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hormones, cells, individuals, and society
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Abstract

Traumatic brain injury (TBI) is exceptionally prevalent in society and often imposes a massive burden on patients’
families and poor prognosis. The evidence reviewed here suggests that gender can influence clinical outcomes of
TBI in many aspects, ranges from patients’ mortality and short-term outcome to their long-term outcome, as well as
the incidence of cognitive impairment. We mainly focused on the causes and mechanisms underlying the
differences between male and female after TBI, from both biological and sociological views. As it turns out that
multiple factors contribute to the gender differences after TBI, not merely the perspective of gender and sex
hormones. Centered on this, we discussed how female steroid hormones exert neuroprotective effects through the
anti-inflammatory and antioxidant mechanism, along with the cognitive impairment and the social integration
problems it caused. As to the treatment, both instant and long-term treatment of TBI requires adjustments
according to gender. A further study with more focus on this topic is therefore suggested to provide better
treatment options for these patients.
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Main text
When an external force suddenly acts on the brain, the
brain is severely traumatized in a moment, causing a series
of physiological and psychological damage. Previous sur-
vey shows that there are 150–315 people suffering from
traumatic brain injury (TBI) in every 100,000 people [1],
and this ratio is still increasing with the development of
transportation, especially in developing countries [2]. In
2014, TBI accounted for nearly 2.87 million emergency
visits, 288,000 hospitalizations, and more than 56,800
deaths in the USA [3]. Thus, TBI has becoming a social
and economic burden and poses a challenge to public
health simultaneously because of the high incidence, mor-
tality, and disability rate, as well as the grand expense of
rehabilitation.

Multiple researches have revealed sex differences in
TBI. They noted that the number of male patients is
higher than female [4–6], due to the increased probability
of injury in males. What is more, men and women are dif-
ferent in growing environment, neurodevelopment, and
sociological attributes [7], which is hard to neglect and
may also contribute to the difference [8–10].
Gender-related physiological differences have been con-

firmed in animal experiments, and the results of clinical
trials of TBI and gender differences are still unclear. Most
of them focus on the different hormone levels caused dif-
ferent reproductive structures. When TBI happens, estro-
gen and progesterone can play various neuroprotective
functions such as reduce intracranial pressure (ICP), im-
prove cerebral perfusion pressure (CPP), and neurological
score [11]. However, the neuroprotective mechanisms of
estrogen and progesterone are still controversial and need
further research. Also, researchers begin to focus on the
role of microglia, which previously focused on male sub-
jects, but started to shift to the other gender recently.
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Here, we briefly outlined what is currently known
about gender differences in TBI at clinical and pre-clin-
ical levels to serve further research (Fig. 1). We con-
cluded that a variety of factors regulates sex differences
in TBI, and it is believed that differences in cognitive im-
pairment after TBI can guide further clinical treatment.

The fundamental difference
The fundamental difference between male and female
originates from the sex chromosome, gender is male or
female is determined by the Y chromosome gene, sex
chromosomes determine the difference in structure be-
tween men and women [12, 13]. Through a series of
complicated processes, human beings are physically di-
vided into men and women. When it comes to the brain,
there are no apparent structural differences between
males and females. However, previous studies have dem-
onstrated minor differences on weight, fine structure,
and functional anatomy on human brain across different

sexes [14–18]. Since the brain indeed has a “gender,” it
is necessary to study and analyze it.

Sex differences in outcomes after TBI
TBI is a complex process, except for the trauma itself,
which brings a series of follow-up problems that lead to
the diversity of the outcome. Among the many factors that
may influence the prognosis, gender is one of the most
controversial. Several studies proved that women have a
worse clinical outcome than men after TBI [19–23]. Clin-
ical research including 1627 TBI patients which catego-
rized them into the pediatric group (< 19 years), middle
group (19–60 years), and elderly group (> 60 years) by
their age found that female TBI group differs in the sever-
ity of injury and mortality from male significantly [24].
The mortality rates for male and female were 1.6% and
3.4%, respectively. They also found that the degree of
damage measured by the Glasgow Coma Scale (GCS)
shows that female performed worse. Besides, female aged

Fig. 1 Sex difference after TBI is composed of many factors such as steroids, microglial, and dopamine system. These factors work together and
contribute to the outcome
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30 years or older had a poorer outcome than either males
or females younger than 30 measured by the Glasgow
Outcome Scale (GOS) [22].
On the other hand, women tend to have fewer compli-

cations after TBI [25], and they usually perform better in
prognoses and outcomes [26–30]. Premenopausal women
have a better prognosis due increased level of sex hor-
mones [19]. In contrast to the prepubescent female, the
pubescent female has lower mortality after isolated mod-
erate-to-severe TBI [31]. In older adults, a study indicated
that no sex differences were found in mortality following
isolated TBI [32]. An investigator observed 427 TBI pa-
tients found no gender difference on Glasgow Outcome
Scale while age and initial injury severity had an effect on
the GOS [33].
The conclusions of these studies are reversed [32, 34], as

TBI outcome is affected by many confounding factors,
such as age, severity of TBI, and physical condition of the
patient [35–38]. Males are usually disproportionately rep-
resented in many studies [31, 39]. The subjects included
in the experiment are often males, and the gender differ-
ences between male and female are neglected. Therefore,
it is necessary to study the gender differences of TBI.

The effect of female steroids after TBI
As mentioned above, the difference in endogenous hor-
mones may contribute to sex differences after TBI [40]. Ste-
roids such as progesterone and their metabolites protect
glial cells and neurons by preventing the brain from edema,
necrosis, apoptosis, and inflammation [41–44]. Animal ex-
periments have proven that estrogen and progesterone both
play a crucial role in gender differences after TBI [45, 46].
Recent evidence also suggests that estrogen and proges-

terone levels act as a critical factor in the prognosis of
traumatic brain injury. It has been confirmed that the de-
crease in 17β-estradiol (E2) level leads to an increase in
brain damage, while in the proestrus period when the E2
level is high, brain damage is lower [47]. E2 also acts as a
neuroprotective factor against stroke in ovariectomized
(OVX) animal models [48], which reveals that serum es-
trogen and progesterone may decrease post-traumatic
brain water volume. When applied with pharmacological
dose of estrogen and progesterone, male and OVX female
rats with TBI model shows a decreased intracranial pres-
sure, improved cerebral perfusion, and increased neuro-
logical function score [11].
Several studies have investigated the possible mechanism

of the protective effect of estrogen and progesterone [49].
Thirty minutes after a moderate TBI, hormones or vehicle
were intraperitoneally injected, and the levels of proinflam-
matory cytokines in the brain were measured at 6 and 24 h.
The events in the central nervous system after TBI occur in
acute and chronic recovery phases, and the former includes
a primary and secondary step [50]. At the primary and

secondary stage, proinflammatory cytokines such as inter-
leukin-6 (IL-6), interleukin-1 beta (IL-1β), transforming
growth factor-beta (TGF-β), and tumor necrosis factor-
alpha (TNF-α) are influenced by progesterone and estrogen.
Cytokines like IL-1β, IL-6, and TNF-α are confirmed to pro-
mote inflammatory responses [51], and increased levels of
these proinflammatory cytokines have been observed in the
cerebrospinal fluid of brain parenchyma tissues and can in-
tensify the brain lesions that occur during trauma [52, 53].
Thus, the neuroprotective effects of progesterone may be
partially caused by a decreased level of anti-inflammatory
cytokines including TNF-α at the primary step as well as
IL-6 either at the primary or second step after TBI. The
neuroprotective effect of estrogen may be partially caused
by decreased IL-1β level in the second stage. Besides,
higher TNF-α is beneficial in the second step since it can
promote the production of the nerve growth factor [54];
thus, estrogen acts as a protective effect in the secondary
phase mediated by improving levels of TNF-α (Fig. 2).
TGF-β exerts anti-inflammatory effects by inhibiting the
levels of IL-1β, TNF-α, and oxygen-free radicals. The anti-
inflammatory effect of TGF is higher than that of inflam-
matory effects. Increased TGF-β is part of the mechanism
of anti-inflammatory [55].
Hormone-regulated antioxidant mechanisms are also

responsible for gender differences after TBI [19]. The
secondary damage after TBI is mainly caused by hypo-
perfusion of the brain, lipid peroxidation along with the
free radical production induced by ischemia [56]. Pro-
gesterone treatment in male rats after frontal cortex
contusion leads to lower lipid peroxidation [57]. A
similar research investigated the level of F2-isoprostane,
which is widely used as biomarkers of lipid peroxida-
tion [58]; in 68 TBI patients, they found that male has a
higher level of F2-isoprostane than females in CSF [53].
These studies indicate that the neuroprotective effect of
progesterone may contribute to its anti-lipid peroxida-
tion function. When it comes to estrogen, it has been
shown to have even better antioxidation effects than
the most widely used antioxidant supplement vitamin E
[59]. Protein carbonylation is used as a marker of the
level of oxidative stress in the nervous system because
it is a product of the oxidative period [60, 61]. Both fe-
male and male rats have a distinct increase in carbonyl-
ation after TBI in the injured area. However, when it
comes to the field far away from the wounded zone,
such as the ependymal tissue of the third ventricle and
median eminence, the male has higher carbonylation
expression. Considering progesterone also regulates
metabolic functions in the nerve system [62] and acts
the anti-excitotoxicity effect of TBI, progesterone may
play a decisive role in reducing protein carbonization in
the female, and the detailed mechanism still needs fur-
ther research.
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Sex differences in microglia after TBI
Microglia are resident macrophages in the brain and play a
key role in brain sexual development via secretion of cyto-
kines and growth factors [63–67]. Although microglia had
infiltrated to the brain and started to colonize before there
was a distinct gender difference [68], its sexual dimorphism
during the development of growth has been detected [69].
In the early postnatal period, microglia are in a primarily
activated state [70, 71]. By the end of the third postnatal
week, testosterone produced by male testis aromatized into
estradiol to induce brain masculinization [72].
Preoptic area (POA) of the hypothalamus is thought to

be responsible for thermoregulation and male sexual be-
havior, and recent studies have indicated that the num-
ber and activation state of microglial cells in female rat
pups are less than male rat pups in this region [73, 74].

During the brain masculinization, estradiol leads to the
upregulation of PGE2, and microglia amplify this signaling
pathway to induce the development of masculine dendritic
spine phenotype [73]. Similar differences also exist in the
hippocampus, amygdala, and parietal cortex [71]. This
phenomenon proves the interaction between microglial
and sex hormones. Also, it is confirmed that after TBI, the
level of activated microglia in the cortex of male rats is far
higher than that of female [75]. Microglia of 60-day-old fe-
male rats have a higher level of IL-1 and less IL-10 expres-
sion compared with male rats [71], while no difference in
estrogen receptors was found [76]. With Iba1 immuno-
fluorescence staining, males present higher density near
the lesion compared with females after TBI [35].
Moreover, this difference may also link to female steroid

hormones on microglia as a pre-clinical study of rat

Fig. 2 The mechanism of estrogen and progesterone in the acute phase after TBI; the anti-inflammatory effects are greater than inflammatory
effects. IL-6 and TNF-α bring anti-inflammatory effects on the brain while TGF-β brings inflammatory. Usually, the former is stronger; thus,
estrogen and progesterone benefit from the brain after TBI
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ischemia-reperfusion model found similar levels of micro-
glial activation between male and ovariectomized female
mice treated with 17β-estradiol [73, 77]. When inhibiting
the microglia, the production of PGE2 is restrained, which
means that the microglia affect the production of these hor-
mones [73]. Those hormones can show a neuroprotective
function when used after neural injury by reducing the level
of reactive microglia, which eventually avoid the overacti-
vated inflammatory period [78]. The view of microglia has
transferred from a kind of negative role to positive and pro-
tective debris elimination [79].
Existing studies on gender differences of microglia in

TBI mainly focus on the interaction of microglia and sex
hormones, and studies on other mechanisms of micro-
glia are still insufficient.

Sex differences in dopamine systems after TBI
To our knowledge, dopamine (DA) systems can mediate
multiple aspects of cognition [80], CT scan shows that
dopamine transporter (DAT) reduce chronically after
TBI [81]. A study involved 24 male and 24 female rats
which revealed that compared to females, males have a
decrease in DAT expression caused by CCI [82]. Vesicu-
lar monoamine transporter-2 (VMAT-2), which is an in-
tegral membrane protein transport monoamines, can
isolate DA to prevent its oxidation in the cytoplasm and
can also sequester neurotoxins in vesicles [83]. Female
rats are more susceptible to the inhibition of VMAT-2
after TBI, which leads to a more severe deficit in female
rats when the function of DA-storage and VMAT-2 is
inhibited after TBI [84].
Estrogen may exert an influence on this process, as it

has been proven to regulate DA systems through genomic
and nongenomic mechanisms, but the detailed mechan-
ism is still unknown [85]. The extracellular difference hap-
pens mainly at the part of dopamine release and synthesis
[86]. Females also have a higher density of DAT binding
site than males [87–89]. Thus, although the specific mech-
anism is unclear, there is a particular gender difference in
the dopamine system after TBI. A clinical trial included
193 adults of severe TBI observed a significant relation-
ship between sex and DA pathway, which indicates that
sex-specific treatment of drugs involved in DA pathway
might be a way to improve the overall cognitive recovery
for TBI patients in the future [90].

Sex differences in cognitive impairment after TBI
Cognitive function impairment is a common complication
after TBI, which adds a huge burden to the patient’s re-
covery [8, 19]. In the existing literature, when evaluating
cognitive recovery in patients with TBI, men usually have
a better recovery on verbal tasks while women can restore
their spatial positioning at a faster speed [91–93].

Post-concussive symptoms (PCS) are a set of symptoms
that comes after TBI, including loss of memory, difficulty
in concentrating, and personality change [94]. Females are
more frequently to be reported as patients of PCS com-
pared to male. A meta-analysis pointed out that although
men are more frequently to suffer from TBI, worse prog-
nosis is found to be related to female sex [20]. The reason
why female patients reported elevated PCS could be par-
tially explained by a risk factor called anxiety sensitivity
(AS), which is the tendency to perceive general environ-
mental stimulus as harm or danger [59]. Women have
been reported elevated AS both in nonclinical [59] and
clinical samples [95]. It is confirmed that patients with
higher AS tends to exaggerate PCS symptoms by amplify-
ing its severity [96].
As to the pediatric population, gender can also be a

factor that contributes to the different cognitive out-
comes after TBI [97]. Boys with TBI performed signifi-
cantly worse than girls with TBI on the California
Verbal Learning Test, which is a neuropsychological test
used to evaluate verbal learning and memory capability
[98]. Another investigation revealed that boys performed
worse than girls and even worse than their counterparts
in the control group [99]. This difference is not feasible
with sex hormones because the hormone level of male
and female is roughly the same before sexual maturity.
In general, due to the complexity of cognitive function,

a single clinical test cannot fully assess the difference be-
tween male and female in this aspect. Further work
needs to be done to establish a throughout understand-
ing of cognitive function changes in patients with TBI.

Sex differences in social impairment after TBI
After a moderate or severe TBI, patients usually suffer
from social impairment when patients trying to return
to society [100, 101], because social and behavioral com-
petencies are vulnerable to compromise in brain trauma
[102]. Patients may show inappropriate behaviors or loss
of social functions [103]. Even children after TBI have a
higher risk to be rejected by their friends and lead to
long-term social and behavioral problems [104]. Identify-
ing the different social impairment level on each gender
may better guide clinical treatment and interventions.
TBI can also lead to language function impairment. Pa-

tients after TBI may have difficulty in organizing language
and conceiving linguistic stimulus [105, 106]. A research
investigated 160 adults with TBI and 81 adults without
TBI; by using a standardized measurement of communica-
tion problems in everyday life, they found that when com-
munication problems happen, female patients are more
accessible to recognize their situations and try to solve
them [82]. A late meta-analysis reported that over 39% of
patients in the chronic phase after moderate or severe TBI
have a significant impairment at recognizing facial affect
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[107]. The area injured and the severity of the brain may
be a risk factor since different parts of the brain have dif-
ferent functions [108]. However, other sources reported
that patients with TBI who had damaged the emotion rec-
ognition regions did not perform significantly worse than
those who had damage in other brain regions [109]. Be-
cause plenty of researches have proven the female advan-
tage in recognizing emotion [110], gender may be a
potential predictor of emotion recognition deficits. A re-
cent study which tested 53 individuals with TBI and 49
comparisons by both static and dynamic tests found that
male patients performed significantly worse not only than
female patients but also than comparison participants in
the dynamic task [111].
These findings suggested that female gender may play a

protective role for social impairment after TBI, although
there are opposite results in the animal experiment. Species
may cause the differences between human and mice [112]
since social communication of animal is much simpler.

Sex differences in treatment after TBI
Since gender differences exist in the outcome, clinical
manifestation, and cognitive impairment after TBI, we
have reasons to speculate gender differences in the treat-
ment after TBI. Studying gender differences in treatment
after TBI can provide theoretical support for gender-spe-
cific treatment at the clinical stage and improve the
treatment outcomes. The first idea to break into the
brain is to treat with hormones.
As mentioned before, female steroids affect patients

through a series of mechanisms. Hormones have begun
to be used in the treatment of nervous system damage
[113], but it still needs to be adjusted according to gen-
der. Administration of estrogen can increase dendritic
spines and improves synaptic connectivity [114, 115].
Tests for post-injury motor function have shown that
men have better neurological recovery through estrogen
therapy [116]. When male and female are treated with
estrogen, female tends to show more adverse effects be-
cause the receptors of estrogen of the female are more
than those of male, which means that female are more
likely to have excitotoxicity and cell death after estrogen
therapy. This effect usually counteracts the anti-inflam-
matory effect of estrogen [117]. Studies also found that
estrogen and progesterone are available for TBI treat-
ment. Among them, estrogen is a better choice if used
as a prophylactic treatment for women with a high risk
of stroke while progesterone is preferred for the male
since fewer side effects would happen compared with es-
trogen [118, 119].
In addition to hormone therapy, other treatments for

gender differences of TBI are also under investigation.
Related researches have been carried out in animal
models. Research using pigs to mimic young and older

children TBI found that epinephrine (EPI) can prevent
damage to the brain’s autoregulation and necrosis of
hippocampal neurons in both newborn and female ju-
venile pigs after TBI [120–122]. Phenylephrine (Phe)
also had been found to reduce the damage of the K
channel, which can lead to the impairment of cerebral
and brain regulation function in female [123].
Hypothermia is a new type of treatment that has long

been indicated but is not widely used in clinical practice
due to its reversal study findings in both animal models
and human trials in brain injury [124–126]. In recent
years, investigators found that gender may affect the effi-
cacy of hypothermia [127–129]. In a study of treating
TBI rats with hypothermia, post-traumatic hypothermia
significantly reduced more overall contusion volume in
males than females and protected cortical neurons in
males but no effect in females [8].

Conclusion
Gender has an impact on many aspects of TBI, including
clinical manifestations, cognitive impairments, and out-
comes, which can be used to develop sex-specific treat-
ment and improve prognosis. This review explores the
causal differences in clinical signs, cognitive impairments,
medications, and prognosis between males and females
after TBI in different dimensions from the view of genes,
hormones, cells, individuals, and society. As it turns out
that multiple factors contribute to the gender differences
after TBI, not merely the perspective of gender and sex
hormones. The reason for differences in mortality be-
tween male and female after TBI remains inconclusive,
but lots of researches have proven that women outper-
form men in cognitive from cognitive function impair-
ment. Because of these differences between male and
female, precise treatment should be taken based on gen-
der. More researches are needed to figure out the entire
mechanism of sex difference in TBI, since most studies
only focused on the effect of sex hormones. Besides, more
attention is needed to compensate for the lack of previous
studies which only incorporated into male animals, and
clinical studies should not neglect gender differences to
avoid bias in real experimental results.
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