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Orthodontic tooth movement (OTM) is achieved by the simultaneous activation of bone 
resorption by osteoclasts and bone formation by osteoblasts. When orthodontic forces 
are applied, osteoclast-mediated bone resorption occurs in the alveolar bone on the 
compression side, creating space for tooth movement. Therefore, controlling osteoclas-
togenesis is the fundamental tenet of orthodontic treatment. Orthodontic forces are 
sensed by osteoblast lineage cells such as periodontal ligament (PDL) cells and osteo-
cytes. Of several cytokines produced by these cells, the most important cytokine pro-
moting osteoclastogenesis is the receptor activator of nuclear factor-κB ligand (RANKL), 
which is mainly supplied by osteoblasts. Additionally, osteocytes embedded within the 
bone matrix, T lymphocytes in inflammatory conditions, and PDL cells produce RANKL. 
Besides RANKL, inflammatory cytokines, such as interleukin-1, tumor necrosis factor-α, 
and prostaglandin E2 promote osteoclastogenesis under OTM. On the downside, exces-
sive osteoclastogenesis activation triggers orthodontically-induced external root resorp-
tion (ERR) through pro-osteoclastic inflammatory cytokines. Therefore, understanding 
the mechanisms of osteoclastogenesis during OTM is essential in reducing the adverse 
effects of orthodontic treatment. Here, we review the current concepts of the mecha-
nisms underlying osteoclastogenesis in OTM and orthodontically induced ERR.
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INTRODUCTION

Orthodontic tooth movement (OTM) is the process by which orthodontic force 
— mechanical force deliberately delivered by orthodontic appliances — causes 
the tooth to move within the alveolar bone due to an accelerated bone remodel-
ing process. The tooth is attached to the alveolar bone through the periodontium, 
which consists of several units of mineralized and non-mineralized tissues, such 
as the cementum on the tooth root surface, the periodontal ligament (PDL), the 
alveolar bone, and the gingiva.[1] The PDL is a dense connective tissue that plays 
a critical role in supporting the tooth within its socket. It comprises various com-
ponents, including bundles of collagenous fibers primarily composed of type I 
collagen. The Sharpey’s fibers are the terminal segment of the PDL that insert into 
the cementum and the alveolar bone on each side. They are aligned in different 
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orientations across different locations to anchor the tooth 
to the surrounding alveolar bone. The cementum is a thin 
mineralized tissue layer covering the tooth root. The integ-
rity of the cementum is important for tooth stability and 
protecting the tooth from external resorption.[2] The alveo-
lar bone is a mineralized tissue that undergoes a finely 
controlled process, coordinating bone resorption by osteo-
clasts and bone formation by osteoblasts.[3] It has a high 
rate of bone turnover compared to the axial and appen-
dicular skeleton.[4,5] One unique aspect of the alveolar 
bone is that it is of the neural crest origin.[6] Orthodontic 
force is transmitted from the tooth to the alveolar bone 
through the surrounding PDL, resulting in reversible mi-
cro-injuries of the PDL. This triggers the movement of the 
teeth within the alveolar bone. During the initial applica-
tion of orthodontic force, the tooth moves within the PDL 
space, causing the PDL to either stretch or compress. On 
the tension side where PDL is stretched, osteoblastic activi-
ties are enhanced, which results in osteoid deposition, 
mineralization, and eventually new bone formation. On 
the compression side, bone resorption occurs through the 
activation of osteoclasts via a sterile inflammatory re-
sponse triggered by proinflammatory cytokines.[7] These 

Graphical Abstract

proinflammatory cytokines contribute to bone resorption 
by inducing the expression of a receptor activator of nucle-
ar factor (NF)-κB ligand (RANKL), a member of the tumor 
necrosis factor (TNF) family. RANKL binds to its receptor 
RANK to induce osteoclastogenesis.[8,9] Excessive com-
pressive force generated by orthodontic force can also 
stimulate a significant increase in RANKL expression in 
periodontal tissues, potentially leading to the pathological 
resorption of the cementum termed ortho dontically in-
duced external root resorption (ERR). ERR is irreversible 
when the resorption involves the dentin.[10,11] 

Malocclusion is one of the most common dentoalveolar 
anomalies that impair oral function and craniofacial growth, 
typically associated with the impairment in breathing, chew-
ing, speaking, and facial appearance. Therefore, the demand 
for orthodontic treatment is strong. However, orthodontic 
treatment is a lengthy process, typically spanning over 2 
years with an inherent risk for tooth root resorption. There-
fore, it is crucial to have better understanding of the fun-
damental biological mechanisms of OTM and orthodonti-
cally induced ERR to ameliorate risks associated with orth-
odontic treatment. This review summarizes the current con-
cept of the mechanisms of osteoclastogenesis during OTM 



Osteoclastogenesis in Tooth Movement and Resorption

https://doi.org/10.11005/jbm.2023.30.4.297 https://e-jbm.org/  299

and orthodontically induced ERR.

CYTOKINES THAT PROMOTE 
OSTEOCLASTOGENESIS DURING OTM 

1. RANKL/RANK/OPG
RANKL, a member of the TNF family, is an essential cyto-

kine for osteoclastogenesis.[8,9] RANKL binds to its recep-
tor RANK, which is expressed on osteoclast precursor cells, 
to induce osteoclastogenesis through the activation of 
transcription factors, such as the NF of activated T cells 1 
(NFATc1).[12] The importance of RANKL in bone metabo-
lism in vivo has been demonstrated by studies of RANKL-
knockout (KO) mice. RANKL- and RANK-KO mice show os-
teopetrosis with a complete absence of osteoclasts.[9] In 
addition, RANKL-KO mice are protected from bone erosion 
during arthritis, demonstrating that osteoclastogenesis 
under inflammatory conditions is dependent on RANKL.
[13] Among the cells constituting the periodontal tissues, 
it has been reported that RANKL is expressed by PDL cells, 

osteoblasts, osteocytes, and T lymphocytes.[3,14-17] The 
RANKL-RANK pathway critically contributes to OTM, as many 
osteoclasts are observed on the compression side of the 
tooth in a sterile inflammatory condition induced by orth-
odontic forces. In fact, the administration of anti-RANKL 
antibodies delays OTM.[14] Therefore, efforts have been 
made to elucidate which cellular source of RANKL in peri-
odontal tissues is important for OTM (Fig. 1, Table 1).

One clinically important observation is that temporary 
anchorage devices, which are widely used as an orthodon-
tic anchorage, or ankylosed teeth, which are fused to alve-
olar bones, don’t move even with the persistent applica-
tion of orthodontic force.[18] This has led to the theory 
that PDL cells may serve as a primary source of RANKL in 
OTM. Ogasawara et al. [17] show RANKL expression in peri-
odontal tissues by in situ hybridization, reporting that os-
teoblasts and PDL cells express Tnfsf11 (encoding RANKL) 
mRNAs under physiological conditions. During OTM, RANKL-
positive PDL cells increase on the compression side. Func-
tionally, RANKL deletion in osteoblasts and PDL cells using 

Fig. 1. Schematic diagram of orthodontic tooth movement (OTM). OTM is induced by applying orthodontic force to a tooth. On the side of the al-
veolar bone upon which the tooth root is compressed against (“compression side”), osteoclasts are formed to resorb the alveolar bone, to create 
a space to which the tooth root moves. Cytokines produced by several cell types, including osteoblasts, osteocytes, periodontal ligament (PDL) 
cells, lymphocytes and macrophages play roles in inducing osteoclastogenesis. RANKL, receptor activator of nuclear factor-κB ligand; OPG, os-
teoprotegerin; SOST, sclerostin; PGE2, prostaglandin E2; IL, interleukin; TNF, tumor necrosis factor.
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a tamoxifen-inducible 3.2 kb collagen1α1 promoter creER 
(3.2 kb Col1a1-creER) transgenic line blocks OTM.[19] There-
fore, osteoblasts and PDL cells are an important source of 
RANKL in OTM.

Factors supporting the formation of PDL are involved in 
regulating RANKL expression. The transcription factor mo-
hawk homeobox (Mkx) plays an important role in tendon 
maturation by regulating the expression of type I collagen. 
Mkx is also expressed in the PDL and is responsible for peri-
odontal tissue homeostasis by suppressing the differentia-
tion of PDL cells into osteoblasts.[20] In Mkx-KO rats, OTM 
was suppressed through a decline in RANKL expression in 
PDL cells.[16] Another important molecule, periostin, is a 
secreted extracellular matrix protein highly expressed in 
PDL and periosteum, regulating periodontal tissue homeo-
stasis. Periostin-KO mice showed a reduced number of RA-
NKL-positive stromal cells and osteoclasts on the compres-
sion side, consequently inhibiting OTM.[21]

Osteocytes account for about 90% of the cells that make 
up bone and are by far the largest in number among bone-
constituent cells. Two comprehensive genetic engineering 
studies show that RANKL deletion by Dmp1-cre, which marks 
a majority of osteocytes, reduces the number of osteoclasts 
during the adult stage.[22,23] These studies show the pri-
mary source of RANKL under physiological conditions in 
adult stages is predominantly osteocytes.

Osteocytes extend their dendrite-like projections in the 
bone matrix and are in close contact with other osteocytes. 
This osteocyte network is thought to regulate bone homeo-

stasis by enabling the sensing and response to mechanical 
stimuli transmitted through bone.[24,25] Therefore, it is 
postulated that osteocytes respond to orthodontic forces 
and are involved in OTM. In the osteocyte-ablated model 
using the diphtheria toxin receptor-mediated cell ablation 
system under the control of a Dmp1 promoter, there is a 
decrease in the number of osteoclasts on the compression 
side and a delay in OTM.[26] Additionally, Shoji-Matsunaga 
et al. [14] demonstrate that the number of osteoclasts on 
the compression side are reduced when OTM is induced in 
mice in which RANKL is ablated by Dmp1-cre. However, 
Dmp1-cre has been shown to be active in cell types other 
than osteocytes.[27-29] Therefore, experiments with a tru-
ly osteocyte-specific cre line is needed to definitively sup-
port the above-described osteocyte-centric notion on OTM. 
More specifically, the source of RANKL in OTM should be 
clarified in future studies.

Surgical techniques, such as corticotomy, are widely ap-
plied in orthodontic practice to accelerate orthodontic treat-
ment.[30] It is speculated that this intervention induces an 
accumulation of immune cells due to corticotomy-induced 
bone damage, which speeds up OTM.[31] Immune cells lo-
cated in the gingiva and PDL contribute to osteoclastogen-
esis.[32] For example, OTM is delayed in nude mice lacking 
mature T cells.[33] When T cells are transplanted into these 
mice, OTM is accelerated associated with increased accu-
mulation of T cells on the compression side. Interestingly, 
it is reported that RANKL-positive activated T cells increase 
in mice transplanted with CD4 positive T cells.[15] Trans-

Table 1. Cytokine-producing cells that induce osteoclastogenesis during orthodontic tooth movement

Cells Cytokine Mouse Cell line Reference

Osteoblast RANKL Col1a1-creER; Tnfsf11 cKO Yang et al. (2018) [19]

PDL cells RANKL Col1a1-creER; Tnfsf11 cKO Ogasawara et al. (2004) [17], Yang et al. (2018) [19],  
Miyazaki et al. (2021) [16]

PGE2 Human PDL fibroblasts Ullrich et al. (2019) [80]

Osteocytes RANKL Dmp1-cre; Tnfsf11 cKO Shoji-Matsunaga et al. (2017) [14]

Sclerostin Sost -/- KO MLO-Y4 cells Shu et al. (2017) [47], Men et al. (2020) [44]

PGE2 MLO-Y4 cells Kamel et al. (2010) [81]

T cells TNF-α, IFN-γ Nude mice Yan et al. (2015) [33]

RANKL Wu et al. (2020) [15]

γδT cells IL-17 Tcrd-GDL mice Wald et al. (2021) [32]

Macrophages TNF-α He et al. (2015) [57] 

PDL, periodontal ligament; RANKL, receptor activator of nuclear factor-κB ligand; PGE2, prostaglandin E2; TNF, tumor necrosis factor; IFN, interferon; IL-
17, interleukin-17; Tnfsf11, tumor necrosis factor ligand superfamily member 11; cKO, conditional knockout; Dmp1, dentin matrix protein 1; Sost, scleros-
tin; KO, knockout; Tcrd, T-cell receptor delta chain; GDL, γδ-low; MLO-Y4, murine long bone osteocyte-Y4.
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plantation of T cells also increases the number of TNF-α 
and interferon-γ (INF-γ) positive cells on the compression 
side, indicating that T cells are one of the sources of inflam-
matory cytokines. Furthermore, Wald et al. [32] show that 
γδT cells, which are innate-like lymphocytes, contribute to 
the acceleration of OTM. This is demonstrated using Tcrd-
GDL mice, allowing the conditional ablation of γδT cells 
under administration of diphtheria toxin, in which OTM is 
inhibited. They also report that a greater proportion of γδT 
cells reside in the gingiva, thereby proving that γδT cells 
contribute to OTM. γδT cells in PDL are mainly interleukin 
(IL)-17 producing Vγ6 positive γδT cells with an elevated 
expression of IL-17 during OTM. IL-17 has been reported to 
induce RANKL expression in PDL cells.[34] Taken together, 
these reports indicate that immune cells play a pivotal role 
in OTM through the RANKL-RANK pathway.

Osteoprotegerin (OPG) is a member of the TNF receptor 
family and plays a significant role in regulating osteogene-
sis by acting as a decoy receptor for RANKL, inhibiting RANKL-
RANK signaling.[35] The regulation of bone remodeling 
depends on achieving a balance between OPG production 
and RANKL-RANK binding. The RANKL/OPG ratio is a deter-
mining factor in the formation of osteoclasts. In OPG-KO 
mice, osteopenia develops due to enhanced osteoclasto-
genesis.[36] Conversely, mice with OPG overexpression show 
a notable suppression of bone resorption, resulting in se-
vere osteopetrosis.[35] The main source of OPG production 
in bone tissue is osteoblasts.[37] Clinically, OPG concentra-
tion in gingival crevicular fluid (GCF) significantly decreas-
es after orthodontic force application.[38] In the compres-
sion side of OTM, bone resorption is facilitated by an up-
regulation of RANKL and a down-regulation of OPG.[38,39] 
Local injection of OPG-Fc results in decreased OTM due to 
the inhibition of osteoclastogenesis.[40,41] From these find-
ings, OPG is a decoy receptor against RANKL, and is involved 
in bone remodeling through the RANKL/RANK/OPG sys-
tem.

2. Sclerostin (SOST)
SOST is a negative regulator of bone formation, which is 

encoded by the Sost gene and is primarily expressed by 
mature osteocytes. SOST binds to lipoprotein related pep-
tide (LRP)5, LRP6, and frizzled receptors. It antagonizes os-
teoblast differentiation via inhibiting the Wnt/β-catenin 
signaling pathway. Deficiency in SOST gene results in high 

bone mass genetic disorders such as sclerosteosis.[42] Os-
teocytes translate mechanical loading into SOST produc-
tion. For example, SOST expression is increased in unload-
ed sites in a tail suspension experiment.[43] In periodontal 
tissues, osteocytes in the alveolar bone express SOST, as 
revealed by Sost-LacZ mice.[44] During OTM, SOST is signifi-
cantly increased on the compression side of the alveolar 
bone. One study postulates that when orthodontic force is 
initiated, bone cells of the compression side are unloaded, 
thereby increasing SOST expression.[45] By injecting SOST 
protein locally at the compression side of the alveolar bone, 
osteoclastogenesis is promoted in association with acceler-
ated OTM.[46] It is also reported that osteoclastic activities 
and RANKL expression are reduced on the compression 
side in SOST-KO mice, resulting in a slower OTM rate. This 
indicates that osteoclastic activity and RANKL expression 
are decreased due to the lack of SOST.[47] SOST affects not 
only osteoclastogenesis but also osteogenesis. It is postu-
lated that mesenchymal stem cells reside in the PDL and 
give rise to PDL cells and osteoblasts in the alveolar bone.
[48] Gli1-positive cells in PDL include a population of mes-
enchymal stem cells termed PDL stem cells (PDLSCs). SOST 
suppresses PDLSCs activities by inhibiting the Wnt/β-cate-
nin signaling pathway.[44] As a result, osteogenic capacity 
by PDLSCs is decreased, creating space for tooth movement 
on the compression side. Therefore, SOST is an important 
cytokine that can potentially accelerate OTM.

3. Inflammatory cytokines in OTM
One aspect of orthodontic treatment is that it induces 

an aseptic inflammatory condition. OTM has been report-
ed to increase inflammatory cytokines, such as TNF-α, IL-1, 
IL-6, and IFN-γ [49-51] (Fig. 1, Table 1). Since these cytokines 
are involved in osteoclastogenesis directly as well as indi-
rectly through modulating inflammatory responses, it is 
important to understand how inflammatory cytokines reg-
ulate OTM.

TNF-α is expressed by activated macrophages, T and B 
lymphocytes, and natural killer cells.[52] Excessive activa-
tion of TNF-α signaling is associated with chronic inflam-
mation. Mechanistically, TNF-α directly binds to receptors 
on the surface of osteoclasts and promotes osteoclasto-
genesis in a manner dependent on the RANKL/RANK axis.
[53-55] Also, TNF-α stimulates RANK expression in osteo-
clast precursor cells.[56]
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Administration of TNF-α inhibitor, etanercept, suppress-
es OTM.[33,57] Adoptive transfer experiments with T cells 
reveal that TNF-α positive cells accumulate on the com-
pression side.[33] Similarity, M1 macrophages, known to 
produce inflammatory cytokines, increase the number of 
TNF-α positive cells, as shown by adoptive M1 macrophage 
transfer experiments.[57] These results indicate that TNF-α 
producing cells are primarily T cells and macrophages dur-
ing OTM. Recently, an indirect mechanism of TNF-α in OTM 
has been reported. Ohori et al. [58] report that OTM is sup-
pressed in TNF receptor (TNFR) 1 and TNFR2 double KO (dKO) 
mice. A decrease in SOST-positive osteocytes on the com-
pression side is observed in TNFR dKO mice. This observa-
tion shows that TNF-α accelerates OTM by inducing SOST 
expression. In conclusion, TNF-α positively regulates OTM.

IL-1 regulates adaptive and innate immunity by binding 
to the IL-1 type 1 receptor (IL-1R). IL-1 is synthesized pri-
marily by monocytes but also by activated macrophages, 
granulocytes, and endothelial cells.[59,60] The 2 forms of 
IL-1, IL-1α, and IL-1β have similar biological activities be-
cause of their common receptors on target cells. In addi-
tion to the immune response, IL-1 also promotes osteoclas-
togenesis. In vitro experiments show that the IL-1 adminis-
tration upregulates RANKL expression in osteoblasts and 
promotes osteoclastogenesis.[61,62] IL-1α KO, IL-1β KO, 
and IL1-α/β dKO mice exhibited an increase of bone mass 
associated with a decrease in the number of osteoclasts.
[63] These observations clearly indicate that excessive IL-1 
signaling under pathological conditions enhances bone 
resorption. IL-1β is expressed on the compression side in 
OTM.[64] Additionally, IL-1R inhibitors reduce OTM associ-
ated with the decrease of osteoclasts.[65]

IL-6 is a cytokine with a pleiotropic effect on hematopoi-
esis, inflammation, immune responses, and bone homeo-
stasis.[66] IL-6 is produced by various types of cells includ-
ing immune cells, endothelial cells, adipocytes, and PDL 
cells. IL-6 is upregulated under inflammatory conditions 
such as periodontitis, rheumatoid arthritis and OTM.[67-
69] Tsukasaki et al. [70] show that PDL cells highly express 
Il6 mRNA during periodontitis by in situ hybridization, indi-
cating that PDL cells may act as a source of IL-6 in OTM. IL-6 
binds to IL-6R and gp130 on osteoblastic cells. It activates 
the signal transducer and activator of transcription 3 (STAT3) 
activated in the cytoplasm by Janus kinase 2 (JAK2), induc-
ing RANKL expression.[71,72] In osteoblastic deletion of 

Stat3 by Col1a1-CreER mice, OTM is inhibited due to the re-
duction in osteoblasts associated with a decrease in the 
number of osteoclasts on the compression side.[73] In ex-
periments with a co-culture system of osteoblasts and os-
teoclasts under mechanical stimulation, Stat3-deficient os-
teoblasts show a lower osteoclast induction ability. These 
results may suggest that mechanical stimulation by orth-
odontic treatment affects osteoclastogenesis by upregu-
lating RANKL expression in osteoblasts via the IL-6-induced 
JAK2/STAT3 signaling pathway.

IFN-γ is a cytokine that is critical for innate and adaptive 
immunity against viral and some bacterial infection. IFN-γ 
induces major histocompatibility complex (MHC) class II 
on antigen-presenting cells and stimulates macrophages 
and dendritic cells to phagocytose and kill bacteria.[74] 
Dual roles of IFN-γ in osteoclastogenesis have been report-
ed. In vitro experiments reveal that the presence of IFN-γ 
strongly suppresses osteoclastogenesis.[75] On the other 
hand, IFN-γ also activates CD4+ T cells to produce RANKL 
and TNF-α through enhanced MHC class II expression on 
antigen-presenting cells.[76] In OTM, IFN-γ positive cells 
are accumulated on the compression side.[33,77] As the 
number of IFN-γ positive cells are decreased in nude mice, 
T cells are one of the cells that produce IFN-γ during OTM.
[33] Yan et al. [33] show no significant changes in OTM af-
ter blockage of IFN-γ. On the other hand, Kohara et al. [78] 
report that IFN-γ injection decreases OTM by reducing the 
osteoclast number on the compression side. These results 
support the notion that IFN-γ acts via positive and nega-
tive pathways during OTM.

4. Prostaglandin E2 (PGE2)
Most widely used medications in orthodontics are acet-

aminophen or nonsteroidal anti-inflammatory drugs (NSAIDs) 
for control of pain following mechanical force application 
to the tooth. The use of NSAIDs reduces PGE2 by inhibiting 
2 cyclooxygenase enzymes. When orthodontic force is ap-
plied, arachidonic acid is released from the lipid bilayer 
due to disruption of the cells on the pressure side. PGE2 is 
a well-known inflammatory mediator produced from ara-
chidonic acid by constitutively expressed cyclooxygenase 
(COX)-1 and cytokine-inducible COX-2. COX-1 is mostly syn-
thesized in normal tissues, while COX-2 is induced in inflam-
matory site.[79] Clinically, elevated PGE2 in the GCF is ob-
served in patients undergoing orthodontic treatment.[49] 
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This phenomenon occurs due to the PGE2 production by 
osteocytes and PDL cells in response to orthodontic forces.
[80,81] From the 1980s, some orthodontists advocated that 
PGE2 accelerates OTM, since PGE2 acts directly on osteo-
clastogenesis.[82] The actions of PGE2 in the target cells 
are mediated by 4 different G protein-coupled receptor 
subtypes which are EP1, EP2, EP3, and EP4. Among PGE2 
receptor subtypes, EP4 has been shown to mainly mediate 
PGE2-induced RANKL expression in osteoblasts.[82,83] OTM 
is accelerated in mice injected with PGE2.[84] These find-
ings indicate that PGE2 produced by orthodontic forces 
promotes OTM.

ORTHODONTICALLY INDUCED ERR

ERR occurs in various conditions, such as bacterial infec-
tion, trauma, and orthodontic treatment. Histologic stud-
ies reported over 90% of patients undergoing orthodontic 
treatment have some evidence of ERR.[85] The tooth root 
is protected from occlusal and orthodontic forces by the 
cementum. External dentin resorption would not occur un-
less full-thickness cemental resorption.[86] Proliferation 
and differentiation of cementoblasts are regulated by Wnt/
β-catenin signaling. Loss of Wnt/β- catenin signaling in odon-
toblasts and osteoblasts by Ocn-cre induces a thinner ce-
mentum.[87] In other words, the reduction of canonical 
Wnt signaling negatively affects cementogenesis, resulting 
in a thinner cementum. This causes ERR without the appli-
cation of orthodontic force, indicating cementoblasts are 
an important tissue that prevents ERR. In addition, ERR also 
occurs in the presence of cementum resorption by osteo-
clasts. Thus, pro-osteoclastic cytokines such as RANKL, TNF-α, 
and PGE2 facilitate ERR. M1 macrophages produce pro-in-
flammatory factors such as IL-6, TNF-α, and IL-1β, whereas 
M2 macrophages produce IL-4 and IL-10 which are involved 
in anti-inflammatory responses. He et al. [88] propose the 
M1/M2 ratio as one indicator of the progression of orthodon-
tic induced ERR. Following the application of orthodontic 
force, an accumulation of CD68+iNOS+ M1 macrophages is 
observed at the ERR site. On the other hand, when orth-
odontic forces are removed, CD68+CD163+ M2-like macro-
phages increase. When the M1/M2 ratio is reduced by ad-
ministration of IL-4, ERR is decreased. Fang et al. [89] also 
report that the inhibition of the CXCL12-CXCR4 axis with 
AMD 3100 suppresses the migration of M1 macrophages 

to the ERR sites and prevents orthodontic-induced ERR.
Several cytokines involved in RANKL expression induce 

ERR during OTM. Notch signaling pathway regulates cell 
growth, cell death, and differentiation programs via cell-
cell communication. In the skeleton, 4 Notch receptors 
(Notch1 to -4) and 5 ligands (Delta1, -3, and -4 and Jagged 
[JAG]1 and -2) are expressed.[90] The JAG1-Notch2 signal-
ing pathway induces RANKL expression on osteoblasts. Ki-
kuta et al. [91] report that an increase in JAG1 and RANKL-
positive cells around the ERR sites are observed during OTM. 
In vitro experiments indicate mechanical stimulation of hu-
man PDL (hPDL) cells increases JAG1 expression. The inhi-
bition of Notch signaling by a selective γ-secretase inhibi-
tor suppresses RANKL in hPDL cells.

Another cytokine that upregulates RANKL expression in 
periodontal tissues is parathyroid hormone (PTH)-related 
protein (PTHrP). PTHrP is a member of the PTH family se-
creted by defined skeletal cell types, including resting zone 
chondrocytes that include skeletal stem cells. During en-
dochondral bone formation, PTHrP inhibits proliferating 
chondrocyte differentiation. In addition, PTHrP is involved 
in tooth eruption.[92,93] Dental follicle progenitor cells and 
cells around the root surface express PTHrP, and these cells 
contribute to tooth eruption via autocrine PTHrP-PTH1R 
signaling.[94] PTHrP induces RANKL expression in PDL cells.
[95] RANKL on PDL cells has been reported to be involved 
in root resorption in deciduous teeth, thus PTHrP may be 
involved in ERR.[96]

Cytokines that promote osteoclastogenesis cause ERR, 
whereas the effect of IL-1β on OTM is controversial. Clini-
cally, polymorphism at IL-1β genes which reduces the IL-
1β cytokine production have higher risks to experience 
ERR.[97] P2X purinergic receptor 7 (P2X7) is an adenosine 
triphosphate (ATP)-gated ionotropic channel. It can be ac-
tivated (opened) after binding to extracellular ATP, a dan-
ger signal from cells under mechanical stimuli. Opening 
the channel causes the accumulation of intracellular calci-
um and releases IL-1β. Viecilli et al. [98] reported that ad-
vanced ERR was observed in P2X7 KO mice during OTM. 
Similarly, OTM in IL-1β KO mice showed progression of ERR 
compared to wild-type mice.[99] On the other hand, IL-1β 
was originally discovered as a cytokine that induces bone 
degradation, and the positive effects on osteoclastogene-
sis are well established.[61-63,100] Furthermore, IL-1β and 
compressive forces lead to a significant induction of RANKL 
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expression in primary human cementoblasts, indicating 
that the IL-1β production leads to ERR during OTM.[101] 
Therefore, future studies are required to elucidate the de-
tailed molecular mechanisms by which IL-1β affects ERR.

As mentioned earlier, RANKL-positive cells promote ERR. 
RANKL is primarily produced as a membrane protein. Some 
membrane-bound RANKL is then shed by matrix metallo-
proteinases (MMPs) such as MMP13 and ADAM10 to form 
soluble RANKL.[102] Previous studies have reported that 
membrane-bound RANKL is a more potent inducer of os-
teoclastogenesis.[102,103] Soluble RANKL doesn’t contrib-
ute to osteoclastogenesis in young mice and OVX induced 
bone loss.[104,105] However, it is unclear whether soluble 
RANKL contributes to ERR. If soluble RANKL is not involved 
in ERR, osteoclasts that cause root resorption receive RANKL 
signaling through cell-cell contact around root resorption 
sites. This may establish a new treatment approach that 
suppresses ERR without affecting OTM by selectively inhib-
iting membrane-bound RANKL around root resorption ar-
eas.

In conclusion, cytokines that activate osteoclastogene-
sis, except IL-1β promote ERR (Fig. 2).

CONCLUSION AND PROSPECTS

During OTM, bone formation by osteoblasts and bone 
resorption by osteoclasts are tightly regulated. In addition, 
recent studies implicate the importance of additional cell 
types, including osteocytes, immune cells and PDL cells for 
osteoclastogenesis. Complex signaling mediated by these 
cells causes osteoclastogenesis, making it difficult to com-
prehensively map cell-to-cell signaling networks. With the 
development of genetic engineering technology, it has 
become easier to analyze the function of specific cells for 
the purpose of elucidating the molecular mechanisms un-
derlying OTM and ERR. This knowledge is expected to be 
clinically applicable to orthodontic treatment in the future. 
IL-1β acts positively on OTM, but its role in orthodontic-in-
duced ERR is not fully understood. If IL-1β is proven to pro-
mote OTM without causing ERR, it would be one of the po-

Fig. 2. Schematic diagram of orthodontically induced external root resorption (ERR). Excessive orthodontic forces can induce a pathological condi-
tion termed orthodontically induced ERR, which is characterized by the resorption of the tooth root in addition to the alveolar bone. Cytokines that 
are involved in normal orthodontic tooth movement are also involved with tooth root resorption. PDL, periodontal ligament; PGE2, prostaglandin 
E2; RANKL, receptor activator of nuclear factor-κB ligand; TNF, tumor necrosis factor; IL, interleukin.
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tential therapeutic targets.
Loss of Wnt/β-catenin signaling causes ERR under physi-

ological conditions. Additionally, other genes involved in 
ERR have been reported.[106,107] However, only a limited 
number of studies have analyzed the function of these genes 
during OTM. Elucidating how these genes are involved in 
OTM is expected to pave the way for new orthodontic treat-
ment modalities with fewer side effects.
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