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ABSTRACT

NMR data from different experiments often contain
errors; thus, automated backbone resonance assign-
ment is a very challenging issue. In this paper, we
present a method called GANA that uses a genetic
algorithm to automatically perform backbone reson-
ance assignment with a high degree of precision and
recall. Precision is the number of correctly assigned
residues divided by the number of assigned residues,
and recall is the number of correctly assigned resi-
dues divided by the number of residues with known
human curated answers. GANA takes spin systems
as input data and uses two data structures, candidate
lists and adjacency lists, to assign the spin systems to
each amino acid of a target protein. Using GANA,
almost all spin systems can be mapped correctly onto
a target protein, even if the data are noisy. We use the
BioMagResBank (BMRB) dataset (901 proteins) to test
the performance of GANA. To evaluate the robustness
of GANA, we generate four additional datasets from
the BMRB dataset to simulate data errors of false pos-
itives, false negatives and linking errors. We also use
a combination of these three error types to examine
the fault tolerance of our method. The average preci-
sion rates of GANA on BMRB and the four simulated
test cases are 99.61, 99.55, 99.34, 99.35 and 98.60%,
respectively. The average recall rates of GANA on
BMRB and the four simulated test cases are 99.26,
99.19, 98.85, 98.87 and 97.78%, respectively. We
also test GANA on two real wet-lab datasets, hbSBD
and hbLBD. The precision and recall rates of GANA on
hbSBD are 95.12 and 92.86%, respectively, and those
of hbLBD are 100 and 97.40%, respectively.

INTRODUCTION

NMR provides an alternative to X-ray diffraction for deter-
mining the 3D structures of proteins in atomic resolution.

NMR is also a powerful analytical tool for studying
protein–ligand binding, protein–nucleic acid interactions
and protein dynamics because it can probe protein molecules
in a liquid environment. The first requirement for these studies
is sequential resonance assignment on backbone structures.
Researchers usually conduct several 3D NMR experiments,
such as CBCANH, CBCA(CO)NH or HN(CO)CA, on
13C/15N/1HN-labeled proteins, and 2D NMR experiments,
such as HSQC, on 15N/1HN-labeled proteins. These experi-
ments are combined to construct sequential assignments.
The multi-dimensional NMR spectra contain a mass of peaks
that in turn contain chemical shifts and corresponding intens-
ities. Different kinds of NMR experiments provide different
partial resonance information about particular atom groups
on the backbone structure. For example, the 2D HSQC experi-
ment is used to detect whether there is a covalent bond between
N and HN. If such a bond exists, a corresponding peak should
appear in the spectrum, thereby showing the chemical shifts of
the two atoms. The backbone resonance assignment problem is
how to identify the chemical shifts of particular atoms on the
backbone structure from the connectivity information among
the mass of isolated peaks. In the past, biologists had to make
tedious backbone assignments manually or semi-manually dur-
ing the spectra analysis process, but many automated tools
using computational technologies are now available for the
task. Even so, backbone resonance assignment is still very
difficult in practice owing to noise and errors in experimental
NMR data.

NMR data often contains four types of errors: noises
(false positives), missing peaks (false negatives), clustered
peaks and inconsistent results among different experiments.
Noisy peaks with high intensity could be accidentally regarded
as real peaks, thereby creating false positive spin systems that
coexist with real spin systems. A missing peak could be a weak
spectrum peak mistakenly discarded owing to its low intensity,
or an empty spectrum peak that is not present owing to the
imperfect sensitivity of the NMR experiments. The third type
of error is the clustered peak that occurs when the same kinds
of atoms are located in similar environments. The last type of
error is inconsistency among different experiments. Theoret-
ically, each atom on a backbone structure should have a fixed
chemical shift. However, different NMR experiments on the
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same protein may generate slightly different chemical shifts
for the same atom owing to differences in experimental
conditions, such as temperature, pH value and isotope effects.
As these four types of data error appear simultaneously in
NMR spectra, the process of automated backbone resonance
assignment is very challenging.

Most automated backbone resonance assignment programs
comprise the following steps. (i) Filtering and referencing:
filter peaks and relate resonances from different spectra.
(ii) Grouping: group resonances into spin systems. (iii) Typ-
ing: identify the amino acid types of spin systems. (iv) Link-
ing: find and link sequential spin systems into segments.
(v) Mapping: map spin system segments to the primary
sequence (1). Note that the above procedures may be per-
formed in a different order. Although many works deal
with at least some of the above procedures (2–17), most mod-
els assume that the spin system grouping is already given and
thus ignore a possible ambiguity problem. However, some
works do perform all five procedures (18–24). Readers are
referred to (1) for a thorough survey.

In this paper, we present a method called GANA that uses a
genetic algorithm (GA) for automated backbone resonance
assignment. GANA assumes that the spin systems are given
and uses two data structures, candidate lists and adjacency
lists, to assign the spin systems to each amino acid of a target
protein. In this way, almost all spin systems can be mapped
onto a target protein.

To evaluate the performance of GANA, we use the precision
and recall rates defined below:

precision¼ the number of correctly assigned residues
the number of assigned residues

·100%

recall¼ the number of correctly assigned residues
the number of residues with known answers

·100%

Note that the number of residues with known answers excludes
prolines, because they do not produce spectral peaks in the
HSQC, CBCANH and CBCA(CO)NH experiments. Both pre-
cision and recall are essential indicators of the performance of
a backbone resonance assignment system. For example, con-
sider a protein of length 100 with known assignments for all
residues. If method A can only assign 40 positions of the entire
sequence and all the assignments are correct, then the preci-
sion rate will be 100%, but the recall rate will be only 40%.
If method B, on other hand, can assign 80 positions of the
sequence and only 60 assignments are correct, then the pre-
cision rate will be 75% and the recall rate will be 60%. The
recall rate in this assignment problem reflects the accuracy of
the method as a whole and the precision rate indicates the
reliability or confidence of the predicted assignments.

We test GANA on the filtered BioMagResBank (BMRB)
database of 901 proteins and two real NMR datasets: the
substrate binding domain of BCKD (hbSBD) and the lipoic
acid bearing domain of BCKD (hbLBD) (25). To test the
robustness of GANA, we also simulated real-world errors
to generate the following four synthetic datasets from the
BMRB dataset: false positives, false negatives and linking
errors (explained in Simulated datasets), and a combination
of these three error types. When testing one round, the average
precision rates of GANA on the BMRB dataset, false posit-
ives, false negatives, linking errors and the combination of test
cases are 99.61, 99.55, 99.34, 99.35 and 98.60%, respectively;

and the average recall rates are 99.26, 99.19, 98.85, 98.87 and
97.78%, respectively. Note that such a test of robustness is not
performed by other methods. However, we believe it is crucial
for the accuracy of resonance assignment methods.

METHODS

NMR experiments

In GANA, we use HSQC, CBCANH and CBCA(CO)NH spec-
tral data to assign chemical shifts to N, HN, Ca and Cb atoms
on the backbone structure of a target protein. Figure 1a shows
two consecutive residues, the (i � 1)-th and the i-th residues,
where only atoms along the backbone are depicted. For the i-th
residue, the HSQC experiment detects HN

i and Ni chemical
shifts (Figure 1b); the CBCANH experiment detects HN

i , Ni,
Ca

i� 1, C
b
i� 1, Ca

i and C
b
i chemical shifts (Figure 1c); and the

CBCA(CO)NH experiment detects HN
i , Ni, Ca

i� 1 and C
b
i� 1

chemical shifts (Figure 1d). By cross-referencing the HSQC,
CBCANH and CBCA(CO)NH peaks for the i-th residue, we
can generate two consecutive spin systems, i.e. an inter-spin
system, denoted by SSinter(i), and an intra-spin system,
denoted by SSintra(i). The former contains the chemical shifts
of Ca

i�1, C
b
i�1 and HN

i , Ni, while the later contains the chemical
shifts of Ca

i , C
b
i and HN

i , Ni.

Chemical shift ranges of amino acids

Different amino acid residues may have different chemical
shift ranges. TATAPRO II (19) uses BMRB statistical data
for 13Ca and 13Cb chemical shifts to group the 20 amino acids
into 8 categories (Table 1). In order to associate more spin
systems with amino acids, we extend the upper and lower
bounds by 10%. Although this introduces more false positives,
their effect is more than offset by the reduction in the number
of missing peaks. The minimum and maximum chemical shifts
are set to 13.5 and 79.75, respectively. For each amino acid, x,
we use Range(x) to represent the chemical shift ranges of x.
For example, the modified chemical shift range of alanine
(Ala) is 13.5 < Cb < 26.4, denoted by Range(Ala).

Spin system groups

A spin system contains the chemical shifts of atoms within a
residue. In GANA, we denote a set of spin systems as an
SSGroup in which all systems have identical chemical shifts
of HN and N. An ideal SSGroup should contain only one pair of
SSinter and SSintra systems. In practice, however, an SSGroup
may contain several ambiguous spin systems owing to errors.
The record of an SSGroup is headed by a pair of chemical
shifts of 15N and 1HN, followed by two or more spin systems,
each of which is flagged. The flag indicates the type of spin
system, either an inter- or intra-spin system, denoted by 0 and 1,
respectively. An example of an SSGroup, which is the basic
unit of GANA, is shown in Figure 2. Hereafter, we assume that
the whole system has n spin system groups, i.e. SSGroup1, . . .,
SSGroupn.

Data structures

Candidate lists. Automated backbone resonance assignment
requires a typing step to associate spin systems with amino
acid types. Most methods try to associate each spin system
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with its potential residue type(s). However, doing so may
generate a large search space while performing linking and
mapping owing to the ambiguity of the spin systems. Instead
of applying such a typing mechanism, GANA uses a data
structure, candidate lists, to record potential spin systems
for each residue in a target sequence.

For each residue i in a target protein, the candidate list CL(i)
records all the k’s such that SSGroupk matches residue i
according to Range(i) and Range(i � 1). In other words, if
some SSinter (spin system type 0) of SSGroupk are within the
Range(i � 1) and some SSintra (spin system type 1) are within
the Range(i), then k is added to CL(i). Note that if no such
SSGroupk is found for residue i, then CL(i) ¼ f (an empty
set). Intrinsically, proline has no NMR spectral peaks, so its
candidate list is f. Figure 3 shows the candidate lists of four
residues.

Adjacency lists. We construct an adjacency list for each
SSGroupi, denoted by AL(i), to express the connectivity rela-
tions between SSGroupi and all SSGroupj. Two groups,
SSGroupi and SSGroupj, are said to be connected if the abso-
lute differences of their corresponding chemical shifts are

Table 1. Amino acid types based on their carbon chemical shift characteristics

Carbon chemical shift Amino acid

Absence of Cb Gly
14 < Cb < 24 Ala
56 < Cb < 67 Ser
24 < Cb < 36 and Ca < 64 Lys, Arg, Gln, Glu, His, Trp, Crsred,

Val and Met
24 < Cb < 36 and Ca > 64 Val
36 < Cb < 52 and Ca < 64 Asp, Asn, Phe, Tyr, Cysoxd, Ile and Leu
36 < Cb < 52 and Ca > 64 Ile
— Pro
Cb > 67 Thr

Since glycine has only a proton on its side chain, it has no Cb chemical shift.
Proline intrinsically has no peaks appearing in NMR spectra, so it has neither
Ca nor Cb chemical shifts. Cysred and Cysoxd represent reduced cysteine and
oxidized cysteine, respectively.

Figure 1. Different NMR experiments on two consecutive residues. The detected atoms with available chemical shifts are marked in black.

116.50
SSGroup

8.25
51.90 19.40 0
57.50 63.30 1

i

Figure 2. An example of an SSGroup headed by 116.50 (chemical shift of 15N)
and 8.25 (chemical shift of 1HN). The SSGroup contains two spin systems: an
inter-spin system, indicated by 0 with Ca chemical shift 51.9 and Cb chemical
shift 19.4; and an intra-spin system, indicated by 1 with Ca chemical shift 57.5
and Cb chemical shift 63.3.

6 (G): 5 8 16 22 25 66 67 68 69
7 (Y): 58 82 118 160
8 (D): 4 7 9 12 13 17 42 56 61 71 72
9 (D): 4 7 9 12 13 17 42 56 61 71 72

Figure 3. An example of candidate lists of four residues. The candidate list of
the seventh residue (Y, tyrosine) is 58, 82, 118 and 160, which means that the
inter- and intra-spin systems in SSGroups 58, 82, 118 and 160 are within
Range(G) and Range(Y), respectively. The seventh residue will only be
assigned one of the SSGroups 58, 82, 118 and 160. Note that if SSGroups
58, 82, 118 and 160 are already assigned to other residues, the seventh residue
will be assigned�1, which means an empty SSGroup, and the chemical shift of
Ca

7 ‚C
b
7‚ will be determined by the inter-spin system of the SSGroup of the

eighth residue.
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within predefined thresholds, i.e.

jCa
i‚ inter �Ca

j‚ intraj < da and jCb
i‚ inter �C

b
j‚ intraj < db 1

or

jCa
i‚ intra �Ca

j‚ interj < da and jCb
i‚ intra �C

b
j‚ interj < db‚ 2

where Ca
i‚ inter denotes the Ca chemical shift of the inter-spin

system of SSGroupi, and the other terms are similarly denoted,
and da and db are the predefined thresholds. Note that each
SSGroup may contain more than one inter-spin (or intra-spin)
system, but as long as at least one pair of inter- and intra-spin
systems satisfy either of the above conditions, SSGroupi and
SSGroupj are said to be connected.

Each AL(i) contains two kinds of lists: an L-List, denoted by
ALL(i), and an R-List, denoted by ALR(i). The L-List records
all SSGroupj whose SSintra are connected with SSinter of
SSGroupi. In this case, we have a connected fragment, ji,
of length two. The R-List records all SSGroupk whose SSinter

are connected with SSintra of SSGroupi. In this case, we have a
connected fragment, ik, of length 2. ALL(i) and ALR(i) are then
sorted in ascending order by the sum of absolute differences on
the left-hand side of Inequality Equations 1 and 2. The purpose
of sorting these lists is to ensure that closer spin systems are
used for assignments later in our GA. Figure 4 shows an
example of the adjacency lists of n SSGroups.

Our genetic algorithm model

GAs proposed by Holland (26) simulate the process of biolo-
gical evolution in computers. A great deal of research has
shown that GAs are efficient for solving problems that have
a very large search space (27). GAs usually comprise chro-
mosome initialization, reproduction, crossover and mutation
operations. They also require a fitness function.

To apply GANA, we are given a target protein of length l
and n SSGroups numbered from 1 through n. We, then, gen-
erate the candidate and adjacency lists, which are regarded as

two assignment constraints of the GA in GANA. The former
are used to select SSGroup candidates for residues and the
latter to construct or extend the connected fragments from a
specific SSGroup. In this section, we use i to denote the residue
located at the i-th position of the target protein, xi to denote an
SSGroup in CL(i) and 1 < xi < n.

In the iterative procedure of chromosome generation of
GANA, we assign one of the SSGroups in CL(i) to each res-
idue, i. Note that each SSGroup may be found in more than one
candidate list, but it can only be assigned to at most one
residue. If all SSGroups in CL(i) are already assigned to
other residues, then residue i will be assigned �1, and the
chemical shifts of Ca

i and C
b
i will be determined by

SSinter(i + 1).

Chromosome initialization. Each chromosome in GANA rep-
resents a candidate solution for backbone resonance assign-
ment, and SSGroups are the basic units (genes) of such
solutions. A chromosome, ch, has l components corresponding
to all residues of the target protein. Each component of ch is
denoted by ch[i], which is assigned an SSGroup or �1, and is
written as ch[i] ¼ xi or �1.

To create a new chromosome, ch, we initially set all ch[i]
as undefined and then iteratively perform the following steps.
(i) Randomly select a residue, i, of a target protein that has not
been assigned an SSGroup or �1, where �1 indicates that no
available SSGroup can be assigned to a specific residue in the
target protein by our method. (ii) Given a residue i, randomly
select an SSGroup, xi, from CL(i) that has not been assigned to
any other residue and assign xi to ch[i] (define ch[i] ¼ xi). (iii)
Extend connected fragments by examining AL(xi). When per-
forming Step (ii), if no SSGroup from CL(i) can be found for
residue i, i.e. all SSGroups have been assigned to other resi-
dues, assign �1 to ch[i]. When all residues have been assigned
an SSGroup xi or �1, i.e. ch[i] ¼ xi or �1, return the ch, which
is a new chromosome.

We now explain Step (iii) in detail. Given ch[i] ¼ xi, we
extend a connected fragment from xi leftward (called left
extension) and rightward (called right extension). To perform
left extension, we sequentially select an SSGroup, xi�1, from
ALL(xi) that is also in CL(i � 1) and has not yet been assigned.
We, then, assign SSGroup xi�1 to residue i � 1 (defined as
ch[i � 1] ¼ xi�1) and obtain a connected fragment of spin
systems, xi�1xi, for residues i � 1 and i. We repeat the
above process for residues i � 1, i � 2 and so on for left
extension until no further extension is possible. Similarly,
for ch[i] ¼ xi we use ALR(xi) to extend connected fragments
to the right for residues i + 1, i + 2, and so on until no further
extension is possible. In other words, we sequentially select an
SSGroup, xi+1, that is also in CL(i + 1) and has not yet been
assigned. Then, we assign SSGroup xi+1 to residue i + 1
(define ch[i + 1] ¼ xi+1).

We repeat chromosome initialization many times to gener-
ate a population of chromosomes. There are two advantages of
creating chromosomes, ch, this way: (i) all SSGroups assigned
to residues satisfy the chemical shift ranges of each corres-
ponding residue and (ii) a ch contains several connected
fragments.

Fitness function. The fitness function guides the evolutionary
direction of a population. Thus, the more connected fragments

ALL(1): 23, 11, 99
ALR(1): 38, 47, 65, 41, 71

ALL(2): 7, 20
ALR(2): 35, 28, 93, 81

...

ALL(n): 12, 29, 17
ALR(n): 22, 101, 43, 57, 68

SSGroup1

SSGroup2

SSGroupn

Figure 4. An example of adjacency lists with n SSGroups. (Note that the
SSGroup numbers in each adjacency list are sorted according to the left-
hand side of Inequality 1 and 2). The inter-spin system of SSGroup 1 is con-
nected with the intra-spin systems of SSGroups 23, 11 and 99; and the intra-spin
system of SSGroup 1 is connected with the inter-spin systems of SSGroups 38,
47, 65, 41 and 71.
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a ch has, and the longer they are, the higher its fitness score
will be.

To define the fitness score of ch, we first examine each
residue i with ch[i] ¼ xi for i ¼ 1,2, . . ., l to determine
whether or not xi can connect with xi�1(¼xa) and with
xi+1(¼xb). We then define two variables, DL(i) and DR(i), to
reflect the degree of connectivity between (xi,xa) and (xi,xb),
respectively:

DL ið Þ ¼
d‚ if xa does not

connect with xi‚

jCa
i‚ inter �Ca

a‚ intraj þ jCb
i‚ inter �C

b
a‚ intraj‚ otherwise‚

8<
:

DR ið Þ ¼
d‚ if xi does not

connect with xb‚

jCa
i‚ intra �Ca

b‚ interj þ jCb
i‚ intra �C

b
b‚ interj‚ otherwise‚

8<
:

where d is a special flag symbol. Each connectivity is then
given a score:

SL ið Þ ¼

�3 if DL ið Þ ¼ d
5 if DL ið Þ < 0:1
4 if 0:1 < DL ið Þ < 0:3
3 if 0:3 < DL ið Þ < 0:5
2 if 0:5 < DL ið Þ < 0:7
1 otherwise:

8>>>>>><
>>>>>>:

SR(i) is defined similarly. The closer the two connected SSGroups are,

the higher the score they receive. Now, we define the linking score for

each xi as follows:

LS xið Þ ¼

0‚

1‚
SL ið Þ‚
SR ið Þ‚

SL ið Þ þ SR ið Þ‚

if xi ¼ �1

if xi 6¼ �1‚xa ¼ xb ¼ �1
if xi‚xa 6¼ �1‚xb ¼ �1
if xi‚xb 6¼ �1‚xa ¼ �1

otherwise:

8>>><
>>>:

The fitness score of ch is then defined as follows:

Fitness score chð Þ ¼
Xl

i¼1

LS xið Þ:

Reproduction operation. For the reproduction operation,
GANA uses a selection procedure to produce the next gen-
eration according to the fitness score of each chromosome in
the current population. After ranking chromosomes according
to their fitness scores, we keep the top 50% of them for the next
generation. They are also treated as parent candidates in the
crossover operation (explained in Crossover operation). The
remaining 50% of chromosomes in the next generation, called
offspring, are produced by a crossover operation with parent
candidates or random chromosome initialization. We use a
parameter called the CrossoverRate (0–100) to denote the
proportion of offsprings produced by the crossover operation.
If the CrossoverRate is 40, it means that 40% of the offsprings
are produced by the crossover operation, and the remaining
60% are produced by chromosome initialization. In summary,
the chromosomes of the next generation consist of 50% from
parent candidates, 20% (¼0.4 · 0.5) from crossover opera-
tions and 30% from chromosome initialization.

After producing the new generation, all the chromosomes
go through a mutation operation (described in Mutation

operation). We use a parameter called the MutationRate
(0–1000) to denote the probability of mutation for each
locus in a ch. If the MutationRate is 5, then each locus has
0.005 probability of being mutated to another value. Finally,
we check each pair of chromosomes, chi and chj, with i 6¼ j in
the population to determine whether or not they are identical;
if they are identical, then one of them will be reproduced by
chromosome initialization.

Crossover operation. Our crossover operation produces an
offspring, ch, that has a higher fitness score and has inherited
as many connected fragments as possible from its parents. To
achieve this, we randomly select two different chromosomes
from the parent candidates, say p1 and p2. Let ch be produced
by the crossover operation from p1 and p2. Initially, all ch[i]
are undefined. The iterative procedure of the crossover opera-
tion is as follows:

(i) Randomly select a residue i of the target protein that has
not been assigned an SSGroup or �1. If all l residues have
been assigned, proceed to Step (iv).

(ii) Randomly select a parent p (p ¼ p1 or p2). If p[i] ¼ �1,
then assign �1 to ch[i] (define ch[i] ¼ �1) and return to
Step (i). Otherwise, proceed as follows: if p[i] has not been
assigned to any other residue of ch, then assign p[i] to ch[i],
i.e. define ch[i] ¼ p[i], and go to Step (iii). Otherwise,
assign ch[i] a special symbol D (define ch[i] ¼ D) to indi-
cate that it will be re-assigned later with another SSGroup
that has not yet been used, and return to Step (i).

(iii) Extend the connected fragment from ch[i] by referencing
p and return to Step (i).

(iv) To process those residues with ch[i] ¼ D, randomly select
a residue i, such that ch[i] ¼ D. Then randomly select
an SSGroup, xi, from CL(i) that has not been assigned
to any other residue. If all SSGroups in CL(i) have been
assigned, assign �1 to ch[i]; otherwise, assign xi to ch[i].
Repeat this step until all residues with ch[i] ¼ D have been
processed and return the ch, which is the new offspring
chromosome.

Given that ch[i] ¼ p[i], Step (iii) is similar to that of chromo-
some initialization. Left extension proceeds as follows. We
examine p[i � 1] to determine whether or not it has been used
in ch. If it has not been used, we define ch[i � 1] ¼ p[i � 1]
and repeat the left extension procedure for i � 2 and so on
until no further extension is possible; otherwise, we stop left
extension. Then, we proceed to perform right extension that is
similar to left extension.

Mutation operation. Mutation operations may alter the values
of some positions in a chromosome, so we use a modified
chromosome to replace the original chromosome. This opera-
tion provides a population with reasonable diversity and
prevents the offspring from resembling their parents so that
the GA does not fall into a local maximum. Though most
mutation operations are single or multiple point mutations,
we discard such mutations since they may split a connected
fragment into pieces. Instead, we use a different mutation
strategy: once a locus is mutated, our operation also mutates
its subsequent loci.

Let mch denote a new mutated chromosome to be gener-
ated. Our mutation operation starts with the first locus,
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i.e. i ¼ 1. We distinguish two cases. First, residue i is mutated
by the following steps: (i) randomly select an SSGroup, xi,
from CL(i) that has not been assigned to any other residue of
mch, and define mch[i] ¼ xi. If no such xi can be found in
CL(i), define mch[i] ¼ � 1 and proceed to the next residue
i + 1. (ii) Perform only the right extension from xi by refer-
encing AL(xi) until i ¼ k (k is an integer < l), for no further
extension is possible. This extension procedure is the same as
that for chromosome initialization, described in Chromosome
initialization. In the second case, residue i is not mutated, and
we examine ch[i] to determine whether or not it has been
assigned to mch. If it has not been assigned to mch, we assign
ch[i] to mch[i] and proceed to the next residue i + 1; other-
wise, we perform above Steps (i) and (ii) until i ¼ k, or until
no further extension is possible.

We then repeat the above mutation operation with i ¼ i + 1
or k + 1 (depending on whether extension is performed) until
all residues have been processed and output the resulting mch
to replace the original ch.

Creating backbone resonance assignment from the best
chromosome. After evaluating the fitness function of all
chromosomes in the current generation, we select the chro-
mosome, ch, that has the highest fitness score as the candidate
solution for backbone resonance assignment. (Recall that n
denotes the number of spin systems.) For each residue i, if
ch[i] ¼ xi where xi 2 {1,2, . . ., n}, we report that SSGroup xi is
assigned to residue i. In other words, the chemical shifts of Ni

and HN
i are the chemical shifts of 15N and 1HN in SSGroup xi.

Also, SSintra(i), which represents the chemical shifts of Ca
i and

C
b
i , is the intra-spin system of SSGroup xi. If there is more than

one intra-spin system in SSGroup xi to assign SSintra(i), we
arbitrarily select any intra-spin system that connects
SSinter(i + 1) when residue i + 1 is assigned with another
SSGroup.

EXPERIMENTAL RESULTS

GANA, which was developed under Linux Redhat 9.0, is
implemented as a standard C++ program. We use BMRB
and real wet-lab datasets to estimate the precision and recall
rates of GANA. The C++ source code of GANA and all syn-
thetic datasets are available at http://bioinformatics.iis.sinica.
edu.tw/GANA/.

The parameters used in each single round of GANA are as
follows: the number of chromosomes in each gener-
ation ¼ 600, the number of generations for evolution in a
single round ¼ 500, the CrossoverRate ¼ 70 and the
MutationRate ¼ 2. Because GAs may fall into a local max-
imum, we perform multiple rounds to select the chromosome
with the highest fitness score as the final assignment for each
protein. Each round of the GA is a complete and an independ-
ent assignment procedure. In Tables 4 and 5, we use P and R to
denote the precision rate and the recall rate, respectively,
expressed in percentages.

Results of raw datasets

The BMRB dataset. We downloaded the full BMRB dataset
containing 3129 proteins on September 10, 2004. Since protein
lengths in NMR experiments are generally <400, we choose
proteins of lengths 50–400 that have at least 50% residues with

known human curated answers as our dataset. The resulting
dataset contains 901 proteins, the average length of which is
128.17 and the average proportion of residues with known
answers in a protein sequence is 86.3%.

For each test protein, we generated simulated SSGroups
according to the chemical shifts assigned to each residue.
Note that if the chemical shifts of N or HN on residue i are
unavailable, we do not generate a corresponding SSGroup for
residue i.

The single round precision and recall rates of GANA for
the dataset are 99.61 and 99.26%, respectively; and after
10 rounds they are 99.67 and 99.34%, respectively. The
improvement after 10 rounds compared with a single round
is small, which implies that GANA is less likely to be trapped
in a local optimum.

Although our BMRB dataset contains proteins with lengths
<400, we also test GANA on a very challenging 723 residue
Malate Synthase G, BMRB #5471, to demonstrate its ability to
handle long proteins. In addition to the original data, we use
synthetic data with false positives, false negatives and linking
errors (explained in Simulated datasets). The precision and
recall rates are both 100% for the original data; 100 and
99.8%, respectively, for the data with false positives; 98.9
and 97.7%, respectively, for the data with false negatives;
and 98.92 and 97.57%, respectively, for the data with linking
errors.

As both MARS (28) and GANA take spin systems as input,
we compare these two methods. In (28), MARS is tested on
11 proteins of BMRB; thus, we test GANA under the same
conditions, except that BMRB #547 and #4106 are removed
because they lack Cb and N chemical shifts, respectively.
The results are given in Table 2. [Since MARS (28) reports
only the number of correctly assigned residues, the experi-
mental results are reported in terms of the recall rate, i.e. the
accuracy rate.]

Two real wet-lab datasets. In addition to the BMRB dataset,
we also use two real wet-lab datasets: the substrate binding
domain of BCKD (hbSBD) and the lipoic acid bearing domain
of BCKD (hbLBD) (25). More than 50% of each dataset
consists of false positives and false negatives. Details of the
two datasets are given in Table 3.

The single round precision and recall rates of GANA for
hbSBD are 95.12 and 92.86%, respectively; and for hbLBD
they are 100 and 97.40%, respectively.

Table 2. Recall rates of GANA and MARS on nine proteins of the original data

and with linking errors

Protein ID MARS GANA
Original data Linking errors Original data Linking errors

5471 97.71 95.11 100.00 97.57
4354 99.40 98.51 100.00 100.00
4384 98.64 98.64 100.00 100.00
4022 99.59 99.59 100.00 100.00
4457 80.24 81.44 100.00 100.00
4402 81.58 81.05 92.71 98.44
4341 95.73 95.73 100.00 100.00
4082 100.00 100.00 100.00 100.00
4136 94.59 86.49 95.35 93.02
Average 94.16 92.95 98.67 98.78
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Simulated datasets

To compare different backbone resonance assignment meth-
ods, researchers prefer to use real wet-lab datasets for testing;
however, such datasets are quite scarce. Thus, tests have also
been conducted using the BMRB dataset, which contains a
large number of proteins with known human curated answers.
The raw BMRB data contain no errors and can be regarded as
perfect data. To simulate real-world noisy data, we generate a
large dataset from the BMRB dataset to simulate false posit-
ives and false negatives. Although real data contain the error
type of clustered peaks, we do not simulate this error type since
the problem of clustered peaks is an intrinsic property of NMR
data. Instead, we simulate linking errors, as in PACES (7), and
a combination of the above error types. In summary, we mod-
ify the original BMRB data to generate four kinds of synthetic
datasets that simulate error types: (i) false positives, (ii) false
negatives, (iii) linking errors and (iv) a combination of the
previous three cases. These datasets, which—to the best of our
knowledge—are unique to our approach, are constructed as
follows.

To create a false positive dataset, we add synthetic intra- and
inter-spin systems to the SSGroups. We then define two types
of synthetic spin systems: a and b. An a (or b) spin system
contains an artificial Ca (or Cb, respectively) and an inherent
Cb (or Ca, respectively) chemical shift. We randomly select
25% of the SSGroups and add an a intra-spin system to each
of them. Similarly, we add b intra-, a inter- and b inter-spin
systems to 25, 12.5 and 12.5% of the SSGroups, respectively.
Note that all selections are random, but not independent, so it
is possible for an SSGroup to be added to more than one type
of synthetic spin system. Figure 5a shows an original
SSGroup, while Figure 5b shows the modified SSGroup of
a false positive case, where the first underlined spin system is
an extra b inter-spin system and the second underlined spin
system is an extra a intra-spin system. In this dataset, 75% of
the data contain false positive errors.

To create a false negative dataset, we assume that some
CBCA(CO)NH peaks are missing. In this situation, we cannot
recognize which Ca or Cb peak in the CBCANH experiments
belongs to the inter-residue. Thus, we generate all possible
combinations of spin systems to solve the problem. We, then,
randomly select 50% of the SSGroups to simulate the case
where either the Ca or the Cb peak in the CBCA(CO)NH
experiments is missing (25% for each). For example, in
Figure 5c we assume that the Ca peak in the CBCA(CO)NH
experiment is missing, so we generate all possible spin
systems.

To create a linking error dataset, we modify the Ca and
Cb chemical shifts of the inter-spin systems for all SSGroups.

Each modified Ca (or Cb) chemical shift differs by ±0.2
(or ±0.4, respectively) p.p.m. from the original data. Further-
more, these chemical shift differences follow normal distribu-
tions with mean 0 and SD 0.08 and 0.16 p.p.m. for Ca and
Cb, respectively. Figure 5d shows the modified SSGroup of the
linking error case.

To create a combined-error dataset, we use the above three
modification methods.

The experiment results of GANA for the synthetic datasets
are listed in Table 4.

PACES (7) reported only experimental results for synthetic
data of linking errors using 21 proteins from the 901 protein
BMRB dataset. To compare GANA with PACES, we tested
it on the same data with a similar parameter setting. PACES
can handle only 20 of the proteins excluding BMRB #4402,
whereas GANA can handle all 21 proteins. Note that the final
results of PACES are post-edited by human experts, whereas
GANA is fully automated. The test results of the 21 proteins
tested by GANA and the 20 proteins tested by PACES are
listed in Table 5.

CONCLUSION

In this paper, we have presented a GA for backbone resonance
assignment, called GANA, which is fully automated and can
deal with noisy data. The performance of GANA on our test
datasets is good for both the precision and the recall rates. In
particular, GANA yields better recall rates than either PACES
or MARS. Note that the recall rate represents the accuracy of

Table 3. Detailed attributes of hbSBD and hbLBD datasets

Datasets hbSBD hbLBD

Number of amino acids 53 85
Number of amino acids manually assigned by biologists 42 80
Number of HSQC peaks 58 78
Number of CBCA(CO)NH peaks 258 271
Number of CBCANH peaks 224 620
False positives (CBCA(CO)NH) (%) 67.4 41.0
False positives (CBCANH) (%) 25.0 48.4

125.9 8.79 125.9 8.79
55.5 32.9 0 55.5 32.9 0
53.7 31.5 1 55.5 28.7 0

53.7 31.5 1
54.9 31.5 1

(a) (b) False positive type

125.9 8.79 125.9 8.79
55.5 32.9 0 55.58 32.75 0
53.7 31.5 1 53.7 31.5 1
53.7 32.9 0
55.5 31.5 1

(c) False negative type (d) Linking error type

SSGroup1 SSGroup1

SSGroup1 SSGroup1

Original SSGroup

Figure 5. Examples of modified data with different error types.

Table 4. Experimental results of GANA for different datasets and rounds

Test dataset 1 Round 10 Rounds
P R P R

Original 99.61 99.26 99.67 99.34
False positives 99.55 99.19 99.64 99.32
False negatives 99.34 98.85 99.53 99.10
Linking errors 99.35 98.87 99.55 99.18
Combined errors 98.60 97.78 98.96 98.28
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an assignment method. The higher recall rates of GANA can
be attributed to its two data structures: candidate lists and
adjacency lists. GANA takes spin systems as input data and
uses the two data structures to assign the spin systems to the
amino acids of a target protein. This design enables GANA to
correctly map nearly all spin systems onto a target protein.
Thus, the recall rates of GANA are generally high.

We have also proposed a scheme that can generate a large
dataset from BMRB to simulate real noisy data of false pos-
itives, false negatives, linking errors and a combination of
these three error types. The synthetic datasets provide a
good platform for comparing different assignment systems.
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