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Abstract
Low Complexity Regions (LCRs) are present in a surprisingly large number of eukaryotic proteins. These highly re-
petitive and compositionally biased sequences are often structurally disordered, bind promiscuously, and evolve rap-
idly. Frequently studied in terms of evolutionary dynamics, little is known about how LCRs affect the expression of
the proteins which contain them. It would be expected that rapidly evolving LCRs are unlikely to be tolerated in
strongly conserved, highly abundant proteins, leading to lower overall abundance in proteins which contain LCRs.
To test this hypothesis and examine the associations of protein abundance and transcript abundance with the pres-
ence of LCRs, we have integrated high-throughput data from across mammals. We have found that LCRs are indeed
associated with reduced protein abundance, but are also associated with elevated transcript abundance. These as-
sociations are qualitatively consistent across 12 human tissues and nine mammalian species. The differential impacts
of LCRs on abundance at the protein and transcript level are not explained by differences in either protein degrad-
ation rates or the inefficiency of translation for LCR containing proteins. We suggest that rapidly evolving LCRs are a
source of selective pressure on the regulatory mechanisms which maintain steady-state protein abundance levels.
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Introduction
Low Complexity Regions (LCRs) are some of the most
common shared motifs in eukaryotic proteins (Golding,
1999; Huntley and Golding, 2000). These regions are highly
repetitive and are enriched for one or a few amino acid
residues. These regions are often intrinsically disordered,
lacking fixed structures under normal physiological
conditions (Romero et al., 2001). Perhaps as a result, these
regions were thought of as a protein analog for
“junk-DNA,” or as spacers between other protein regions
(Golding, 1999). However, more research has shown that
these regions can perform various specific roles. They
have been associated with phenotypic variation (Fondon
and Garner, 2004), implicated in neurodegenerative dis-
eases (Cummings and Zoghbi, 2000), suggested as hub pro-
teins for interaction networks (Dosztanyi et al., 2006), and
shown to be essential to the normal functioning of some
proteins (Loya et al., 2012).

LCRs are broadly defined by compositional bias (Mier
et al., 2019), and there exist multiple methods for detect-
ing and classifying LCRs. The basis for these methods range
from sequence entropy (Wootton and Federhen, 1993)
and probability (Harrison, 2017) to prediction of intrinsic
disorder (Dosztányi et al., 2005). LCRs can be classified in
several different manners including: by primary amino
acid, by location in the protein, by length, and by function

(if known). A recent study found that for some proteins
containing an essential LCR, the region could be replaced
with some LCRs from other proteins without loss of func-
tion (Loya et al., 2017). The inter-operability of LCRs could
thus be used as another classifier.

LCRs can expand and contract rapidly via slippage
of DNA polymerase during replication (Huntley and
Golding, 2006), and can arise from unequal crossover
events (DePristo et al., 2006). They may also evolve as
the result of selection. Whether the LCR is retained in
the protein once it has arisen is affected by several factors.
Recent work has suggested that LCRs are preferentially re-
tained in proteins which are already tightly regulated, pos-
sibly as the existing regulation ameliorates any deleterious
effects from the LCR’s presence (Chavali et al., 2017).

LCRs are also thought to arise in regions under relaxed
selection, however previous work, examining serine homo-
polymers, found evidence of selection based on codon
usage (Huntley and Golding, 2006). Lenz et al. (2014) found
that substitution rates increase in primate proteins in those
regions flanking repetitive sequences like LCRs andmicrosa-
tellites, and that these regions were under higher purifying
selection. All of these results suggest that the presence of
LCRs has evolutionary consequences for their host proteins.

It is well known that expression levels are positively cor-
related with selection pressure, with those genes which are
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most highly and broadly expressed being under strong se-
lection (Pál et al., 2001). The abundance of these proteins
makes their fitness sensitive to perturbations in their func-
tion as defined by their structure (whether globular or intrin-
sically disordered). The appearance, expansion, and deletion
of an LCRs all have the capacity to dramatically alter the abil-
ity of a protein to perform its function. The majority of such
mutations are deleterious and would be subject to purifying
selection, and only tolerated where the effect is smaller, such
as low abundance proteins under more relaxed selection.
The intolerance for LCRs in high abundance proteins would
result in a negative association between protein abundance
and the presence of LCRs. It would then be expected that
LCR-positive (LCR+) proteins would be have lower expres-
sion than LCR− proteins.

Previously, this relationship has only been incidentally
examined. Some specific LCR+ proteins have been studied
for their influence on human health or their structural
properties (Cornman and Willis, 2009; Shin et al., 2016).
A more general study of S. cerevisiae proteins which con-
tained homo-repeats found that these proteins are in low-
er abundance than other proteins (Chavali et al., 2017).
This study examined only this one type of LCR which
may have different properties from other LCR types.

Characterizing the relationship between LCRs, gene ex-
pression, and protein abundance (PAb) is an opportunity
to shed light on the complex relationship between the lat-
ter two. There are multiple levels of regulation applying to
protein expression at every step from transcription,
through translation, and protein stability. Not all of these
processes are well understood and thus attempts to pre-
dict PAb from mRNA levels have been met with mixed
success (Nie et al., 2006, 2007). This is a concern as gene
expression research is increasingly being used to develop
therapies, despite weak connections to the more physiolo-
gically relevant PAb. Nie et al. (2006) have used sequence

characteristics to address a portion of the variation ob-
served. Among the characteristics examined were amino
acid and codon usage, but LCRs were not considered.

To our knowledge, the research here is the first to com-
prehensively examine LCR+ protein expression across
mammals. We characterize the relationships between
LCRs of different types and their expression in various tis-
sues. We examine the apparent differences between tran-
script abundance (TAb) and PAb through the lens of LCRs
and show that PAb is negatively associated with the pres-
ence of LCRs, but TAb is, unexpectedly, positively asso-
ciated with the presence of LCRs.

Results
Human TAb and PAb from the GTEx project and the
PaxDb were collected for 17,975 proteins. Of these, 4,246
(23.6%) were identified as containing an LCR as deter-
mined by the presence of a 15 amino acid window with
Shannon entropy less than 1.9 bits. One million random
permutations of the labeled LCR status were performed
to generate distributions of expected quartile shifts. The
observed median PAb for LCR+ proteins was lower than
that found in 99.2% of the permutations. On the other
hand, the observed median TAb was higher than all med-
ians found in the permutations (fig. 1). In both cases, the
shift is significantly different from zero by the Mann–
Whitney U test (PPAb , 10−16, PTAb = 1.06× 10−11).

Figure 2 shows the significance of the observed shift for
the baseline, entropy-based permutation and several po-
tential biasing factors. Permutation testing using intrinsic
disorder instead of LCR status yielded qualitatively similar
results with two exceptions. The bottom quartile of abun-
dance for LCR+ proteins shows significantly greater abun-
dance than that for LCR− proteins, and there was no
significant difference observed for the top quartile of
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FIG. 1. Under permutation all abundance quartiles are significantly different based on LCR status. The distribution of shifts in abundance quar-
tiles after one million permutations is shown; the lower plots are insets of the upper plots. The observed shift for each quartile (dashed lines) can
be compared to the matching distribution of location shifts under permutation. LCR+ proteins have lower abundance for all quartiles
(P , 0.023) but higher for TAb at all three quartiles (P ≤ 2× 10−6).
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TAb. Ischemia-time-adjusted TAb values give near identi-
cal results to the unadjusted TAb values. Qualitatively
similar results are also observed when accounting for iso-
form redundancy, and restricting to only heteropolymer
LCRs. The shifts observed for homopolymer LCRs are
much less significant, but are qualitatively similar.

The median tau index of LCR+ proteins (0.74) is lower
than that for LCR− proteins (0.76) (P , 10−5) indicating
that LCR+ proteins are more common among broadly ex-
pressed proteins. As a result the proportion of LCR+ pro-
teins is higher than in the aggregate. These proportions
vary from 24.1% in the testis to 25.1% in the brain.
Regardless of these differences, the aggregate permutation
results are qualitatively consistent with the results across
tissues (fig. 3). Liver tissue is an exception, however it
had the smallest number of expressed proteins (12,914),
the second lowest proportion of LCRs among those pro-
teins (24.6%), and the highest standard deviation in log2
scaled TAb (3.15).

These results suggest that the presence of LCRs is asso-
ciated with an increase in the level of TAb which might be
required to maintain a particular PAb level, as compared
to LCR− proteins. While there are many processes in the
pathway from gene transcription to protein degradation
we focussed on the rates of protein degradation and trans-
lation. Coefficients of degradation (kdeg) for 3,222 human
proteins were aggregated, of which 965 (30.0%) were

LCR+. Schwanhäusser’s data for 2,180 mouse proteins in-
cluded 450 (20.6%) LCR+ proteins. In both datasets,
LCR+ proteins degrade 20–30% more rapidly (table 1).

The perturbability and resupply of local codon supply
were estimated using Schwanhäusser’s mouse data. The es-
timated parameters indicated low perturbability but slow
resupply meaning translation is only likely to be affected
for longer, more repetitive transcripts. A single translation
step consumes 5.78% of the tRNA isoacceptor supply
of the least supplied codon, while 0.064% of the deficit
between local and global supply is ameliorated. These
parameters result in a correlation between measured
translation rates and calculated Time Weighted normal-
ized Translation Efficiency (TWnTE) values of 0.53 (95%
CI [0.51,1.0]).

Using these translation parameters and selective wobble
constraints optimized for each dataset (Supplementary
table S2, Supplementary Material online), TWnTE values
were calculated using GTEX and Schwanhäusser data for
18,054 (30.9% LCR+) human and 3,407 (34.0% LCR+) mouse
proteins. For both species, transcripts encoding LCR+ pro-
teins are translated 35–55% less efficiently (table 1).

Logistic regression was used to estimate the relationship
between abundance and LCR status while accounting for
protein degradation, translation efficiency, and the in-
creased odds of finding LCRs in longer proteins. There
were complete data for 3,107 (29.1% LCR+) human

FIG. 2. Observed shifts in LCR
status remain after controlling
for several technical explana-
tions, and known biological
conditions. Bars represent em-
pirical P values, calculated as
the proportion of 100,000 per-
mutations of GTEx and PaxDB
human data with quartile shifts
at least as large as the observed
shift. Bars above the horizontal
axis have observed shifts where
LCR+ proteins are greater than
the null expectation, while bars
below the horizontal axis re-
present observed shifts where
LCR+ proteins are below the
null expectation. Dotted hori-
zontal lines indicate a signifi-
cance threshold of 0.05. All
results are qualitatively similar
to the baseline analysis.
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proteins and 2,155 (20.7% LCR+) mouse proteins. Figure 4
shows the standardized regression coefficients. Despite
including two regulatory steps and the length of the
proteins, PAb is still negatively associated with the presence
of LCRs. From the coefficients in Supplementary table S3,
Supplementary Material online, we estimate that a human
protein which has double the abundance of an otherwise
similar protein would have 5.5 (95% CI [2.5,8.5])% lower
odds of having an LCR. Conversely TAb is positively asso-
ciated with the presence of LCRs. A doubling in TAb is as-
sociated with an 8.9 (95% CI [4.6,13])% increase in the odds
of encoding an LCR. The PAb results are not significant for
mice but tend towards a negative relationship with a 2.6
(95% CI [−3.0,7.9])% odds reduction for doubling PAb.

The relationship with TAb is qualitatively the same between
human and mouse proteins. For mice, the odds of encoding
an LCR are 13 (95% CI [2.1,25])% higher for each doubling in
TAb. There was no qualitative difference in the relationships
to either PAb or TAb with changes to the translation para-
meters used when calculating TWnTE, or even whether
TWnTE was included in the regression (Supplementary
fig. S1, Supplementary Material online).

While PAb and degradation data are not as readily avail-
able across mammalian species, RNA-Seq data are plentiful.
Therefore, transcriptomic data were processed together and
aggregated for ninemammalian species. As raw RNA-Seq re-
sults were not available for the GTEx or Schwanhäusser da-
tasets, the human and mouse data are not the same as in

FIG. 3. Differences in abun-
dance between LCR+ and
LCR− proteins are consistent
across tissues in humans. Bars
represent empirical P values,
calculated as the proportion
of 1×106 permutations of
GTEx and PaxDB human data
with quartile shifts at least as
large as the observed shift.
Bars above the horizontal axis
have observed shifts where
LCR+ proteins are greater
than the null expectation,
while bars below the horizontal
axis represent observed shifts
where LCR+ proteins are below
the null expectation. Dotted
horizontal lines indicate a sig-
nificance threshold of 0.05.
TAb shifts are consistently, sig-
nificantly positive while the
PAb shifts are consistently, sig-
nificantly negative.

Table 1. Summary of Protein Degradation and Translation.

Process Species LCR Status N Median 95% CI

Lower Upper

Degradation Human − 965 1.82×10−2 1.75×10−2 1.88×10−2
k.deg (1/h) + 2,257 2.42×10−2 2.28×10−2 2.57×10−2

Mouse − 450 1.38×10−2 1.30×10−2 1.45×10−2
+ 1,730 1.57×10−2 1.46×10−2 1.79×10−2

Translation Human − 4,259 2.90×10−2 2.84×10−2 2.95×10−2
TWnTE + 13,795 1.41×10−2 1.37×10−2 1.48×10−2

Mouse − 865 2.28×10−4 2.20×10−4 2.37×10−4
+ 2,542 1.47×10−4 1.38×10−4 1.54×10−4
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FIG. 4. Logistic regression shows PAb and TAb are significantly associated with the probability of a protein containing an LCR. Regression is based
on GTEx and PaxDB human abundance data as well as Shwanhäusser mouse data controlling for protein degradation and translation efficiency.
Regressors are standardized so that the effect magnitudes may be compared (A) Estimated regression coefficients (maroon lines) are compared
to a standard normal distribution (Teal). PAb and LCRs are negatively correlated, while the opposite is true for TAb. (B) Split violin plots showing
the distributions of the regressors’ values across LCR+ (maroon) and LCR− (gray) proteins. Yellow bars indicate the median, and interquartile for
the distribution in which the bar is embedded.

FIG. 5. TAb is associated with an increased probability of an LCR being present, based on consistently processed RNA-Seq data from nine mam-
malian species. Regressors are standardized so that the effect magnitudes may be compared. (A) Estimated regression coefficients (contrastingly
colored lines) are compared to a standard normal distribution (Teal). In all cases, TAb is positively associated with the presence of LCRs. (B) Split
violin plots showing the distributions of the regressors’ values across LCR+ (maroon) and LCR− (gray) proteins. Yellow bars indicate the median,
and interquartile for the distribution in which the bar is embedded.
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the previous analyses. The results of a logistic regression of
LCR status against TAb, protein length, and TWnTE can
be seen in figure 5. Each regression used data from at least
30 k proteins, with LCR+ rates between 23.0% (Human) and
27.6% (Horse). See Supplementary table S3, Supplementary
Material online for details. The positive relationship be-
tween TAb and the presence of LCRs was qualitatively con-
sistent across mammals. All estimates for the increase in
odds of encoding an LCR were between 1.5% and 4.4% for
each doubling in TAb.

Discussion
As would be expected if there were selective pressures
against evolutionarily unstable regions in highly abundant
proteins, we have found that PAb is negatively associated
with LCRs. However, the opposite is true at the level of
TAb where LCR encoding transcripts have higher abun-
dance than expected. The observed associations are con-
sistent across mammalian taxa. This is true even when
accounting for two of the processes along the pathway
from gene expression to protein degradation. This indi-
cates that the associations between LCRs and abundance
cannot be explained solely by reduced translation effi-
ciency of repetitive sequences or elevated degradation
rates of LCR+ proteins.

We investigated several technical explanations of the
observed effect, the first of which was whether the effect
was an artifact our choice of LCR threshold. We reanalyzed
our data withminimum entropy thresholds ranging from 0
to 2.2 bits and observed that elevated TAb for LCR encod-
ing transcripts is only observed for thresholds between 1
and 2. Increasing the entropy threshold dilutes the effect
of LCRs via the inclusion of more false-positives in the
LCR+ category. This reduces the observed differences be-
tween the two groups. Conversely, the loss of signal with
lower thresholds is due to a loss of statistical power.
With the proportion of LCR+ proteins dropping from
24% at a threshold of 1.9 down to 4% at a threshold of
one, the power to detect an effect as large as we have ob-
served drops below 0.5. Our chosen threshold strikes the
balance between sample size, while still limiting the ana-
lysis to proteins with minimum entropies which are corre-
lated with biological effects. This is further supported
by the qualitatively similar results when looking at intrin-
sically disordered protein regions which often overlap
LCRs (fig. 2).

We also investigated the possibility that bias in the
mapping of short reads to highly repetitive sequences
would explain the elevated TAb we observed. In that
case, it would be expected that within a transcript, the
LCR encoding region would have a higher depth of cover-
age than LCR− regions. As we had access to the raw reads
for the mammalian RNA-Seq experiments, we were able to
evaluate this and found that there was no significant differ-
ence in depth of coverage for LCR− encoding regions.

The data from the GTEx project is generated from hu-
man donors and time does pass between the death of

the donor and stabilization of tissues for RNA-Seq. This is-
chemia time may have biased TAb towards more stable
transcripts as unstable transcripts would be degraded dur-
ing the ischemic window. If the observed shift in TAb were
the result of this bias it would suggest that LCR encoding
transcripts are more stable. However, this is not the case.
Almost identical effects are observed when using unadjust-
ed or ischemia-time-adjusted TAb values (fig. 2). This indi-
cates that the observed effect is not the result of a bias
towards more stable transcripts.

The GTEx/PAb analysis had a small potential for redun-
dancy as a result of protein isoforms. Of the 18,016 genes
for which we obtained complete TAb, PAb, and LCR data,
49 had data from multiple isoforms. The abundance of
each isoform was unique, and we observed near identical
results to the baseline observations (fig. 2).

Chavali et al. (2017) have previously shown that yeast
proteins which contain amino acid homopolymers have
lower abundance than homopolymer free proteins. We re-
peated our permutation analysis twice: comparing only
homopolymer containing proteins to LCR− proteins, and
comparing only heteropolymer LCRs to LCR− proteins
(fig. 2). We found a much weaker signal for homopolymer
containing proteins, likely due to a lack of statistical power
as only 536 of the 4,259 LCR+ proteins had homopolymers.
Homopolymer LCRs were qualitatively similar to the base-
line results, but do not completely drive the effects we
have observed, as they are consistent for heteropolymer
LCRs as well.

Data availability presented a limitation to our ability to
interrogate the biological mechanisms driving the elevated
TAb of LCR encoding transcripts and the prevalence of ele-
vated TAb and reduced PAb across mammals. For the lat-
ter, proteome wide PAb data are not widely available
across mammals. However, the consistent observation of
a positive association at the transcript level across mam-
mals may indicate that the same relationship observed
for humans and mice holds across mammals for PAb.
Regardless, our work shows that there can be a disconnect
between transcript and protein levels. This highlights the
importance of carefully investigating RNA-Seq-based con-
clusions to ensure that the physiologically relevant pro-
teins are likewise up- or down-regulated.

The lack of translation rate data across mammals also
limited the confidence in the accuracy of our calculations
of TWnTE. However, we demonstrate that the particulars
of the calculation did not significantly impact the conclu-
sions about the relationships between TAb, PAb, and the
presence of LCRs (Supplementary fig. S1, Supplementary
Material online). Regardless, we believe that TWnTE is a
useful method for calculating translation efficiency as it
goes beyond merely considering sequence composition.
In contrast to the standard normalized Translation
Efficiency (nTE), TWnTE allows us to account for the inher-
ently ordered nature of the codons in a transcript. This
method of calculation clearly shows a difference in trans-
lation efficiency between transcripts for LCR+ and LCR−
proteins as seen in figures 4 and 5.
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The inclusion of TWnTE does make the interpretation
of coefficients for the logistic regression more difficult.
TWnTE, as calculated with a low coefficient of resupply,
is highly correlated with protein length; longer proteins
have lower TWnTE. This correlation and the differences
in TWnTE between the GTEx human and Schwanhäusser
mouse data cause the apparent difference in effect for pro-
tein length in figure 4. However, the main goal of this ana-
lysis was to assess the relationship with TAb and PAb
which are not strongly correlated with any of the
other parameters. As a result, our conclusion that the
presence of an LCRs is positively associated with TAb
is unaffected.

Aside from data limitations, our analyses are also lim-
ited to an aggregate view across the wide variety of LCR
compositions and properties. LCR composition is asso-
ciated with variation in both transcript and protein abun-
dance as shown by Cascarina and Ross (2018). They
observed that PAb, nTE, and protein half-life can have
qualitatively different relationships depending on the pri-
mary amino acid in an LCR (Cascarina and Ross, 2018).
Supplementary figure S2, Supplementary Material online
shows the results of logistic regression for human GTEx
data when the most prevalent amino acid in the minimum
entropy regions of a protein are included as an interaction
term with PAb and TAb. For statistically significant coeffi-
cient estimates, the observation made in aggregate holds
true. PAb is negatively associated with LCRs, and TAb is
positively associated with LCRs. Glycine, the least confor-
mationally restricted amino acid, is the sole exception.
The positive association of PAb with LCRs in proteins
where glycine is the primary amino acid in low entropy re-
gions may be driven by the high frequency of glycine in
abundant structural proteins such as keratin (Parry and
North, 1998) and collagen (Persikov et al., 2000) which
have repeating structures.

The structural function of these LCRs are undoubt-
edly a subset of the many important functional roles
LCRs fulfil. These roles require a particular level of
abundance to be maintained, leading to selective pres-
sures on mechanisms which regulate abundance. Our
proposed explanation of the disconnect between TAb
and PAb for LCR+ proteins is that elevated TAb is an
adaptive response to the appearance of LCRs in protein
sequences. While the processes we investigated did
not explain the disconnect, it is likely that through
the combined effect on multiple regulatory processes
LCRs lead to a reduction in steady-state protein levels.
As these proteins still carry out important functions,
there is a selective pressure to counter the LCR-
associated reduction. Either increased transcription or
stabilization of LCR encoding transcripts may be the
specific adaptive response leading to elevated TAb.
Follow-up studies will examine the ancestral states of
the proteins and their abundance to examine this hy-
pothesis. As well as to determine the specific biological
mechanism leading to decreased PAb and yet increased
TAb of LCR+ proteins.

Materials and Methods
PAb data for human proteins were downloaded from
PaxDb v4.1 (Wang et al., 2012). Data from brain, colon,
esophagus, heart, kidney, liver, lung, ovary, pancreas, pros-
tate, skin, testis, and uterus tissues were integrated with
each protein being assigned abundance equal to the me-
dian abundance across tissues in which the protein was ex-
pressed. TAb data were downloaded from the GTEx
project v8 (GTEx Consortium, 2013). Data for the 13 tis-
sues listed above were integrated in the same way to
give a median across tissues where the transcript is ex-
pressed. The exclusion of tissues with zero measured ex-
pression maximizes the number of proteins which can
be used in the analysis as half of transcripts have zero
abundance in the majority of the selected tissues in the
GTEx data. While there is variance in the abundance of a
protein and its transcript across tissues, the sequences
comprising LCRs remains constant across tissues.

Breadth of expression and initial expression were calcu-
lated from the raw GTEx TAb data. The former was quan-
tified using the tau index (Yanai et al., 2005). This is index
ranges from 0 to 1, where 0 indicates a gene expressed in all
tissues equally and a 1 indicates a tissue which is expressed
only in one tissue. The TAb at time of death for GTEx data
was estimated by fitting exponential curves to TAb as a
function of ischemia time across samples for each tran-
script in each tissue.

Transcript and Protein Sequences were downloaded
from the Ensembl database, release 99 (Howe et al.,
2021). As identifiers used across studies differed, all se-
quence identifiers were mapped to UniProt protein iden-
tifiers using the UniProt Retreive/ID mapping service
(The UniProt Consortium, 2017). The 13 mitochondrial
encoded proteins with both TAb and PAb data were ex-
cluded as mitochondrial genes are under fundamentally
different constraints from the majority of nuclear genes.

LCRs in protein sequences were identified using the SEG
algorithm (Wootton and Federhen, 1993) using a window
of 15 amino acids, a lower complexity bound of 1.9, and a
higher complexity bound of 2.5 as these parameters were
shown to detect longer, more repetitive regions in previ-
ous research (Golding, 1999). This value also represents
the lower inflection point in the distribution of minimum
entropies across human proteins. The overlapping prop-
erty of intrinsic disorder was also calculated. Proteins
with intrinsically disordered regions were identified using
IUPred (Dosztányi et al., 2005) in glob mode. A protein
was considered to have an intrinsically disordered region
if it contained a nonglobular region.

As LCRs range from homopolymer tracts to compos-
itional bias, we subdivided observed LCRs into homo- and
heteropolymer LCRs. An LCR was considered a homopoly-
mer if there was a contiguous tract of a single amino acid
which made up at least half the length of the LCR.

Mouse TAb and PAb, as well as protein degradation rates,
and translation rates were extracted from data generated by
Schwanhäusser et al. (2011). Human Protein degradation
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rates were integrated from multiple sources (Doherty et al.,
2009; Cambridge et al., 2011; Zhang et al., 2016; Zecha et al.,
2018) by first converting all reported values to the coefficient
of degradation. The geometric mean value of the coefficient
across studies for each protein was used.

Translation efficiency was calculated based on the tran-
script sequences, in a method derived from the nTE scale
(Pechmann and Frydman, 2012). On this scale, the transla-
tion efficiency of a transcript is the geometric mean of the
translation efficiencies for each codon within the tran-
script. The value for each codon is calculated as the ratio
of the supply of tRNA isoacceptors for a codon to the glo-
bal usage of that codon. This translation efficiency scale
does not account for the ordering of codons within a tran-
script, which can have a profound effect through local
tRNA depletion. For this work, the codon usage values
are calculated using equation (1) as described by
Pechmann and Frydman (2012), however the standard cal-
culation of codon supply is treated as initial conditions for
the translation of a transcript. For each subsequent codon
in a transcript, the local supply of tRNA isoacceptors is up-
dated according to equation (2): accounting for perturb-
ation of the local supply as well as resupply from the
cellular environment. The perturbability is the proportion
of the local supply used, scaled to the least supplied codon.
Resupply is the portion of the local deficit which is amelio-
rated at each time step. Calculating TWnTE allows for co-
dons which appear at the end of a repeat to have lower
translation efficiency than those which appear alone or
at the start of a repeat.

Si,0 =
∑ni

j=1

(1− si,j)Ni,j/max S0 (1)

where: ni denotes the number of tRNA isoacceptors for co-
don i; si,j, wobble constraint between codon i and the jth
tRNA; Ni,j, the copy number of codon i’s jth tRNA

Si,t = bSi,0 + (1− b)(1− ai)Si,t−1 (2)

where Si,0 denotes normalized initial codon supply; Si,t , lo-
cal codon supply for the codon i at time t; ai, normalized
perturbability for codon i; b, Coefficient of resupply of
tRNA isoacceptors.

The selective constraints on wobble base pairing are a
measure of how tolerant the ribosome is of different types
of mismatches between codon–anticodon pairs. Most mis-
matches are not tolerated, but values were allowed to vary
between 0 (tolerant) and 1 (intolerant) for A-A, U-G, G-U,
and A-Cmismatches. Wobble constraints were set for each
organism by optimizing the correlation between codon
supply and codon demandwith R (R Core Team, 2013) using
the neldermead package (Bihorel and Baudin, 2018), with ini-
tial conditions from estimates generated for yeast (dos Reis
et al., 2004). Codon supply was determined from genomic
tRNA counts which can vary widely even in mammals.
For example, Bos taurus (GCF_002263795.1) and Rattus

norvegicus (GCF_000001895.5), respectively, have 1,637 and
377 annotated tRNA genes differentially distributed across
potential anti-codons. Codon demand was determined
from TAb weighted codon counts in the transcriptome. A
consistent set of transcripts for codon usage calculations
was constructed from across human transcripts which had
data for both TAb and PAb available. For all other mammals,
the orthologous transcripts were determined based on
mammalian orthogroups from PaxDb (Wang et al., 2012).

The perturbability and resupply parameters were se-
lected by optimizing the correlation between calculated
TWnTE values andmeasured translation rates across all pro-
teins in the Shwänhausser dataset (Schwanhäusser et al.,
2011). The optimization was performed with R (R Core
Team, 2013) using the neldermead package (Bihorel and
Baudin, 2018) with initial estimates of 0.5 for both para-
meters. The perturbability parameter is normalized to an or-
ganism’s codon usage and tRNA availability, and the
resupply parameter is based on basic diffusion. As only
the Scwänhausser-based mouse dataset had translation
rates, the TWnTE calculations for all other mammals used
the same parameter values, under the necessary assumption
that translation dynamics are consistent across the mam-
mals tested.

Primate RNA-Seq data were acquired from the
NonHuman Primate Reference Transcriptome Resource
(Peng et al., 2015). Additional reads were downloaded via
the Sequence Read Archive (Leinonen et al., 2011) for seven
other transcriptomic studies (Brawand et al., 2011; Merkin
et al., 2012; Fushan et al., 2015; Tang et al., 2017; Carelli
et al., 2018; Valberg et al., 2018; Chen et al., 2019). The data-
set assembled represents nine mammalian species: humans,
chimpanzees, macaques, mice, rats, dogs, horses, cows, and
pigs with data from six tissues: brain, heart, kidney, liver,
lung, and muscle tissues. All RNA-Seq data were processed
through the same pipeline to maximize consistency be-
tween datasets. Adapter removal, quality control, and
read merging was performed using fastp (Chen et al.,
2018) with quality windows of 4 bp, minimum quality
thresholds of 20, a minimum read length of 30 bp, and mer-
ging any paired reads which overlapped by at least 20 bp
with 80% similarity. TAb quantification was performed
with Salmon (Patro et al., 2017) using reference transcrip-
tomes acquired from RefSeq (O’Leary et al., 2016), and the
validate mappings flag. As orphan reads were generated
during quality control, quantification was performed separ-
ately for orphaned and paired reads for each sample before
pooling the library-size-adjusted results together.

The number of genes or proteins for which data were
acquired can be found in Supplementary table S1,
Supplementary Material online. Total and LCR+ counts
are broken down by data set, data type, species, and tissue.

Permutation testing was performed on the GTEx and
PaxDB data by randomly shuffling the LCR status of pro-
teins which had both TAb and PAB data. For each permu-
tation, the first quartile, median, and third quartile of
abundance was calculated for both the LCR+ and LCR−
groups. The difference between the values was recorded
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to establish null distributions for each quantile where LCR
status is unrelated to abundance. The results of the permu-
tation test of median abundance were verified with a
Mann–Whitney U-test. The difference between each
quantile was used rather than simply the difference be-
tween the median as it provides a better view of how
LCRs are correlated with abundance across the wide distri-
bution of abundances observed.

Permutation testing was also done as described above for
several alternative conditions. To compare entropy-based
and structure-based LCR identification, intrinsic disorder
status was used as the permuted factor. To assess the effect
of differential transcript stability, raw TAb was substituted
with ischemia-time-adjusted TAb. To examine the effect
of different classes of LCRs, separate permutation tests
were performed which compared whether homo- or het-
eropolymer LCR+ proteins to LCR− proteins. To assess if re-
dundancy from protein isoforms was affected results,
permutations were done using a subset of the data such
that only one transcript-protein pair was used for each gene.

Logistic regression was used to assess the probability of
a protein containing an LCR given the TAb and PAb, while
accounting for differences in protein degradation rates,
translation efficiency, and protein length. All regressors
were log transformed to meet the assumptions of linearity,
then all regressors were standardized to allow comparisons
of their effects on LCR probability. The fold change in odds
for a unit change in each regressor can be obtained by nat-
ural exponentiation of the estimated regression coeffi-
cients. When performing logistic regression on the
mammalian RNA-Seq data, only TAb, and protein length
were included as regressors. Regressions for all organisms
were performed independently.

To evaluate the robustness of the analysis to the as-
sumption that mouse translation parameters are applic-
able to other mammals, the logistic regression above was
repeated for humans using standard nTE calculations, ex-
cluding translation efficiency from the model completely,
and 25 pairs of parameter values evenly spread across
the valid parameter space. The change to the estimated
PAb and TAb coefficients was evaluated for qualitative
changes to the conclusions.

Supplementary Material
Supplementary data are available atMolecular Biology and
Evolution online.
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