school closure on attack rate
was examined. Compliance was reduced from 100% to
50%. Reduced compliance increased the attack rate in
Albany as those children affected made additional
daytime contacts with other children. In Madang, the
reduction in compliance had only minimal effect since
approximately 50% of school age children do not attend
school and continue to make daytime contacts in neigh-
bourhood hubs (see online supplementary table A4).
The effect of using different probabilities of voluntary

withdrawal to the home of symptomatic adults and chil-
dren is presented in online supplementary table A5.
Lower rates of voluntary withdrawal lead to higher attack
rates in all three models. Voluntary withdrawal from
work or school has a more pronounced effect in the
Albany model, as a significant proportion of children in
Madang still transmit through daytime contacts in neigh-
bourhood hubs.
The effects of variation of the timing of intervention ini-

tiation are presented in online supplementary table A6. In
the school closure scenario, delayed response had the
most severe impact on the attack rates in Albany, whereas
for the Madang models the changes in attack rate were
marginal. This is again due to a large fraction of children
not attending school and the existence of neighbourhood
hubs. Similarly, in the rigorous contact reduction scenario
the effect of delayed response on attack rate was more pro-
nounced in the Albany model, due to lower effectiveness
of interventions in a PNG setting.

DISCUSSION
Introduction of a pandemic influenza strain with identi-
cal transmissibility characteristics results in a significantly
higher infection and illness rate in a PNG setting when
compared with that of a developed country. Social dis-
tancing intervention strategies suitable for a developing
country may be significantly less effective in reducing
the attack rate when compared with the outcomes
expected in an Australian setting. Substantially more
infections occurred in PNG households compared with
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that of the Australian model. The significantly larger
size of households, a feature shared by many developing
countries, together with higher community-wide contact
in PNG, contributed to the higher infection rates.
Interventions are less effective in a PNG setting since
they are not targeted at household transmission, and
given the larger household sizes, are applicable to a
smaller proportion of transmissions compared with the
Australian scenario. In addition, as only half the school-
age children in Madang attend school, the two school
closure based interventions impact fewer individuals.
While care was taken to obtain detailed data used to

populate the Madang and Albany models, government
data was found to be more limited in PNG. While a field
survey was conducted in Madang to fill in missing data
and make the models as directly comparable as possible,
there is still scope for conducting further data collection.
As with all modelling studies, the accuracy of results is
limited by the quality of data used to construct the
model. In the case of influenza epidemic modelling,
outcomes are dependent on assumptions about the
number, duration and physical closeness of contacts
between people and how these attributes of contact
affect transmission probability. These data are very diffi-
cult to estimate, with the best data source available
being.46 In the absence of high-quality reliable data, we
have made plausible assumptions regarding interper-
sonal contact, and, in the Albany case, these are reflect-
ive of the data in.46

The lack of similar low-income modelling studies pre-
vents comparison with related studies, and suggests that
this is an area requiring further attention. Research
studies expanding on that reported here suggest them-
selves: the construction and use of a number of add-
itional PNG models capturing different population
structures, such as rural villages and island communities;
and the determination of health outcomes following a
moderately severe influenza pandemic, taking into
account comorbidities with extant diseases such as
malaria and tuberculosis, diseases common to many
low-income countries.
The interventions used in the present study are based

on social distancing. Surveys have shown that a higher
proportion of low-income countries have social distan-
cing interventions planned in the case of a pandemic,
compared with high-income European countries due to
their feasibility and cost-effectiveness.3 4 6 8 47 48

Pharmaceutical-based interventions were not considered
in this study due to cost and delivery issues found with
low-income countries.4 8

Consideration may need to be given to some form of
antiviral agent use, possibly for case treatment, given the
poor performance of purely social distancing interven-
tions in developing countries as suggested by this study.
The advantage of antiviral use is that it may be targeted
at reducing within-household transmission, a location of
transmission otherwise not impacted by social distancing
interventions. The present study shows that larger

numbers of transmissions occur within households due
to the larger household sizes in countries such as PNG.
Furthermore, low-income countries generally have popu-
lation health profiles not seen in developed countries,
including the prevalence of diseases such as malaria,
tuberculosis and HIV.49 Antiviral treatment of influenza
cases coinfected with such diseases may be an appropri-
ate intervention strategy given the poorer health out-
comes which comorbidity may impose.12 The provision
and use of antiviral agents will have challenges not faced
by industrialised countries, due to the cost of providing
an antiviral stockpile and subsequent distribution of anti-
virals in countries which have health systems already
stretched to capacity.15

The importance of suitable pandemic influenza pre-
paredness plans for low-income countries is recognised
by the WHO.50 51 Disease transmission models will play
a role in guiding policy makers in determining the
effectiveness of possible pandemic countermeasures.
History tells us that low-income countries are likely to be
more affected, yet almost all models deal with mitigation
strategies for developed nations with good health infra-
structure and low prevalence of endemic diseases. These
countries have poorer access to antiviral drug and
vaccine-based interventions and higher extant disease
burdens, compared with developed countries. For the
reasons, development of appropriate intervention strat-
egies focused on countries such as PNG needs to occur.
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