

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1-(1-Benzofuran-2-yl)ethanone O-(2,6difluorobenzyl)oxime

Tomasz Kosmalski^a and Andrzej K. Gzella^b*

^aDepartment of Organic Chemistry, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, ul. A. Jurasza 2, 85-089 Bydgoszcz, Poland, and ^bDepartment of Organic Chemistry, Poznan University of Medical Sciences, ul. Grunwaldzka 6, 60-780 Poznań, Poland Correspondence e-mail: akgzella@ump.edu.pl

Received 22 November 2013; accepted 17 December 2013

Key indicators: single-crystal X-ray study; T = 130 K; mean σ (C–C) = 0.002 Å; R factor = 0.041; wR factor = 0.099; data-to-parameter ratio = 17.7.

In the title compound, C₁₇H₁₃F₂NO₂, the 2,2-difluorobenzyloxy residue assumes an E configuration with respect to the benzofuran system. The benzene ring makes a dihedral angle of 61.70 (4)° with the fused ring system (r.m.s. deviation = 0.008 Å). In the crystal, molecules are connected by weak C- $H \cdot \cdot F$ hydrogen bonds into chains extending parallel to the baxis direction.

Related literature

For background to antifungal agents, see: Benedetti & Bani (1999); Sheehan et al. (1999). For the biological activity of oximes and their ethers, see: Attia et al. (2013); De Luca (2006); Emami et al. (2004); Karakurt et al. (2001); Massolini et al. (1993); Mixich & Thiele (1985). For the synthesis of the title compound, see: Demirayak et al. (2002).

Experimental

Crystal data C17H13F2NO2 M = 301.28Monoclinic, $P2_1/n$

<i>a</i> =	7.36652	(17) Å
<i>b</i> =	17.0314	(4) Å
c =	11.2047	(2) Å

$\beta = 90.020 \ (2)^{\circ}$
$V = 1405.76 (5) \text{ Å}^3$
Z = 4
Mo $K\alpha$ radiation

Data collection Agilent Xcalibur

diffractometer
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
$T_{\min} = 0.992, T_{\max} = 1.000$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.041$ $wR(F^2) = 0.099$ S = 1.033548 reflections

 $0.35 \times 0.15 \times 0.12 \text{ mm}$

Atlas	24335 measured reflections
ction: multi-scan (; Agilent, 2011)	2887 reflections with $I > 2\sigma(I)$ $R_{int} = 0.033$
$f_{max} = 1.000$	

200 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.26 \text{ e } \text{\AA}^ \Delta \rho_{\rm min} = -0.24 \text{ e} \text{ Å}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-{\rm H}$	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C7 - H7 \cdots F22^{i}$	0.93	2.54	3.3537 (16)	147
Symmetry code: (i) –	$x + \frac{1}{2}, y + \frac{1}{2}, -$	$z + \frac{3}{2}$		

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZS2281).

References

- Agilent (2011). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.
- Attia, M. I., Zakaria, A. S., Almutairi, M. S. & Ghoneim, S. W. (2013). Molecules, 18, 12208-12221.
- Benedetti, M. S. & Bani, M. (1999). Drug Metab. Rev. 31, 665-717.
- De Luca, L. (2006). Curr. Med. Chem. 69, 21-28.
- Demirayak, S., Uçucu, Ü., Benkli, K., Gündoğdu-Karaburun, N., Karaburun, A., Akar, D., Karabacak, M. & Kiraz, N. (2002). Il Farmaco, 57, 609-612.
- Emami, S., Falahati, M., Banifetami, A. & Shafiee, A. (2004). Bioorg. Med. Chem. 12, 5881-5889.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Karakurt, A., Dalkara, S., Özalp, M., Özbey, S., Kendi, E. & Stables, J. P. (2001). Eur. J. Med. Chem. 36, 421-433.
- Massolini, G., Carmellino, M. L., Kitsos, M. & Baruffini, A. (1993). Il Farmaco, 48, 503-514.
- Mixich, G. & Thiele, K. (1985). US Patent 4 550 175.
- Sheehan, D. J., Hitchcock, Ch. A. & Sibley, C. M. (1999). Clin. Microbiol. Rev. 12. 40-79.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

 $\mu = 0.11 \text{ mm}^{-1}$ T = 130 K

supplementary materials

Acta Cryst. (2014). E70, o91 [doi:10.1107/S1600536813034090]

1-(1-Benzofuran-2-yl)ethanone O-(2,6-difluorobenzyl)oxime

Tomasz Kosmalski and Andrzej K. Gzella

1. Comment

The increase in fungal infections and the gained resistance to the currently used drugs in recent years directed the studies on obtaining new antifungal drugs (Benedetti & Bani, 1999). After the discovery of oxiconazole (Sheehan *et al.*, 1999), ether oximes became of interest and a number of oximes were synthesized and found to be active against fungi (Attia *et al.*, 2013; De Luca, 2006; Emami *et al.*, 2004; Karakurt *et al.*, 2001; Massolini *et al.*, 1993; Mixich & Thiele, 1985). The crystal structure investigation of the title compound was undertaken to confirm the *E* configuration of the molecule, proposed on the basis of spectroscopic data.

The molecular structure of the title compound and the atom-labelling scheme is illustrated in Fig. 1. In this compound, the nine-membered benzofuran system is planar with an r.m.s. deviation of 0.0083 Å. The 2,6-difluorobenzyloxy moiety is in the *E* configuration with respect to the benzofuran system [torsion angle C2—C10—N12—O13: 178.89 (9)°]. The C10—N12 bond is antiperiplanar in relation to the O13—C14 bond [torsion angle C10—N12—O13—C14: 176.13 (10)°]. A similar observation has been made for bonds N12—O13 and C14—C15 [torsion angle N12—O13—C14 —C15: 170.08 (10)°]. The planar benzofuran system and the phenyl ring form a dihedral angle of 61.70 (4)°.

The molecular packing in the crystal lattice is stabilized by possible C7—H7 \cdots F22ⁱ non-classical intermolecular hydrogen bonds (Table 1) which link molecules into chains lying parallel to the *b* axis (Fig. 2).

2. Experimental

1-(1-Benzofuran-2-yl)ethanone O-(2,6-difluorobenzyl)oxime was synthesized from 1-(benzofuran-2-yl)ethanone oxime and 2,6-difluorobenzyl bromide, according to the literature procedure of Demirayak *et al.* (2002). Crystals were obtained after crystallization from ethanol.

3. Refinement

All H atoms were placed in idealized positions and were refined within the riding model approximation: C_{methyl} —H = 0.96 Å, $C_{methylene}$ —H = 0.97 Å, $C(sp^2)$ —H = 0.93 Å; $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(C)$ for methyl H. The methyl group was refined as a rigid group which was allowed to rotate.

Computing details

Data collection: *CrysAlis PRO* (Agilent, 2011); cell refinement: *CrysAlis PRO* (Agilent, 2011); data reduction: *CrysAlis PRO* (Agilent, 2011); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012); software used to prepare material for publication: *WinGX* (Farrugia, 2012) and *PLATON* (Spek, 2009).

Figure 1

The molecular structure of the title compound showing the atom labelling scheme. Non-H atoms are drawn as 30% probability displacement ellipsoids and H atoms are shown as small spheres of arbitrary radius.

Figure 2

The hydrogen bonding (dotted lines) in the title structure. For symmetry code (i), see Table 1. H atoms not involved in hydrogen-bonding have been omitted for clarity.

1-(1-Benzofuran-2-yl)ethanone O-(2,6-difluorobenzyl)oxime

Crystal data	
$C_{17}H_{13}F_2NO_2$	$V = 1405.76 (5) \text{ Å}^3$
$M_r = 301.28$	Z = 4
Monoclinic, $P2_1/n$	F(000) = 624
Hall symbol: -P 2yn	$D_{\rm x} = 1.424 {\rm ~Mg} {\rm ~m}^{-3}$
a = 7.36652 (17) Å	Melting point = $346-348$ K
b = 17.0314 (4) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
c = 11.2047 (2) Å	Cell parameters from 10469 reflections
$\beta = 90.020 \ (2)^{\circ}$	$\theta = 2.2 - 29.1^{\circ}$

 $\mu = 0.11 \text{ mm}^{-1}$ T = 130 K

Data collection

24335 measured reflections 3548 independent reflections
2887 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.033$
$\theta_{\rm max} = 29.1^{\circ}, \ \theta_{\rm min} = 2.2^{\circ}$
$h = -9 \rightarrow 10$
$k = -23 \rightarrow 22$
$l = -14 \rightarrow 15$
Secondary atom site location: difference Fourier
map
Hydrogen site location: inferred from
neighbouring sites
H-atom parameters constrained
$w = 1/[\sigma^2(F_o^2) + (0.0434P)^2 + 0.5216P]$
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} < 0.001$
$\Delta \rho_{\rm max} = 0.26 \text{ e } \text{\AA}^{-3}$
$\Delta ho_{\min} = -0.24 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Indefinite, colourless

 $0.35 \times 0.15 \times 0.12 \text{ mm}$

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor w*R* and goodness of fit *S* are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.16108 (11)	0.14365 (5)	0.55614 (7)	0.0225 (2)	
C2	0.01949 (16)	0.13157 (7)	0.47691 (11)	0.0202 (2)	
C3	0.05125 (18)	0.16689 (7)	0.37076 (11)	0.0246 (3)	
Н3	-0.0245	0.1667	0.3044	0.030*	
C4	0.22538 (17)	0.20490 (7)	0.38062 (11)	0.0228 (3)	
C5	0.3345 (2)	0.25081 (8)	0.30607 (12)	0.0292 (3)	
Н5	0.2964	0.2639	0.2295	0.035*	
C6	0.50053 (19)	0.27631 (8)	0.34892 (13)	0.0302 (3)	
H6	0.5750	0.3065	0.3001	0.036*	
C7	0.55844 (18)	0.25753 (8)	0.46421 (13)	0.0294 (3)	
H7	0.6711	0.2753	0.4902	0.035*	
C8	0.45207 (18)	0.21312 (8)	0.54084 (13)	0.0268 (3)	
H8	0.4893	0.2009	0.6179	0.032*	
C9	0.28652 (16)	0.18797 (7)	0.49543 (11)	0.0208 (3)	

C10	-0.13574 (16)	0.08676 (7)	0.52060 (11)	0.0199 (2)
C11	-0.27542 (17)	0.05873 (8)	0.43335 (11)	0.0246 (3)
H11A	-0.2468	0.0062	0.4088	0.037*
H11B	-0.2761	0.0926	0.3649	0.037*
H11C	-0.3929	0.0594	0.4704	0.037*
N12	-0.13799 (14)	0.07490 (6)	0.63388 (9)	0.0226 (2)
O13	-0.29434 (11)	0.03251 (5)	0.66817 (8)	0.0240 (2)
C14	-0.28904 (17)	0.02743 (9)	0.79613 (11)	0.0275 (3)
H14A	-0.2683	0.0789	0.8305	0.033*
H14B	-0.1917	-0.0072	0.8213	0.033*
C15	-0.46849 (16)	-0.00434 (7)	0.83627 (10)	0.0200 (2)
C16	-0.62337 (17)	0.04170 (7)	0.83715 (11)	0.0222 (3)
C17	-0.79223 (18)	0.01540 (9)	0.87023 (12)	0.0287 (3)
H17	-0.8924	0.0486	0.8687	0.034*
C18	-0.80877 (19)	-0.06188 (9)	0.90588 (12)	0.0316 (3)
H18	-0.9222	-0.0813	0.9272	0.038*
C19	-0.6595 (2)	-0.11065 (8)	0.91027 (12)	0.0332 (3)
H19	-0.6704	-0.1624	0.9358	0.040*
C20	-0.49296 (19)	-0.08056 (7)	0.87563 (11)	0.0252 (3)
F21	-0.60530 (12)	0.11776 (5)	0.80385 (8)	0.0363 (2)
F22	-0.34453 (13)	-0.12699 (5)	0.88276 (8)	0.0428 (2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
01	0.0189 (4)	0.0270 (5)	0.0216 (4)	-0.0037 (3)	0.0001 (3)	0.0006 (3)
C2	0.0188 (6)	0.0209 (6)	0.0209 (6)	0.0000 (4)	-0.0008(5)	-0.0047 (4)
C3	0.0256 (6)	0.0270 (6)	0.0211 (6)	-0.0050(5)	-0.0012 (5)	-0.0009 (5)
C4	0.0255 (6)	0.0196 (6)	0.0234 (6)	-0.0031 (5)	0.0016 (5)	-0.0029 (4)
C5	0.0362 (8)	0.0257 (6)	0.0257 (7)	-0.0078 (6)	0.0016 (6)	0.0011 (5)
C6	0.0326 (7)	0.0229 (6)	0.0350 (7)	-0.0088 (5)	0.0080 (6)	-0.0012 (5)
C7	0.0219 (6)	0.0255 (6)	0.0407 (8)	-0.0061 (5)	0.0002 (6)	-0.0051 (5)
C8	0.0231 (6)	0.0277 (7)	0.0295 (7)	-0.0016 (5)	-0.0023 (5)	-0.0006 (5)
C9	0.0207 (6)	0.0174 (5)	0.0244 (6)	-0.0004 (4)	0.0041 (5)	-0.0018 (4)
C10	0.0188 (6)	0.0203 (6)	0.0206 (6)	0.0013 (4)	0.0020 (5)	-0.0028 (4)
C11	0.0253 (6)	0.0271 (6)	0.0213 (6)	-0.0052 (5)	-0.0005 (5)	-0.0023 (5)
N12	0.0160 (5)	0.0292 (6)	0.0225 (5)	-0.0043 (4)	0.0033 (4)	-0.0012 (4)
013	0.0174 (4)	0.0369 (5)	0.0178 (4)	-0.0076 (4)	0.0023 (3)	0.0005 (4)
C14	0.0184 (6)	0.0468 (8)	0.0173 (6)	-0.0052 (5)	-0.0012 (5)	0.0029 (5)
C15	0.0181 (6)	0.0286 (6)	0.0134 (5)	-0.0020 (5)	-0.0008 (4)	0.0004 (4)
C16	0.0231 (6)	0.0243 (6)	0.0194 (6)	-0.0022 (5)	-0.0023 (5)	0.0030 (4)
C17	0.0185 (6)	0.0426 (8)	0.0249 (7)	-0.0001 (5)	0.0006 (5)	-0.0031 (6)
C18	0.0271 (7)	0.0467 (8)	0.0209 (6)	-0.0161 (6)	0.0027 (5)	-0.0005 (6)
C19	0.0520 (9)	0.0264 (7)	0.0212 (6)	-0.0149 (6)	-0.0030 (6)	0.0039 (5)
C20	0.0317 (7)	0.0261 (6)	0.0179 (6)	0.0044 (5)	-0.0037 (5)	-0.0015 (5)
F21	0.0375 (5)	0.0264 (4)	0.0449 (5)	0.0016 (3)	-0.0033 (4)	0.0099 (3)
F22	0.0504 (6)	0.0360 (5)	0.0421 (5)	0.0204 (4)	-0.0081 (4)	-0.0012 (4)

Geometric parameters (Å, °)

01—С9	1.3736 (14)	C11—H11B	0.9600
O1—C2	1.3848 (15)	C11—H11C	0.9600
С2—С3	1.3534 (17)	N12—O13	1.4127 (13)
C2-C10	1.4594 (17)	O13—C14	1.4369 (15)
C3—C4	1.4410 (18)	C14—C15	1.4977 (17)
С3—Н3	0.9300	C14—H14A	0.9700
С4—С9	1.3929 (18)	C14—H14B	0.9700
C4—C5	1.3986 (18)	C15—C20	1.3828 (18)
С5—С6	1.384 (2)	C15—C16	1.3844 (17)
С5—Н5	0.9300	C16—F21	1.3547 (14)
С6—С7	1.397 (2)	C16—C17	1.3732 (18)
С6—Н6	0.9300	C17—C18	1.381 (2)
С7—С8	1.3870 (19)	C17—H17	0.9300
С7—Н7	0.9300	C18—C19	1.379 (2)
С8—С9	1.3890 (18)	C18—H18	0.9300
С8—Н8	0.9300	C19—C20	1.385 (2)
C10—N12	1.2853 (16)	C19—H19	0.9300
C10-C11	1.4972 (17)	C20—F22	1.3517 (15)
C11—H11A	0.9600		
C9—O1—C2	105.72 (9)	H11A—C11—H11B	109.5
C3—C2—O1	111.52 (11)	C10-C11-H11C	109.5
C3—C2—C10	131.52 (11)	H11A—C11—H11C	109.5
O1—C2—C10	116.92 (10)	H11B—C11—H11C	109.5
C2—C3—C4	106.64 (11)	C10-N12-013	111.08 (10)
С2—С3—Н3	126.7	N12-013-C14	106.28 (9)
С4—С3—Н3	126.7	O13—C14—C15	107.32 (10)
C9—C4—C5	118.79 (12)	O13—C14—H14A	110.3
C9—C4—C3	105.39 (11)	C15—C14—H14A	110.3
C5—C4—C3	135.82 (13)	O13—C14—H14B	110.3
C6—C5—C4	118.45 (13)	C15—C14—H14B	110.3
С6—С5—Н5	120.8	H14A—C14—H14B	108.5
С4—С5—Н5	120.8	C20-C15-C16	114.96 (11)
C5—C6—C7	121.23 (12)	C20—C15—C14	123.38 (12)
С5—С6—Н6	119.4	C16—C15—C14	121.67 (11)
С7—С6—Н6	119.4	F21—C16—C17	118.38 (12)
C8—C7—C6	121.65 (12)	F21—C16—C15	117.30 (11)
С8—С7—Н7	119.2	C17—C16—C15	124.32 (12)
С6—С7—Н7	119.2	C16—C17—C18	117.97 (13)
С7—С8—С9	115.95 (13)	C16—C17—H17	121.0
С7—С8—Н8	122.0	C18—C17—H17	121.0
С9—С8—Н8	122.0	C19—C18—C17	120.94 (12)
O1—C9—C8	125.36 (12)	C19—C18—H18	119.5
O1—C9—C4	110.72 (10)	C17—C18—H18	119.5
C8—C9—C4	123.92 (12)	C18—C19—C20	118.26 (12)
N12-C10-C2	115.07 (11)	C18—C19—H19	120.9
N12-C10-C11	125.85 (11)	С20—С19—Н19	120.9
C2-C10-C11	119.08 (11)	F22—C20—C15	117.55 (12)

C10—C11—H11A	109.5	F22—C20—C19	118.92 (12)
C10-C11-H11B	109.5	C15—C20—C19	123.51 (12)
C9—O1—C2—C3	-0.51 (13)	O1-C2-C10-C11	-168.36 (10)
C9—O1—C2—C10	-178.77 (10)	C2-C10-N12-O13	178.89 (9)
O1—C2—C3—C4	-0.06 (14)	C11—C10—N12—O13	-1.33 (17)
C10—C2—C3—C4	177.86 (12)	C10—N12—O13—C14	-176.13 (10)
C2—C3—C4—C9	0.60 (14)	N12-013-C14-C15	170.08 (10)
C2—C3—C4—C5	-179.29 (15)	O13—C14—C15—C20	105.09 (13)
C9—C4—C5—C6	1.18 (19)	O13—C14—C15—C16	-75.36 (15)
C3—C4—C5—C6	-178.95 (14)	C20-C15-C16-F21	177.47 (11)
C4—C5—C6—C7	-0.5 (2)	C14—C15—C16—F21	-2.12 (17)
C5—C6—C7—C8	-0.4 (2)	C20-C15-C16-C17	-2.02 (18)
C6—C7—C8—C9	0.70 (19)	C14—C15—C16—C17	178.39 (12)
C2—O1—C9—C8	-179.21 (12)	F21-C16-C17-C18	-178.97 (11)
C2—O1—C9—C4	0.91 (13)	C15—C16—C17—C18	0.5 (2)
C7—C8—C9—O1	-179.90 (11)	C16—C17—C18—C19	1.2 (2)
C7—C8—C9—C4	-0.03 (19)	C17—C18—C19—C20	-1.3 (2)
C5-C4-C9-O1	178.96 (11)	C16—C15—C20—F22	-176.55 (11)
C3—C4—C9—O1	-0.95 (13)	C14—C15—C20—F22	3.03 (18)
C5—C4—C9—C8	-0.92 (19)	C16—C15—C20—C19	1.93 (18)
C3—C4—C9—C8	179.17 (12)	C14—C15—C20—C19	-178.49 (12)
C3-C2-C10-N12	-166.39 (13)	C18—C19—C20—F22	178.09 (12)
O1-C2-C10-N12	11.44 (16)	C18—C19—C20—C15	-0.4 (2)
C3—C2—C10—C11	13.8 (2)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H··· <i>A</i>
C7—H7···F22 ⁱ	0.93	2.54	3.3537 (16)	147

Symmetry code: (i) -x+1/2, y+1/2, -z+3/2.