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Abstract

The model plant Arabidopsis has been well-studied using high-throughput genomics technologies, which usually generate
lists of differentially expressed genes under various conditions. Our group recently collected 1065 gene lists from 397 gene
expression studies as a knowledgebase for pathway analysis. Here we systematically analyzed these gene lists by computing
overlaps in all-vs.-all comparisons. We identified 16,261 statistically significant overlaps, represented by an undirected
network in which nodes correspond to gene lists and edges indicate significant overlaps. The network highlights the
correlation across the gene expression signatures of the diverse biological processes. We also partitioned the main network
into 20 sub-networks, representing groups of highly similar expression signatures. These are common sets of genes that
were co-regulated under different treatments or conditions and are often related to specific biological themes. Overall, our
result suggests that diverse gene expression signatures are highly interconnected in a modular fashion.
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Introduction

Because of its small genome size, Arabidopsis thaliana has been

a valuable model system for genetic mapping, sequencing and

gene expression analysis [1]. Until March 2013, 1787 studies on

gene expression of Arabidopsis were indexed in Gene Expression

Omnibus (GEO) website in National Center for Biotechnology

Information (NCBI) [2]. These studies investigated various

biological processes by monitoring the gene expression level using

the high-throughput genomics technologies such as DNA micro-

arrays and RNA sequencing. The results were usually a set of

genes associated with particular biological processes based on

different experimental designs. Even though DNA microarrays

suffer from noise and reproducibility issues [3], we believe that

many of the noise could be filtered out by statistical analysis and

that there are significant associations among these numerous

results, or common modules in the transcriptional program.

Some studies have showed the relationships among gene lists in

different species. Most researchers analyzed these gene lists using

methodology of meta-analysis [4–7], which combines the results of

studies that address a set of related research hypotheses, focusing

on a special individual topic such as cancer or special treatment

[8]. Several databases of gene lists have been created, such as L2L

[9], LOLA [10], and MSigDB [11]. An network-based method

was developed by Ge [12] to define associations among a large

number of gene sets in human. Associations are defined as

statistically significant overlaps between two gene lists. The

method was applied successfully to a large number of human

gene lists [12], and identified molecular links among diverse

biological processes.

In this study, we used the methodology in [12] to analyze a set

of Arabidopsis gene lists identified by genome wide expression

studies. These lists were collected for AraPath [13], an Arabidopsis
gene lists database we created recently. The objective was to

systematically evaluate relationships among the gene lists and

interpret the relationships. This process provides not only a new

tool to uncover hidden links among vast amounts of gene lists, but

a quantitative measure to describe the global gene expression of

the Arabidopsis system under diverse conditions.

Materials and Methods

Data in this study was extracted from the AraPath [13], which is

a gene lists database in Arabidopsis we created (Availability:

http://bioinformatics.sdstate.edu/arapath/). As part of the data-

base, the data contains a total of 1,065 co-expression gene lists,

which were manually retrieved from published papers linked to

GEO [2] before February, 2011.

Methodology of the analysis includes four steps. Step 1 is to

evaluate overlapping genes among the 1,065 gene lists. A Perl

programs was written to evaluate overlapping genes between all

566,580 pairs of lists. An overlap refers to a pair of gene lists,

which has at least two common genes. And overlaps from the same

paper were considered trivial and were removed. Because there

are too much overlaps and microarray experiments tends to

produce noisy data, we selected significant overlaps using stringent

threshold. Step 2 computes p-values and q-values to identify
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significant overlaps. Based on the Hypergeometric distribution, we

first calculate the likelihood (p-value) of observing the number of

overlapping genes if these two gene lists are randomly drawn

without replacement from a collection of 28,024 unique genes in

terms of R program [14] we compiled. Then, p-values were

translated into q-values based on the false discovery rate (FDR)

[15] to correct that for multiple testing. Overlaps with very small

q-value were significant overlaps. In this case, significant overlaps

were identified with a q-value = 5.0E-9 as a cutoff. In step 3,

network of significant overlaps was constructed based on outputs

of the step 2 using Cytoscape[16]. Because this network includes

too many nodes and edges, we need to further break the big

clusters into smaller subclusters. In step 4, There are many

algorithms that could decompose large networks into small,

densely connected subnetworks such as those in [17,18]. We

chose a simply algorithm that is available as a plug-in to

Cytoscape. MCODE [19] is used to identify interconnected sub-

networks and their clusters within the network of the step 3. To

generally find locally dense regions (or clusters) of a graph is based

on the clustering coefficient [19], Ci, which measures ‘‘clique’’ of

the neighborhood of a vertex: Ci = 2n/ki (ki – 1), where ki is the

vertex size of the neighborhood of vertex i, n is the number of

edges in the neighborhood. According to the MCODE algorithm

[19], however, clustering the main network into sub-networks is by

means of vertex weighting, which is to weight all vertices based on

their local network density using the highest k-core of the vertex

neighborhood rather than the clustering coefficient Ci. A k-core is

a graph of minimal degree k. The highest k-core of a graph is the

central most densely connected sub-graph. Given a highly

connected vertex, in a dense region of a graph, v may be

connected to many vertices of degree one. These low degree

vertices do not interconnect within the neighborhood of v and thus

would reduce the clustering coefficient, but not the core-clustering

coefficient (for detailed information about the MCODE algo-

rithms, see the paper [19]). Here we created the sub-networks and

found the modules and clusters using MCODE algorithms based

on the following parameters: Node Score Cutoff = 0.15; k-core

= 2; Degree Cutoff = 2; Max. Depth = 100. The DAVID web site

[20,21] was applied to analyze the most significant functions of

most frequently shared genes in each of sub-networks.

Results

A total of 1,065 gene lists were analyzed in this study. They

include 277,349 gene entries corresponding to 28,024 unique

genes. The average size of these gene lists is 87 genes, ranging from

1 to 2,952 genes. Its distribution is close to normality on a log10

scale (Figure 1). The results of analysis of the data are as follows.

Significant overlaps
By comparing all pairs of 1,065 gene lists using the Perl

program, 16,261 significant overlaps were identified from a total of

192,642 overlaps. Based on the Hyper-geometric distribution, the

probabilities (p-values) of observing the number of overlapping

genes or more were first calculated if these two gene lists were

randomly drawn without the replacement from a collection of

28,024 unique genes. The p-values were translated into q-values

according to the false discovery rate (FDR) [15] to correct for

multiple testing. Overlaps from the same paper were considered

trivial and were removed. With a q-value = 56102as a

conservative cutoff, 16,261 significant overlaps were identified.

Main network
The 16,261 significant overlaps are represented as an undirect-

ed network (Figure 2). In the network, nodes correspond to gene

lists and edges indicate number of overlapping genes between two

nodes within significant overlaps. This network highlights the

correlation across gene expression signatures of diverse biological

processes. It, thus, constitutes a ‘‘molecular signature map’’ in

which the individual perturbations are placed in the context

defined by others. This is a highly connected network with an

average of 20.10 connections per gene list. The 809 nodes (75.96%

of the 1,065 gene lists) and 16,261 edges are connected to a

dominant main network. Most nodes are connected to a small

number of gene lists. The network shows some different colors

‘‘cliques’’, which are some of the most connected graphs in terms

of a vertex-weighting scheme based on the highest k-core of the

vertex neighborhood. They are intuitively denser links within some

neighborhoods.

Modules
To further explore these neighborhoods, we used the MCODE

algorithm [19] to decompose the network into a total of 20 sub-

networks. Of them, nine modules were further analyzed and their

clustered information was shown in Table 1. The others were

ignored because they are much lower score of density (less than

1.6) and have few nodes and edges (less than 6). The nine sub-

networks are highly interconnected, suggesting that those genes

are involved in common metabolic pathways or interact with each

other under similar biological perturbations. The first three sub-

networks are described in the following section. The remaining six

sub-networks description and all the sub-networks figures and their

composite outcomes tables are shown in Figures S1–S9 and Tables

S1–S9 in File S1.

Sub-network 1
The sub-network 1 includes 46 nodes and 969 edges (Figure 3).

The score of cluster density is 21.065, which is the highest score

among nine sub-networks. This indicates it is the most densely

connected. In Figure 3, the dark red nodes represent higher

network density based on MCODE [19]. Dark green edges

represent very small p-values. There are 31 nodes that represent

up-regulated, eight down-regulated, and seven differently regulat-

ed. Most gene lists (67.39%) involving up-regulated nodes are

related to seven biological themes and 25 treatments or conditions.

Figure 1. Histogram of log10 scale of size of gene lists.
doi:10.1371/journal.pone.0108567.g001
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Table S1 in File S1 shows its composite outcomes. There are 46

gene lists and 256 frequently shared genes identified in this sub-

network. They are regulated by 32 treatments or conditions from

32 publications related to 11 biological themes involving

development, metabolism, disease, yield, function, genome anal-

ysis, immune, pathogen, mechanism, energy, virus, and photo-

synthesis in Arabidopsis. The top 10 most frequently shared genes

with their gene descriptions were specifically listed corresponding

to different gene lists, different biological themes, and treatments

or conditions. For example, gene AT4G14365 (‘‘putative E3

ubiquitin-protein ligase XBAT34’’) has the highest frequency of

35, which indicates it is the most active gene because it is regulated

simultaneously under 35 gene lists in sub-network 1, namely, the

gene connects directly 35 gene lists.

The most significant function of sub-network 1 is biological

process in response to chitin (i.e. the most enriched term

corresponding to the most frequently shared genes in sub-network

1 is ‘‘response to chitin’’) based on results of analysis of DAVID

(Table 1). This indicates sub-network 1 is specifically associated

with the chitin signaling pathway rather than by random chance.

The other significant functions of sub-network 1 are responding to

carbohydrate stimulus, organic substance, defense response, and

bacterium based on the analysis of DAVID with a cutoff of

1.60610216 p-value. This suggests that sub-network 1 involves

multiple signaling pathways.

Sub-network 2
Sub-network 2 is shown in Figure 4 and Table S2 in File S1. It

includes 54 nodes (gene lists) and 168 frequently shared genes,

which are regulated under 38 different treatments or conditions

from 38 publications related to 10 biological themes. The score of

cluster density is 9.907. There are 17 nodes to be up-regulated, 34

to be down-regulated, and three to be differently regulated. Most

gene lists (62.96%) involving down-regulated nodes are related to

nine biological themes and 23 treatments or conditions. Compared

to sub-network 1, sub-network 2 has a lower cluster density score

with even more treatments or conditions. Nine themes in sub-

network 2 are common with sub-network 1: development, disease,

function, genome analysis, mechanism, metabolism, photosynthe-

sis, virus, and yield. This indicates the two sub-networks have

relationships linked by same themes. No gene is common between

the 256 frequently shared genes in sub-network 1 and the 168

frequently shared genes in sub-network 2. The two sub-networks

have relatively independent functions. The most significant

function of sub-network 2 is biological process of plastid thylakoid

membrane based on results of DAVID (Table 1), suggesting that

Figure 2. The main network created by Cytoscape. Node = name of gene list. Node Color = MCODE_Scores from small to large and
corresponds to color from light green to dark red. Edge Color = p-values from large to small and corresponds to color from grey to dark green.
doi:10.1371/journal.pone.0108567.g002
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sub-network 2 is specifically associated with plastid thylakoid

membrane, i.e. the lipid bilayer membrane of any thylakoid within

a plastid. The other significant functions of sub-network 2 are

response to chloroplast thylakoid membrane, thylakoid mem-

brane, plastid thylakoid, and chloroplast thylakoid based on

DAVID with cut-off p-value of 6.8610258. The top 10 most

frequently shared genes with their gene descriptions corresponding

to gene lists, biological themes, and treatments or conditions were

specifically listed in Table S2 in File S1. Gene AT4G27030 (fatty

acid desaturase A), for example, has the highest frequency of 20,

indicating it is the most active gene in sub-network 2.

Sub-network 3
The sub-network 3 includes 33 nodes (gene lists) and 124 most

frequently shared genes (Figure 5 and Table S3 in File S1). There

are 28 nodes to be up-regulated, four to be down-regulated, and

one to be differently regulated. Most gene lists (84.85%) involving

up-regulated nodes are related to nine biological themes and 20

treatments or conditions. By contrast to sub-networks 1 and 2, sub-

network 3 is smaller in size, has a lower cluster density score, and

less treatments or conditions for gene lists. Sub-network 3 are

regulated by 25 treatments or conditions from 25 publications

associated with 11 biological themes. Nine themes in sub-network

3 are common with sub-network 1: development, disease, energy,

function, immune, mechanism, metabolism, photosynthesis, and

virus. There are seven common themes (development, disease,

function, mechanism, metabolism, photosynthesis, and virus)

between sub-networks 3 and 2. These indicate sub-networks 3

and 1 or 2 have relationships linked by the same themes.

The top 10 most frequently shared genes with their gene

descriptions corresponding to each gene list in sub-network 3 are

specifically listed in Table S3 in File S1. Gene AT2G18690 has the

highest frequency at 17, indicating it is the most active genes in

sub-network 3. Other shared genes in sub-network 3 have lower

frequency, which means they are less active than those in sub-

networks 1 and 2. There is no common gene between the 168

most frequently shared genes in sub-network 2 and the 124 most

frequently shared genes in sub-network 3. However, there are 72

genes of intersection between sub-networks 1 and 3. This indicates

sub-networks 2 and 3 have relatively independent functions and

sub-networks 1 and 3 have dependent relationship linked by the

common shared genes. The most significant function of sub-

network 3 is biological process in response to chitin based on

results of analysis of DAVID (Table 1). It is specifically associated

with the chitin signaling pathway, which is the same as sub-

network 1 but different from sub-networks 2.

Discussion

The gene lists in our data are highly connected. Out of the

1,065 gene lists, 75.96% are connected in the main network in

which many seemingly unrelated stimuli/perturbation may

activate or deactivate the same molecular pathways. All the gene

lists within each sub-network are highly connected by the most

frequently shared genes. For example, in sub-network 8 (Figure S8

and Table S8 in File S1), AT1G56110 (‘‘homolog of nucleolar

protein NOP56’’), AT3G05060 (‘‘putative SAR DNA-binding

protein’’), and AT3G44750 (HDA3 histone deacetylase HDT1)

are regulated by six different treatments or conditions from five

publications corresponding to five special biological themes, which

involves reproduction, photosynthesis, metabolism, development,

and yield in Arabidopsis (Table S8 in File S1). And the most

enriched term in sub-network 8 is membrane-enclosed lumen

based on functional analysis of DAVID (Table 1). Therefore, the
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three genes not only connect the six gene lists, but have multiple

functions by which we could propose a hypotheses that the three

genes’ interaction controls the reproduction, photosynthesis,

metabolism etc. Furthermore, the three genes associated with

the rapidly proliferating nature of the endosperm at 4 DA, with

similar expression patterns to the early endosperm markers SUC5,

PHE1, FWA, and FIS2 [22], were regulated by interploidy crosses,

fis1X2x crosses at 5 DAP (two biological replicates of each), and

unfertilized msi1 siliques at 7 DAF [23], kin10, starvation

conditions, and sugar availability increase [24], sucrose [25], and

4h-carbon fixcation [26]. These all became the organized links

among the six gene lists because they associated with the three

genes.

However,there are significant differences among the nine sub-

networks. Based on Table 1, sub-networks 1–5 have more nodes

than sub-networks 6–9. This does not mean the genes in sub-

network 6–9 are less important than those in sub-networks 1–5.

Generally, the most significantly enriched GO terms in sub-

networks 1–9 are different except for sub-networks 1 and 3, which

have the same theme ‘‘response to chitin’’. The second, third, and

fourth most significantly enriched GO Terms in sub-network 1 are

response to carbohydrate stimulus, organic substance, and defense

response, respectively, which are different from those in sub-

network 3. This indicates there are significantly different functions

in sub-networks 1–9. Furthermore, ‘‘cliques’’ of all sub-networks

are different in the whole network with 16,261 significant overlaps.

These ‘‘cliques’’ are some of the most connected graphs in the

NETWORK in terms of a vertex-weighting scheme based on the

highest k-core of the vertex neighborhood. Therefore, they specify

different meanings and information. Finally, all the most

frequently shared genes of the sub-networks are different. For

instance, sub-network 7 has the second smallest score of 2, with 15

nodes, and 30 edges, but possesses 53 most frequently shared

genes, which are completely different from that of sub-network 1.

The most frequently shared genes are the strongest links within

each of nine sub-networks and provide genomics research with

important insights. They are the most important results we found

in this study. For example, the gene AT5G39670 (‘‘putative

calcium-binding protein CML45’’, function as calcium ion

binding) has the second highest frequency of 34 in the sub-

network 1 (Table S1 in File S1). Its function as calcium ion binding

indicates calcium-binding proteins participate in calcium cell

signaling pathways by binding to Ca2+. These proteins are

expressed in many cell types during various growth stages in

plants, and contribute to all aspects of the cell’s functioning [24].

In the present study, we found that this gene responded to 24

treatments or conditions such as necrosis-ethylene, diurnal cycle,

salicylic acid, iron deprivation, etc. according to various reports.

Figure 3. Sub-network 1 corresponding to the module 1/cluster 1 (see note in Figure 2 for meanings of node and edge and their
color).
doi:10.1371/journal.pone.0108567.g003
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Furthermore, this gene mediates 10 crucial biological themes:

immune, yield, disease, development, metabolism, function,

photosynthesis, pathogen, energy, and virus. Also, the gene

belongs to 24 up-regulated gene lists, seven down-regulated gene

lists, and three different-regulated gene lists. In most cases, this

gene is up-regulated, indicating that when the experimental

treatments listed above were applied, there was an increased

expression of the gene AT5G39670. However, some treatments or

stimuli may cause a decreased expression of the above gene in

order to protect its cells. Therefore, AT5G39670 is the second

most active gene and second strongest link in sub-network 1.

Similarly, gene AT4G14365 (‘‘XBAT34’’, molecular functions:

protein binding and zinc ion binding) is the strongest link as it is

related to 35 gene lists in sub-network 1. Gene AT3G50930

(‘‘BCS1’’, molecular functions: ATP binding and ATPase activity)

is the third strongest link because it is associated with 33 gene lists

in sub-network 1. Also, the most frequently shared genes are

significantly different in these nine sub-networks. For instance,

there are 124 most frequently shared genes in sub-network 3 and

155 most frequently shared genes in sub-network 4. However,

there are only two common genes between these two sub-

networks. These important results and their biological mechanisms

need to be further addressed.

The results from this study, summarized as a molecular

signature map, provide key insights into the underlying connec-

tions of diverse perturbations. More importantly, compared to

previous reports that focused on specific themes, this study

explored and established the hidden links among the gene lists on a

global scale in Arabidopsis. These sub-networks will provide new

putative gene targets for future research. For example, sub-

network 4 shows that the top three genes AT1G74670,

AT1G04240, and AT1G69530 are down-regulated by bioactive

Figure 4. Sub-network 2 corresponding to the module 2/cluster 2 (see note in Figure 2 for meanings of node and edge and their
color).
doi:10.1371/journal.pone.0108567.g004
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gibberellins corresponding to the gene list ZENTELLA_DEX_-

VECTOR_DN_244 (Table S4 in File S1). This information

provides some possible clues for future research regarding the

mechanism of the regulation of plant growth by plant hormone

gibberellins. Another example is gene AT4G27030, which has the

highest frequency of 20 in sub-network 2. This gene is regulated by

14 treatments or conditions such as agrobacterium tumefaciens,

kin10 and kin 11, dark, far-red light, etc. (Table S2 in File S1).

This gene could be used to genetically modify crops for new and

useful functions.

Conclusions

There are hidden links among the gene lists from the published

papers concerning Arabidopsis. After performing systematic

overlap analysis, we created 10 networks, including network and

sub-networks 1–9 where there are a number of links among gene

lists. Many seemingly unrelated stimuli/perturbation may activate

or deactivate the same molecular pathways. These links are

actually a set of overlapping genes. Of them, a total of 988 most

frequently shared genes were identified from each sub-network.

These genes are regulated by multiple treatments or conditions

from different gene lists and related to different biological themes

based on their sub-networks. They construct more active (stronger)

links among the gene lists in our data.

Compared to previous reports focusing on specific themes, this

study explored and established hidden links among the gene lists

on a global scale in Arabidopsis. These results provide significant

information about target genes or models for future research. In

the future, it will be necessary for us to extend gene lists and

develop more effective analysis methods to further explain the

booming gene lists of microarray data.

Figure 5. Sub-network 3 corresponding to the module 3/cluster 3 (see note in Figure 2 for meanings of node and edge and their
color. edge label = number of overlapping genes between two nodes).
doi:10.1371/journal.pone.0108567.g005
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Supporting Information Legends

File S1 Fig. S1. Sub-network 1 corresponding to cluster 1. Node

= name of gene list. Node Color = MCODE_Scores from small

to large and corresponds to color from light green to dark red.

Edge Color = p-values from large to small and corresponds to

color from grey to dark green. Fig. S2. Sub-network 2

corresponding to cluster 2. Fig. S3. Sub-network 3 corresponding

to cluster 3. Fig. S4. The sub-network 4 correspoding to cluster 4.

Fig. S5. The sub-network 5 corresponding to Cluster 5. Fig. S6.

The sub-network 6 corresponding to Cluster 6. Fig. S7. The sub-

network 7 corresponding to Cluster 7. Fig. S8. The sub-network 8

corresponding to Cluster 8. Fig. S9. The sub-network 9

corresponding to Cluster 9. Table S1. Results of sub-network 1

corresponding to cluster 1. Table S2. Results of sub-network 2

corresponding to cluster 2. Table S3. Results of sub-network 3

corresponding to cluster 3. Table S4. Results of sub-network 4

corresponding to cluster 4. Table S5. Results of sub-network 5

corresponding to cluster 5. Table S6. Results of sub-network 6

corresponding to cluster 6. Table S7. Results of sub-network 7

corresponding to cluster 7. Table S8. Results of sub-network 8

corresponding to cluster 8. Table S9. Results of sub-network 9

corresponding to cluster 9.
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