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Drug-induced cardiotoxicity is a common side effect of drugs in clinical use or

under postmarket surveillance and is commonly due to off-target interactions

with the cardiac human-ether-a-go-go-related (hERG) potassium channel.

Therefore, prioritizing drug candidates based on their hERG blocking

potential is a mandatory step in the early preclinical stage of a drug

discovery program. Herein, we trained and properly validated 30 ligand-

based classifiers of hERG-related cardiotoxicity based on 7,963 curated

compounds extracted by the freely accessible repository ChEMBL (version

25). Different machine learning algorithms were tested, namely, random

forest, K-nearest neighbors, gradient boosting, extreme gradient boosting,

multilayer perceptron, and support vector machine. The application of 1) the

best practices for data curation, 2) the feature selection method VSURF, and 3)

the synthetic minority oversampling technique (SMOTE) to properly handle the

unbalanced data, allowed for the development of highly predictive models

(BAMAX = 0.91, AUCMAX = 0.95). Remarkably, the undertaken temporal validation

approach not only supported the predictivity of the herein presented classifiers

but also suggested their ability to outperform those models commonly used in

the literature. From amoremethodological point of view, the study put forward

a new computational workflow, freely available in the GitHub repository

(https://github.com/PDelre93/hERG-QSAR), as valuable for building highly

predictive models of hERG-mediated cardiotoxicity.
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Introduction

Background

Cardiotoxicity is a common side effect of drugs, and one of

the causes for it is the off-target interaction with different

voltage-gated ion channels expressed in the heart (Ferdinandy

et al., 2019). Among the others, the human ether-a-go-go related

(hERG) channel has received increasing attention over the past

few decades as several drugs have been restricted in their use or

withdrawn because of their ability to block this channel by

interacting with a hydrophobic pocket called central cavity

(Kalyaanamoorthy and Barakat, 2018; Butler et al., 2020).

Remarkably, a drug-induced hERG blockade can be

responsible for potentially lethal cardiac arrhythmias in the

form of the so-called long-QT syndrome (LQTS) (Priest et al.,

2008; Danker and Möller, 2014). Since drugs belonging to very

different chemical classes were proved to cause this severe side

effect, an early evaluation of hERG blockade has become a

necessary step during the development of drug discovery

(DD) programs (Kalyaanamoorthy and Barakat, 2018;

Ferdinandy et al., 2019; Cavalluzzi et al., 2020). Meaningful

examples are represented by terfenadine (Kamiya et al., 2008;

Tanaka et al., 2014), astemizole (Zhou et al., 1999), cisapride

(Walker et al., 1999; Kamiya et al., 2008), and ziprasidone (Su

et al., 2006). As a matter of fact, submission to regulatory reviews

requires a preclinical assessment of hERG blockage activities, as

clearly indicated by the guidelines defined at the International

Conference on Harmonization of Technical Requirements for

the Registration of Pharmaceuticals for Human Use (ICH)

(EMA, 2005; FDA, 2005).

In silico evaluation of hERG blockade

In this context, to avoid hERG liability during the DD process

and, therefore, prioritize safe drug candidates at the early

preclinical stage, the employment of in silico tools is highly

desirable since in vitro (e.g., fluorescence-based assays,

electrophysiology measurements, rubidium-flux assays,

radioligand binding assays) and in vivo experiments are much

more laborious, time-consuming, and expensive (Priest et al.,

2008; Jing et al., 2015). Accordingly, several in silico tools have

been developed in the last few years using both ligand- and

structure-based approaches (Jing et al., 2015; Villoutreix and

Taboureau, 2015; Kalyaanamoorthy and Barakat, 2018; Creanza

et al., 2021). In the absence of an atomic-resolution hERG

structure, the attention of both academia and industry has

been mainly focused on the development of ligand-based

classifiers (e.g., pharmacophore models, quantitative

structure–activity relationship (QSAR) approaches) (Jing et al.,

2015; Villoutreix and Taboureau, 2015; Slavov et al., 2017; Sun

et al., 2017; Kalyaanamoorthy and Barakat, 2018). The interested

reader is referred to references (Jing et al., 2015; Villoutreix and

Taboureau, 2015; Kalyaanamoorthy and Barakat, 2018) for

comprehensive reviews on this topic. However, despite

providing good performances, many ligand-based models

developed so far suffer from critical limitations. Most of them,

in fact, were built from a limited number of congeneric analogs

(Chavan et al., 2016; Gobbi et al., 2016; Wang et al., 2016; Zhang

et al., 2016; Munawar et al., 2018; Liu et al., 2020), and for this

reason, their applicability domain (AD) (Gadaleta et al., 2016) is

too restricted for a real-life application, since hERG blockers are

characterized by high structural diversity. Recent articles

published by Cai et al. (2019), Ryu et al. (2020), and Karim

et al. (2021) reported classifiers trained on more than

7,000 compounds, hence encompassing a broad AD. The

authors used deep learning techniques and IC50 = 10 μM as

the toxicity threshold to discern hERG blockers from

nonblockers. As a result, these models ensured performances

better than those achieved using more traditional machine

learning (ML) approaches (AUCMAX = 0.88, 0.90, and 0.91,

respectively). However, the real-life application of such

classifiers might be questionable as substances considered of

critical concern in DD programs are responsible for IC50

lower than 1 μM (rather than 10 μM) (Zolotoy et al., 2003;

Katchman et al., 2006; Kim et al., 2008; Hong et al., 2013). In

this regard, Krishna et al. (Krishna et al., 2022) recently

developed QSAR models based on Tox21 quantitative high

throughput screening (qHTS) thallium flux assay and

ChEMBL (v27) data using IC50 = 10 μM as the toxicity

threshold to discern hERG blockers from nonblockers.

Different ML methods and consensus modeling were

evaluated. The best models were ultimately integrated into a

consensus that improved the performance of the single best ones

(BA = 0.791 on the external set).

Objectives

Building on these pieces of evidence and background, in this

study we report several ligand-based models developed starting

from 7,963 curated compounds (hERG-DB) and extracted from

the ChEMBL (Gaulton et al., 2012) version (v) 25, employing six

classification algorithms, random forest (RF) (Breiman, 2001),

K-nearest neighbors (KNN) (Altman, 1992), gradient boosting

(GB) (Friedman, 2001), extreme gradient boosting (XGB) (Chen

and Guestrin, 2016), multilayer perceptron (MLP) (Haykin,

1994), and support vector machine (SVM) (Vapnik, 1963),

and as toxicity thresholds both IC50 = 1 and IC50 = 10 μM.

Notably, the models returning the best performances were

challenged on a supplementary external set (ES) consisting of

molecules recovered from the new CHEMBL (Gaulton et al.,

2012) update (v28) and therefore not included in hERG-DB (see

section “Materials and methods” for methodological details).

This procedure, also known as time-split cross-validation or
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temporal validation and involving data published a posteriori, is

today considered of utmost importance to test the real-life

applicability of the developed classifiers (Sheridan, 2013; Bosc

et al., 2019). Last but not least, six ligand-based hERG models

available in the literature and named DeepHIT (Ryu et al., 2020),

CardioTox (Karim et al., 2021), Cardprep (Lee et al., 2019),

ADMETlab (Xiong et al., 2021), and OCHEM consensus models

I and II (Li et al., 2017) were applied on the ES to compare their

performance with that returned by our top-performing model.

The obtained results put forward the herein presented

computational workflow as valuable for a robust ligand-based

prediction of hERG-related cardiotoxicity. This study can be

useful also considering that cardiovascular diseases are ranked

high in the top causes of sudden death (Onakpoya et al., 2016).

Materials and methods

Dataset preparation

A total of 17,952 activity entries were extracted from

ChEMBL (Gaulton et al., 2012) v25 according to the Target

ID (ChEMBL240) assigned to the hERG channel. To ensure data

validity, the database was mined retaining only those entries

matching the following criteria already suggested in the

literature: 1) annotated exclusively with IC50 (11,144 entries)

measures, 2) referring to assays conducted on human targets

(“target_organism” = “Homo sapiens”), 3) marked as direct

binding (“assay_type” = “B”), and 4) free of warnings in the

“data_validity_comment” field (Alberga et al., 2019; Bosc et al.,

2019; Creanza et al., 2021). SMILES were curated using a

semiautomated in-house procedure described by Gadaleta

et al. (2018a). Such a process allows for removing

organometallic and inorganic compounds, chemicals

characterized by unusual elements and mixtures, neutralizing

salts, and removing stereochemistry. The neutralized SMILES

were converted to a standardized QSAR-ready format using

OpenBabel (O’Boyle et al., 2011) implemented in the KNIME

Analytics Platform (Berthold et al., 2008) to generate canonical

SMILES. Each IC50 value was converted from molar

concentration (M) to pIC50 (–log IC50), and compounds

devoid of any pIC50 value but already marked as not active in

the ChEMBL repository were also considered. In the last step,

duplicates were aggregated in unique entries and the standard

deviation (σ) related to the pIC50 values was computed. Also,

15 compounds were considered outliers (σ > 2) while for all of the

others, the average pIC50 value was considered. In such a way, the

curated dataset consists of 7,963 chemicals (hereinafter referred

to as hERG-DB) and the corresponding experimental value.

Consistent with the literature (Jing et al., 2015; Zolotoy et al.,

2003), hERG-DB includes hERG blockers (ACT) having an

IC50 ≤ 1 µM (pIC50 ≤ 6), compounds showing a moderate

hERG blocker potential with an IC50 ranging from 1 to 10 µM

(6 < pIC50 ≤ 5), and, finally, hERG nonblockers (INA) having

IC50 values >10 µM (pIC50 > 5). For this reason, in this work, we

have developed two sets of binary models differing for the

considered toxicity threshold (pIC50 = 6 or pIC50 = 5).

Finally, we downloaded the recent version of ChEMBL

(Gaulton et al., 2012) (version 28) to extract possible

compounds not present in our hERG-DB, following the same

data curation process described above. Thus, an external (ES)

dataset of 792 chemicals was assembled and curated with the

same procedure described above and then used to challenge the

real-life predictivity of the top-performing classifiers.

Dataset division

We split hERG-DB into a training set (TS) and a validation

set (VS) following a rational approach. Notably, the RDkit Picker

Diversity node (Landrum et al., 2022) was employed separately

on the two classes (i.e., ACT and INA) resulting from the

considered toxicity thresholds to generate the Morgan

fingerprints (Rogers and Hahn, 2010) for each SMILES, and

80% of the most diverse molecules was then picked based on the

Tanimoto distance (Willett et al., 1998). In doing so, the resulting

TS included 80% of the total molecules (6,371); the remaining

20% (1592) constituted the VS. Table 1 summarizes the final

composition of TS, VS, and ES, indicating the number of ACT

and INA for each of the two selected toxicity thresholds. Note

that such a procedure allowed us to keep the INA/ACT ratio fixed

in each subdivision. Interestingly, although not prepared by a

rational strategy, the ES presented an INA/ACT ratio in line with

those of TS and VS.

The splitting procedure was challenged by performing a

principal component analysis (PCA) (Jolliffe and Cadima,

2016) based on the physicochemical properties of the

molecules calculated by the molecular properties KNIME

node based on the CDK toolkit (Steinbeck et al., 2003; CDK,

2022. Available at: https://cdk.github.io/). The score plot of the

first two principal components, able to capture more than 90% of

the data variance, confirms that the described procedure ensured

a uniform distribution of the compounds in the TS and VS

throughout the model space (Figure 1). In addition, Figure 1

includes the PCA of the ES. It is worth noting that, although not

derived by a splitting approach, this covers a chemical space

similar to those covered by both TS and VS.

Development of statistically based models

Descriptors calculation
We used DRAGON v7.0.4 (Kode, 2017) as a software

program to compute the 2D-descriptors of each chemical

belonging to the datasets. Descriptors having missing values

or constant/near-constant variables (i.e., standard deviation <
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0.01) were removed along with those having an absolute pair

correlation higher than 95% with other variables. Thus, we finally

considered 1,070 descriptors. The obtained values were scaled

with a standard normalization (i.e., mean equal to zero and

standard deviation equal to 1). Models were built using both the

entire pool of descriptors and a reduced set selected by the R

package VSURF, an RF algorithmworking in three steps to detect

variables related to the activity and eliminate those redundant or

irrelevant (Genuer et al., 2010). Following this protocol, we

finally selected 79 (pIC50 threshold = 6) and 86 (pIC50

threshold = 5) descriptors (Supplementary Table S1). The

feature selection was based on the TS only to remove any

putative artifact in the model selection.

Model development and validation
For each partitioning scheme reported in Table 1, we used six

classification algorithms: RF (Breiman, 2001), KNN (Altman,

1992), GB (Friedman, 2001), XGB (Chen and Guestrin, 2016),

MLP (Haykin, 1994), and SVM (Vapnik, 1963). The TS is

characterized by an INA: ACT ratio equal to 5:1 when the

pIC50 toxicity threshold is 6; hence, it is strongly unbalanced.

This could favor the convergence of algorithms trained on the

majority class, neglecting classes with fewer samples (Zhang

et al., 2018). For this reason, in addition to the models

developed using this TS, additional models were developed,

artificially altering the original TS using the Synthetic

minority oversampling technique (SMOTE) to balance the

number of blockers and nonblocker samples (Chawla et al.,

2002). Such an approach, based on the KNN algorithm and

operating in the “feature space”, oversampled the minority class

by creating and introducing new synthetic samples until a ratio of

INA: ACT of 1:1 is reached. As for the VSURF procedure, the

SMOTE was applied only to the TS. VS, indeed, was kept

unbalanced to properly evaluate the capability of the classifiers

to predict the real distribution of data. In all of the cases, to find

the optimal algorithm setting for training the final model, the

parameter selection was based on hyperparameter tuning and 5-

fold cross-validation (CV) performance (Refaeilzadeh et al.,

TABLE 1 Partitioning schemes before (top) and after the application of the AD at each considered toxicity threshold (bottom). For hERG-DB, the
number of active and inactive chemicals and the related class distribution is reported for the training set (TS), validation set (VS), and external set
(ES) and at each considered toxicity threshold. Notably, the total number of chemicals (#), the number of hERG blockers (ACT) and hERG non-blocker
(INA) chemicals, as well as the ratio between nonblockers and blockers are shown.

Dataset Toxicity threshold (pIC50)

6 5

# INA ACT INA:ACT # INA ACT INA:ACT

Starting composition

TS 6371 5388 983 05:01 6371 3295 3076 01:01

VS 1592 1346 246 05:01 1592 821 771 01:01

ES 792 676 116 05:01 792 365 427 01:01

Applicability domain (AD)

VS 1583 1338 245 05:01 1579 810 769 01:01

ES 754 642 112 05:01 754 350 404 01:01

FIGURE 1
PCA based on the physicochemical properties returned by
the compounds belonging to TS, VS, and ES.
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2009). To do this, we performed a grid search (LaValle et al.,

2004), except for SVM and XGB, where we used Bayesian

optimization to reduce the computational cost (Snoek et al.,

2012). The optimal parameters for each algorithm, selected based

on the best metrics in 5-fold CV, are shown in Supplementary

Table S2. It is worth noting that RF models, trained on the

original unbalanced TS, combine an equal size data sampling for

both thresholds pIC50 = 5 and pIC50 = 6. This technique is also

known as balanced random forest (BRF). After parameter setup

and model training, top-performing models were selected based

on external performance on the VS and then applied to the ES

that represented the ultimate proof for real-life validation of the

models. Finally, to possibly improve predictions provided by

single best models, consensus modeling was applied. In

particular, a compound was assigned to a category based on a

straightforward majority voting approach, i.e., only when the

top-performing models, selected based on the computed

balanced accuracy (BA) and area under the curve (AUC)

values, generated concordant predictions.

Applicability domain
To increase the confidence in the model’s prediction, we

defined the applicability domain (AD), namely, the chemical

space from which the classifiers are derived and, therefore,

where a prediction can be considered trustworthy (Roy et al.,

2015; Gadaleta et al., 2016; Kar et al., 2018). To define the AD,

we used the Enalos Domain—Leverages node for KNIME

(Afantitis et al., 2008; Melagraki et al., 2009). This

approach allows for the calculation of the leverage (h) for

each chemical and defines a threshold that works as an upper

bound limit. Compounds with leverage values of h > 3p/n,

where p is the number of descriptors and n is the number of

molecules, are considered chemically different from the TS

compounds (Tropsha et al., 2003; Afantitis et al., 2008;

Melagraki et al., 2009). Thus, 9 (threshold pIC50 = 6) and

13 (threshold pIC50 = 5) were discarded from VS, whereas

38 compounds were excluded from ES for both the considered

activity thresholds. Table 1 reports the composition of both

VS and ES after applying the AD-based filter.

Performance evaluation

The performance of the classification models was evaluated

using Coopers statistics, i.e., balanced accuracy (BA), sensitivity

(SE), and specificity (SP), computed as follows:

SE � TP

TP + FN

SP � TN

TN + FP

BA � SE + SP

2

where true positives (TPs), and true negatives (TNs) are,

respectively, the positive and negative samples correctly

classified by the models and false negatives (FNs) and false

positives (FPs) are the misclassified positive and negative

samples, respectively (Ting, 2017). Another used metric was

the Matthews correlation coefficient (MCC). MCC indicates

the quality of binary classification and is generally recognized

as a reliable metric, although it deteriorates seriously when the TS

is imbalanced (Zhu, 2020). MCC ranges between −1 and +1. A

value of +1 means a perfect classification, 0 indicates a random

classification, and −1 is a complete misclassification (Zhu, 2020).

MCC � TPpTN − FPpFN
�������������������������������������(TP + FP)(TP + FN)(TN + FP)(TN + FN)√

Finally, the AUC, namely, the area under the receiver

operating characteristic (ROC) curve, was also computed to

estimate the predictive accuracy of the models. Notice that the

AUC, ranging from 0 (miss-classifiers) to 1 (ideal-classifiers),

reflects the probability of positive compounds being ranked

earlier than decoy compounds (Fawcett, 2006). This quality

metric was computed for each developed model based on the

output scores associated with each prediction returned during

the validation procedure and estimating the probability that a

given compound is an hERG blocker.

Results and discussion

In the present work, we developed QSAR models employing

different ML algorithms, RF (Breiman, 2001), KNN (Altman,

1992), GB (Friedman, 2001), XGB (Chen and Guestrin, 2016),

MLP (Haykin, 1994), and SVM (Vapnik, 1963) available in the

KNIME Analytics Platform (v. 4.1.4) (Berthold et al., 2008). The

dataset used to build the model consists of highly curated pIC50

values for 7,963 organic compounds. This dataset allows for the

covering of a wide range of structural characteristics of hERG

blockers and nonblockers and also a broad chemical space, as

evident in Figure 1. Based on the literature, threshold values for

the blocker/nonblocker classification vary from IC50 = 1 μM

(pIC50 = 6) to IC50 = 10 μM (pIC50 = 5) (Jing et al., 2015; Li

et al., 2017; Siramshetty et al., 2018, 2020; Choi et al., 2020). For

this reason, we used these two thresholds to develop binary

classification models. In addition, one set of models accounted

for all of the descriptors generated by DRAGON v7.0.4 (Kode,

2017), while the other, only the pool of descriptors selected by

VSURF (Genuer et al., 2010) (Supplementary Table S1). Notably,

the performances returned by the two sets of the models are

comparable, remarking the effectiveness of the selection variable

strategy, as already experienced in previous works (Gadaleta

et al., 2018b; Baderna et al., 2020; Lavado et al., 2020).

Therefore, we have focused our attention on the results

returned by the VSURF models, being less complex and easier
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to be implemented. However, the interested reader is referred to

the supporting information for the performances in validation

and 5-fold CV returned by all of the models trained with the

entire set of descriptors (Supplementary Tables S3, S4). The

discussion will focus on the most important metrics to determine

the top-performing models, SE, SP, BA, and AUC, given the

imbalance of TS. In addition, we used an ES as a temporal

validation to assess the predictivity of the models in a real-life

case study. Finally, for the sake of comparison, the performance

of our top-selected models has been compared with that obtained

on the ES with commonly employed and freely accessible models:

DeepHIT (Ryu et al., 2020), CardioTox (Karim et al., 2021),

Cardprep (Lee et al., 2019), ADMETlab (Xiong et al., 2021), and

OCHEM consensus models I and II (Li et al., 2017). For the sake

of clarity, Figure 2 shows the workflow that summarizes the main

steps of the adopted computational protocol. Notably, the use of

a rational approach for data split allowed us to minimize the risk

of variation in performance due to different TS-VS divisions.

Indeed, the iteration of the rational data-split procedure

performed on models based on the entire set of descriptors

does not show relevant differences in terms of statistical

performance (Supplementary Table S5) with respect to models

based on the TS-VS split presented here (Supplementary

Table S4).

FIGURE 2
Flowchart showing the main steps of the adopted computational workflow.
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Models developed using pIC50 = 6 as the
toxicity threshold

Table 2 reports the computed performances on the VS

returned by each model based on the activity threshold

pIC50 = 6 without and with the application of the SMOTE (S)

(Chawla et al., 2002). Performance refers only to chemicals

included in the AD (see section Applicability Domain).

Among the models trained on the unbalanced TS

(nonblockers/blockers ratio equal to 5), the RF model,

combined with a uniform size sampling strategy (BRF) to

reduce the bias toward the majority class, returns the best

performance. In particular, BRF is responsible for the most

balanced statistics when predicting both positive and negative

samples with a difference of SE (0.92) and SP (0.81) of only

0.11 and for the highest BA (0.87). All of the other classifiers are

characterized by a high FN rate, despite returning acceptable

values of BA. The gap between SP and SE ranges from 0.24

(SVM) to 0.40 in (MLP) and might be the result of the absence, in

these models, of any procedure to properly consider the TS

unbalance. The importance of having a balanced TS is supported

by the statistics returned by the models taking advantage of the

SMOTE. Indeed, some of them returned a significant

performance improvement in predicting both positive and

negative samples. (S)KNN and (S)SVM ensured the best

performances among all of the developed models, with (S)

SVM associated with the best BA (0.88), accounting for a SE

of 0.91 and, as a consequence, for a low rate of false negatives.

Building on these data, we can reasonably claim that the top-

performing models to be selected for additional validation and

TABLE 2 Performances on the VS of the models developed using pIC50 = 6 (top) and 5 (bottom). For eachmodel, the following statistics are reported:
balanced accuracy (BA), sensitivity (SE), specificity (SP), Matthews correlation coefficient (MCC), area under the ROC (AUC), number of true
negatives (TNs), false positives (FPs), true positives (TPs), and false negatives (FNs). The top-performing model selected for additional validation is
indicated in bold.

Toxicity threshold pIC50 = 6

Balancing Method BA SE SP MCC AUC TP FP TN FN

- BRF 0.87 0.92 0.81 0.58 0.95 226 250 1088 19

GB 0.82 0.68 0.96 0.68 0.94 170 52 1286 75

KNN 0.84 0.72 0.96 0.70 0.91 176 51 1287 69

MLP 0.76 0.56 0.96 0.57 0.89 136 54 1284 109

XGB 0.84 0.73 0.95 0.69 0.94 179 60 1278 66

SVM 0.84 0.72 0.96 0.69 0.93 176 58 1280 69

SMOTE (S)RF 0.85 0.73 0.96 0.72 0.95 178 46 1292 67

(S)GB 0.83 0.72 0.95 0.66 0.82 177 72 1266 68

(S)KNN 0.86 0.86 0.85 0.59 0.92 214 209 1129 31

(S)MLP 0.81 0.86 0.76 0.48 0.91 211 322 1016 34

(S)XGB 0.78 0.74 0.82 0.46 0.87 181 239 1099 64

(S)SVM 0.88 0.91 0.85 0.62 0.89 223 198 1140 22

Toxicity threshold pIC50 = 5

- BRF 0.83 0.85 0.82 0.67 0.92 655 147 663 114

GB 0.83 0.84 0.82 0.66 0.92 646 147 663 123

KNN 0.83 0.84 0.82 0.66 0.91 647 151 659 122

MLP 0.80 0.83 0.77 0.60 0.88 640 192 618 129

XGB 0.83 0.84 0.82 0.65 0.91 643 150 660 126

SVM 0.83 0.86 0.80 0.66 0.91 659 163 647 110

SMOTE (S)RF 0.83 0.84 0.82 0.67 0.92 645 143 673 118

(S)GB 0.83 0.84 0.82 0.64 0.92 637 147 672 123

(S)KNN 0.82 0.86 0.78 0.64 0.90 652 178 641 108

(S)MLP 0.77 0.84 0.69 0.65 0.85 645 143 665 126

(S)XGB 0.84 0.85 0.83 0.68 0.90 681 136 647 115

(S)SVM 0.84 0.84 0.84 0.68 0.91 650 130 678 121
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consensus strategies are BRF, (S)KNN, and (S)SVM. This is

supported also by the corresponding AUC values, being 0.95,

0.92, and 0.89, respectively. Remarkably, the 5-fold CV ensures

the internal robustness of the three models with BRF, (S)KNN,

and (S)SVM reaching BA as high as 0.79, 0.78, and 0.76,

respectively (Supplementary Table S6).

Table 3 shows the performances on the VS of the three

consensus models developed by integrating each possible pair

of the three top-performing classifiers indicated above. Notice

that all of the consensus models return very high BAs (0.91), thus

outperforming all of the single classifiers. Importantly, irrespective

of the single models involved in the consensus strategy, only a

small fraction of compounds (<11%) has been excluded by the

prediction because of a discordant classification. These results put

forward the considered consensus strategies as being extremely

powerful to maximize the predictive performance of the models

developed when pIC50 = 6 is considered the toxicity threshold.

These consensus models were further challenged via a successive

temporal validation using the ES. Although the performances were

worse than those obtained on the VS, as already experienced in

previous works (Sheridan, 2013; Bosc et al., 2019) and similar to

the performance observed with the 5-fold CV procedure, the

consensus models are responsible for satisfactory values of BA

and AUC. It is noteworthy that (S)KNN+(S)SVM (BA = 0.72;

AUC = 0.73) and BRF+(S)KNN (BA = 0.72; AUC = 0.73) returned

a more balanced statistic, thus outperforming BRF+(S)SVM (BA =

0.71; AUC = 0.72) (Table 3).

Models developed using pIC50 = 5 as
toxicity threshold

Table 2 reports the performance returned by the validation

performed on the VS for each model trained without using the

SMOTE. Performance refers only to chemicals included in the

AD (see section Applicability Domain). Similar BAs, ranging

from 0.82 to 0.83, were obtained for all of the models, except for

MLP responsible for the worst performance (BA = 0.80).

Furthermore, all of the models return well-balanced statistics,

with a difference between SP and SE ranging from 0.02 (XGB and

GB) to 0.06 (MLP), consistent with the balanced composition of

the TS. As expected, herein the SMOTE application did not lead

to a significant performance improvement. Taken as a whole,

these results suggest that, among all, the models developed using

BRF, GB, and SVM as algorithms are the top-performing ones.

This is evident looking at the computed BA and AUC values

reported in Table 2. Importantly, the 5-fold CV confirms the

internal robustness of these models (Supplementary Table S6)

that were thus selected for further consensus and temporal

validation procedures.

Again, the application of a consensus strategy led to a

performance improvement in terms of both BA and AUC. In

particular, Table 3 shows that all of the consensus models reach a

BA equal to 0.87 and an AUC of 0.93, hence outperforming the

BAMAX (0.83) and AUCMAX (0.92) obtained from the single

models. Again, a small fraction of compounds (<11%) was

TABLE 3 Performance of the consensusmodels on the VS and on the ES (temporal validation) developed using pIC50 = 6 (top) and 5 (bottom). For each
model, the following statistics are reported: balanced accuracy (BA), sensitivity (SE), specificity (SP), Matthews correlation coefficient (MCC), area
under the ROC (AUC), number of true negatives (TNs), false positives (FPs), true positives (TPs), false negatives (FNs), and the total number of
molecules (#). The top-performing models selected for temporal validation are indicated in bold.

Toxicity threshold pIC50 = 6

Method Dataset BA SE SP MCC AUC TP FP TN FN #

(S)SVM+(S)KNN VS 0.91 0.93 0.90 0.72 0.93 207 117 1048 15 1387

ES 0.72 0.66 0.77 0.34 0.73 55 107 365 29 556

BRF+(S)SVM VS 0.91 0.95 0.87 0.69 0.95 215 153 1043 11 1422

ES 0.71 0.60 0.81 0.33 0.72 53 102 454 35 644

BRF+(S)KNN VS 0.91 0.94 0.88 0.68 0.95 208 152 1031 13 1404

ES 0.72 0.68 0.76 0.33 0.73 53 112 348 25 538

Toxicity threshold pIC50 = 5

BRF + SVM VS 0.87 0.89 0.86 0.75 0.93 619 108 608 74 1409

ES 0.72 0.67 0.76 0.43 0.75 220 67 212 107 606

BRF + GB VS 0.87 0.88 0.86 0.74 0.93 618 104 622 86 1430

ES 0.70 0.66 0.74 0.41 0.73 216 71 212 120 619

SVM + GB VS 0.87 0.88 0.86 0.74 0.93 614 103 603 78 1398

ES 0.71 0.66 0.75 0.41 0.74 223 69 213 116 621
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unpredicted as a consequence of a discordant classification

between the involved models. Ultimately, the performed

temporal validation (Table 3) confirms the overall good

predictivity of the consensus classifiers, with the BRF + SVM

ensuring the best BA and AUC values (BA = 0.72, AUC = 0.75).

Comparison with other classifiers
available in the literature

The performances returned by the consensus models confirm

that the integration of multiple strategies, applying a weight-of-

evidence approach, leads to the detection and exclusion of

erroneous predictions generated by the individual models,

reinforcing, at the same time, those concordant. To the best of

our knowledge, our consensus classifiers outperform on this VS

(e.g., AUCMAX = 0.95 and 0.93 when the toxicity threshold is

pIC50 = 6 and 5, respectively) all of the binary classifiers of hERG-

related cardiotoxicity available in the literature and built using the

same toxicity thresholds. Encouraged by these pieces of evidence

and aimed at performing a more detailed comparative analysis

between our computational workflow and other ligand-based

hERG-blockage predicting models available in the literature,

the real-life application of six tools freely available and widely

used for predicting the hERG blocking potential of chemicals,

namely, Cardprep (Lee et al., 2019), ADMETlab (Xiong et al.,

2021), OCHEM consensus models I and II (Li et al., 2017),

DeepHIT (Ryu et al., 2020), and CardioTox (Karim et al.,

2021) were challenged in temporal validation using the same

ES herein employed. All of these tools are able to discern hERG

blockers from nonblockers using as toxicity threshold pIC50 =

5 and, for this reason, their performances were compared with

those returned by the best model (BRF + SVM) developed using

the same threshold. Notice that our BRF + SVM model excluded

~23% of compounds (~5% being outside the AD and ~18% as a

consequence of discordant predictions) while OCHEM I and II

discarded ~14% compounds based onAD. Noteworthily, all of the

other tools do not provide any AD-based filter to be applied.

Furthermore, as the computation of AUC was not possible for all

of the considered tools, being not able to provide a probability-

based ranking, we used BA and MCC for the performance

comparison. Remarkably, as shown in Table 4, the herein

developed RF + SVM classifier showed more balanced statistics

in predicting positive and negative samples than OCHEM I/II,

ADMET 2.0, and DeepHIT models. In particular, OCHEM I/II

presents a higher FN rate (SE = 0.24 and 0.38), whereas a higher

FP rate characterizes ADMET 2.0 (SP = 0.36) and DeepHIT (SP =

0.44). As evident in Figure 3, BRF + SVM exhibits the highest BA

and MCC (0.72 and 0.43, respectively) compared to all of the

tested models, albeit excluding a fraction of compounds from the

prediction, as previously mentioned. Hence, it can be reasonably

considered as the best performing one in terms of real-life

applicability.

QSAR-hERG: A freely accessible KNIME
workflow

The top-performing QSAR models are available as a KNIME

workflow at https://github.com/PDelre93/hERG-QSAR. The

TABLE 4 Comparison in terms of performance on the ES (temporal validation) of the best performing model presented in this study (BRF + SVM) and
different classifiers available in the literature. The following statistics are reported: balanced accuracy (BA), sensitivity (SE), specificity (SPE),
Matthews correlation coefficient (MCC), and the total number of molecules (#).

BRF + SVM OCHEM-I OCHEM-II Cardprep ADMET2.0 DeepHIT CardioTox

BA 0.72 0.60 0.60 0.63 0.63 0.62 0.68

SE 0.67 0.24 0.24 0.66 0.89 0.80 0.70

SP 0.76 0.95 0.95 0.59 0.36 0.44 0.65

MCC 0.43 0.28 0.28 0.26 0.31 0.24 0.35

# 606 682 670 792 792 792 792

FIGURE 3
Comparison of balanced accuracies (BAs) and Matthews
correlation coefficients (MCCs) for the selected model on the ES.
Blue bars refer to BA, while orange bars refer to MCC.
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implementation offers easy-to-use and intuitive options to use

our predictive models. In the supporting information, a detailed

guide explains how to install and perform fast hERG-related

cardiotoxicity predictions. The graphical user interface (Figure 4)

allows the users to choose the preferred way to proceed: 1) predict

the activity of a single compound by manually entering the

SMILES or 2) predict a batch of compounds from a SMILES

list included in a. csv or. xlsx file. The workflow can automatically

compute the required DRAGON descriptors (license is required).

Alternatively, the user can include precalculated descriptors

within the input file. The affinity toward the hERG channel is

predicted using the top-performing models described above:

BRF, (S)KNN, and (S)SVM for the activity thresholds pIC50 =

6; BRF, SVM, and GB for the activity threshold pIC50 = 5. At the

end of the calculation, users can inspect the predictions generated

by each model at pIC50 = 6 or 5, evaluating their reliability.

Figure 5 shows the predictions returned by three compounds

previously withdrawn from the market due to demonstrated

hERG-related cardiotoxicity: mibefradil (Bezençon et al.,

2017), sertindole (Sinha and Sen, 2011), and terfenadine

(Sinha and Sen, 2011). Remarkably, all of the models predict

the selected compounds as ACT (i.e., hERG-blockers). The

column “applicability domain” expresses the reliability of the

final prediction, which in our case is trustworthy (TRUE). It is

worth noting that these findings agree with experimental data

indicating pIC50 values of 6.24 for mibefradil (Bezençon et al.,

FIGURE 4
Dialog box to set up the calculation using the KNIME workflow.

FIGURE 5
Output tables returned by the KNIME workflow for the three compounds examined: mibefradil, sertindole, and terfenafide.
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2017), 7.83 for sertindole (Sinha and Sen, 2011), and 6.67 for

terfenafide (Sinha and Sen, 2011).

Conclusion

In this study, we developed 30 QSAR models based on

7,963 highly curated bioactivity data reported in ChEMBL

(version 25) (Gaulton et al., 2012) and 1D and 2D descriptors

computed by DRAGON 7.0.4 (Kode, 2017). By employing six

machine learning algorithms, namely RF (Breiman, 2001), KNN

(Altman, 1992), GB (Friedman, 2001), XGB (Chen and Guestrin,

2016), MLP (Haykin, 1994), and SVM (Vapnik, 1963), we

implemented two sets of binary models differing for the

considered toxicity threshold (pIC50 = 6 or pIC50 = 5). To

maximize the performances, we followed three strategies for

building ligand-based classifiers, namely: 1) VSURF (Genuer

et al., 2010), to select relevant features to use in model

construction, 2) the oversampling technique SMOTE (Chawla

et al., 2002) to handle the unbalanced data; 3) a consensus

approach to overcome single model limitations. Remarkably,

the obtained results highlight the usefulness of these strategies, as

testified by the high performances returned in the validation

procedure. Importantly the performed temporal validation

confirms the reliability of our models in real-life cases, given

their ability to properly classify as hERG blockers or nonblocker

compounds belonging to a repository (ChEMBL (Gaulton et al.,

2012) v28) published after the data used for building TS and VS

(ChEMBL (Gaulton et al., 2012) v25). Noteworthily, the models

can be efficiently used in combination with structure-based

strategies (Creanza et al., 2021) as testified by recent literature

(Mansouri et al., 2016; Kamel et al., 2017). Finally, the performed

comparative analysis indicates that the top-performing

consensus model herein developed outperforms several

commonly employed classifiers available in the literature. Our

computational workflow is available to the cheminformatics

community in the GitHub repository (https://github.com/

PDelre93/hERG-QSAR), as valuable for a robust ligand-based

prediction tool of hERG-related cardiotoxicity.
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