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Abstract 

Background:  Birth weight is a significant determinant of the likelihood of survival of an infant. Babies born at low 
birth weight are 25 times more likely to die than at normal birth weight. Low birth weight (LBW) affects one out of 
every seven newborns, accounting for about 14.6 percent of the babies born worldwide. Moreover, the prevalence of 
LBW varies substantially by region, with 7.2 per cent in the developed regions and 13.7 per cent in Africa, respectively. 
Ethiopia has a large burden of LBW, around half of Africa. These newborns were more likely to die within the first 
month of birth or to have long-term implications. These are stunted growth, low IQ, overweight or obesity, develop-
ing heart disease, diabetes, and early death. Therefore, the ability to predict the LBW is the better preventive measure 
and indicator of infant health risks.

Method:  This study implemented predictive LBW models based on the data obtained from the Ethiopia Demo-
graphic and Health Survey 2016. This study was employed to compare and identify the best-suited classifier for pre-
dictive classification among Logistic Regression, Decision Tree, Naive Bayes, K-Nearest Neighbor, Random Forest (RF), 
Support Vector Machine, Gradient Boosting, and Extreme Gradient Boosting.

Results:  Data preprocessing is conducted, including data cleaning. The Normal and LBW are the binary target 
category in this study. The study reveals that RF was the best classifier and predicts LBW with 91.60 percent accuracy, 
91.60 percent Recall, 96.80 percent ROC-AUC, 91.60 percent F1 Score, 1.05 percent Hamming loss, and 81.86 percent 
Jaccard score.

Conclusion:  The RF predicted the occurrence of LBW more accurately and effectively than other classifiers in Ethio-
pia Demographic Health Survey. Gender of the child, marriage to birth interval, mother’s occupation and mother’s 
age were Ethiopia’s top four critical predictors of low birth weight in Ethiopia.
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Background
Birth weight has a significant influence on its chances of 
survival. Low birth weight (LBW) is becoming more an 
issue, particularly in emerging countries. A major cause 
of neonatal death is low birth weight, less than 2500  g 
[1]. Babies born at a low birth weight are 25 times more 
likely to die than babies born at a normal birth weight 

[2]. It’s also a good indicator of a child’s future health 
complications. Low birth weight affects one out of every 
seven newborns, accounting for about 14.6 percent of 
the babies born worldwide. The prevalence varies sub-
stantially by region, with rates of 7.2 per cent in the More 
Developed Regions, 13.7 per cent in Africa, and 17.3 per 
cent in Asia, respectively. These newborns were more 
likely to die within the first month of birth or to have 
long-term implications. These are stunted growth, low 
IQ, overweight or obesity, developing heart disease, dia-
betes, and early death [1, 3].
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Evidence shows that the global prevalence of LBW 
dropped by 1.2 percent each year between 2000 and 2015, 
meaning that progress is insufficient to fulfil the World 
Health Assembly’s low birth weight target of 30 percent 
by 2025 [1]. LBW is still a serious public health concern 
across the world [1], putting neonates and newborns at 
an increased risk of death and morbidity. As a result, one 
of the main aims of the ’A World Fit for Children’ initia-
tive is to reduce low birth weight as a significant contri-
bution to the Millennium Development Goal.

Low birth weight can be caused by a variety of circum-
stances, depending on the region [1, 2]. Low birth weight 
is associated with preterm in industrialized countries 
is caused by maternal age, smoking, multi-parity, and 
caesarean section. Low birth weight is caused by poor 
fetal growth is linked to poor maternal nutrition before 
and throughout pregnancy in less developed countries. 
Understanding the importance of preterm delivery and 
poor fetal growth as causes of low birth weight is critical 
for developing effective prevention interventions. More-
over, [4] revealed education was one of the predictors in 
LBW modeling.

Numerous studies have found that the most prevalent 
causes of low birth weight are prematurity and intrauter-
ine growth restriction. In developed countries, the most 
common reason is preterm birth, but in underdeveloped 
countries, the most common cause is intrauterine growth 
restriction [5]. In addition, inadequate weight gain dur-
ing pregnancy, low pre-pregnancy weight, short stature, 
the gender of the newborn (being female), hard physical 
labour during pregnancy, illness (especially infections), 
women’s lower socioeconomic status, and a lack of ante-
natal care (ANC) have been identified, as risk factors for 
low birth weight in developing countries [6]. Low birth 
weight is also associated with multiple gestations, young 
motherhood, genetic factors, poor maternal education, 
poor maternal nutrition before and during pregnancy, 
and poorer maternal anthropometric measurements [7, 
8].

Even though LBW is a worldwide concern, the condi-
tion is most prevalent in the world’s poorest areas, Sub-
Saharan Africa and Southern Asia [9], suggesting that the 
disease has the strongest association with socioeconomic 
status [10, 11]. As a result, understanding the relationship 
between LBW and socioeconomic status helps to a strat-
egy to address the problem more effectively in resource-
constrained nations like Ethiopia. Women with lower 
socioeconomic status are more likely to have LBW chil-
dren [12], although rising socioeconomic status may not 
necessarily result in better LBW reduction results.

According to [13], Ethiopia has a high prevalence of 
low birth weight variations. Newborn sex, prenatal care 
follow-up, pregnancy-induced hypertension, preterm 

birth, and mother’s residency linked to LBW. Commu-
nity-based health promotion initiatives on maternal 
nutrition during pregnancy, prenatal follow-up, and early 
treatment are needed to reduce the effects of LBW. Sev-
eral studies in Ethiopia have been conducted to assess 
the prevalence and risk factors for low birth weight and 
have found that low birth weight ranges from 6 to 29.1%. 
Furthermore, low birth weight was associated with the 
infant’s sex, pregnancy-induced hypertension, ANC fol-
low-up, preterm, parity, and residence [14–16].

Ethiopia has a birth weight burden of around half of 
the SSA, at around 11% [17]. As a result, understanding 
how to predict the LBW is beneficial and preventive. This 
study provides an LBW prediction model in Ethiopia. 
It also seeks to determine which classifier is best suited 
for predictive classification. The study used Logistic 
Regression (LR), Decision Tree (DT), Naive Bayes (NB), 
K-Nearest Neighbor (K-NN), Random Forest (RF), Sup-
port Vector Machine (SVM), Gradient Boosting (GB), 
and Extreme Gradient Boosting (XGB) [18–20].

Methods
This study ML flows first displays the data source, pre-
processing stage, feature selection for the classifier, 
hyper-parameter tuning, and classifier’s functioning 
technique for the classification.

Data source
The data of this study was obtained from the fourth wave 
of the Ethiopia Demographic and Health Survey, which 
took place in 2016 (EDHS-2016). The EDHS-2016 data 
collection period ran from January 18 to June 27, 2016. 
The survey was conducted under Ethiopia’s Central Sta-
tistical Agency (CSA), with technical assistance sup-
plied by ICF and financial support provided by other 
international organizations. The goal of the EDHS is to 
produce up-to-date estimates of the population’s signifi-
cant demographic and health variables [17]. The survey 
encompassed the country’s nine regions and two city 
administrations, generating data that was representative 
of the country as a whole and for urban and rural popu-
lations. The survey data was gathered using a stratified 
two-stage sampling procedure to choose a representative 
sample. There were 21 sample strata from 11 administra-
tive states in all.

Separate enumeration areas (EAs) were chosen in two 
phases in each stratum. The EDHS-2016 selected 645 
EAs at random from a total of 84 915 EAs in Ethiopia, 
with a probability proportional to EA size and independ-
ent selection in each stratum. The second stage of the 
sampling procedure involved picking a predetermined 
number of 28 households from each EA using an equal 
probability systematic approach [17]. There were 16,650 
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households in the EDHS-2016. Women aged 15–49 years 
and men aged 15–59 years old were eligible for the inter-
view regardless of residence type. In all, 16,583 women 
aged 15–49  years were located in all examined houses, 
with 15,683 women accessible for an interview, resulting 
in a 95 percent response rate. To avoid bias, data collec-
tors exclusively interviewed pre-selected households, and 
there were no replacements or adjustments to the pre-
selected households during the implementation stages 
[17].

Low birth weight (LBW) is the study’s target variable. 
Birth weight data were obtained in the survey for chil-
dren born five years before the interview. There were 
10,641 births in the five years before the survey. However, 
only 2110 newborns have birth weight data, accounting 
for around 14% (weighted) of the total number of births 
in the study.

Preprocessing of data
This study employed data pre-processing to eliminate 
missing values, noisy data, and incompatible data since 
it is done in its raw form. Pre-processing, cleaning, inte-
grating, transforming, reducing, and discretizing data are 
helpful [21]. In this study, like in other data mining meth-
ods, the initial stage of data pre-processing is necessary. 
Data cleaning, feature selection and resampling strate-
gies are the three fundamental processes. EDHS initially 
contained 10,641 records that needed to be cleaned up 
(i.e. samples) (i.e. samples). The survey utilized to gather 
the data had a broad goal of satisfying all of Ethiopia’s 
health-related needs. The LBW issue has a critical fault 
since the weight variable was missing in most samples 
(i.e. the weight of the infant was not recorded). Because 
the ’infant weight’ feature is not available, 84 per cent of 
survey samples cannot be used and must be deleted. A 
large fraction of the 2,110 samples available had more 
than four or five missing data for the critical 25 features, 
comprising nearly 14% (weighted) of the sampled births 
in the survey.

Second, each sample in the dataset includes over a 
thousand features; therefore, feature selection is essen-
tial. A closer look reveals that the bulk of the features is 
unsuitable for the implementations. As a result, identify-
ing significant features associated with LBW is an essen-
tial initial step. An assessment of the literature [4, 22] and 
data availability is used to do this. These 25 features are 
shown in Table 1 below.

Relevant features determine the performance of 
any machine learning model implementation. Fea-
ture selection refers to picking critical characteristics 
for the research work at hand. In addition to lowering 
data dimensionality, it improves data visualization and 
understanding. If further study is done, the effects of 

all 25 qualities must be considered. The topic of cate-
gorical data discretization is widely covered in [22]. An 
imbalanced dataset was resampled before training the 
prediction model, which may be considered a data pre-
processing step. For resampling imbalanced datasets, 
SMOTE proven to nearly continuously improve classifi-
cation performance [21].

Machine learning classifiers
Some researchers have used machine learning 
approaches to anticipate medical problems and other 
disorders [22, 23]. Random forests, support vector 
machines, logistic regression, decision trees, and other 
approaches are among them. XGB (Extreme Gradient 
Boosting) is a widely utilized and efficient machine learn-
ing technique with a surprising impact. As a result, this 
research offered a correlation-based feature selection 
method to understand better what medical features may 
influence low birth weight outcomes. On the other hand, 
this study used a novel integrated learning algorithm 
called XGB to efficiently handle vast amounts of medi-
cal data and fulfil real-world requirements [20, 23]. As 
a result, the study’s technique is innovative, combining 
theory and practice.

Because of its ability to predict and ease usage, Extreme 
Gradient Boosting (XGB) has become one of the most 
popular machine learning approaches. The regression 
and classification algorithms are being monitored. The 
two principles that make up XGB are decision trees and 
gradient boosting. Decision trees are likely the most eas-
ily interpretable machine learning algorithms known, and 
they may be pretty powerful when used in conjunction 
with the correct techniques. The nodes and leaves of a 
decision tree resemble the nodes and leaves of a tree with 
a base and numerous branches [23].

XGB is a boosting method that is part of an ensemble 
learning algorithm. The goal of XGB is to keep adding 
trees and performing feature splitting to expand a tree. 
When a tree is added, it learns a new function to suit the 
residuals of the previous prediction. The score of a sam-
ple is predicted when k trees are created after training. In 
reality, each tree will have a matching leaf node based on 
the features of this sample, and each leaf node correlates 
to a score. The sum of the scores for each tree equals the 
sample’s predicted value. XGB adds a regular term to the 
loss function’s second-order Taylor expansion to balance 
the model’s complexity and the loss function’s decline. 
It looks for the optimal solution globally and prevents 
model overfitting to a large extent.

K-Nearest Neighbor (K-NN) method selects the K 
samples with the most significant sample similarity to 
be graded, the voting approach determines which group 
the samples belong to, and the instance is divided into 
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this class. The K-NN classification algorithm performs 
poorly in an adversarial environment. It is simple to use 
and maybe put to good use in some circumstances [18].

The Random Forest (RF) classifier has addressed clas-
sification and regression problems. Each split decision 
employs the notion of multiple random tree creation, 
with training bootstrap, sample bagging, voting system, 
and randomly picked characteristics. It takes substan-
tially less input preparation, uses many types of fea-
tures without normalization, and is quick to train and 
optimize according to hyperparameters [19].

The LBW outcomes prediction model can be cre-
ated and Logistic Regression (LR), Decision Tree (DT), 
Naive Bayes (NB), K-Nearest Neighbor (K-NN), Ran-
dom Forest (RF), Support Vector Machine (SVM), Gra-
dient Boosting (GB), and Extreme Gradient Boosting 
(XGB) [18, 20, 23, 24]approaches outlined above. Fig-
ure 1 depicts the prediction model flowchart. Following 
comparison and verification, the best feature combina-
tion is identified and utilized as the input to the final 
model prediction model [23].

Hyperparameters tuning and evaluation
Hyperparameters describe the depiction architecture, 
and hyperparameter tuning is the process of optimizing 
model design. These approaches demonstrate how to use 
the space of potential hyperparameter values to describe 
likely model structures. This study employed Rand-
omized Search cross-validation to improve the param-
eters of Logistic Regression (LR), Decision Tree (DT), 
Naive Bayes (NB), K-Nearest Neighbor (K-NN), Random 
Forest (RF), Support Vector Machine (SVM), Gradient 
Boosting (GB), and Extreme Gradient Boosting (XGB) 
[18–20, 23, 24].

Evaluation metrics are used to assess the performance 
and effectiveness of the implemented predictive model 
[24]. Their short descriptions are as follows: confusion 
matrix is a table that allows visualization of the perfor-
mance of a supervised learning algorithm. The uncer-
tainty matrix is deceptively easy to understand, but the 
associated words can be perplexing. True positives (TP) 
refer to the correctly classified samples in their correct 
class. True Negatives (TN) refer to the correctly classified 

Table 1  Features identified for low birth weight classification

No. Variable name Variable label

1 Residence Type of place of residence (Urban/ Rural)

2 Education educational level (no education/primary/secondary or higher)

3 Iron Taking iron pills, sprinkles or syrup (No/ Yes)

4 Wealth wealth index combined (Poorest/poorer/middle/richer/richest)

5 BMI Body mass index (numerical)

6 Agem Women’s age in years (numerical)

7 Anaemia Anemia level (severe/ moderate /mild/not anemic)

8 Orderbirth Birth order number (numerical)

9 Twin The child is a twin (single/multiple)

10 Gender Sex of child (male/female)

11 Visits Number of antenatal visits during pregnancy (numerical)

12 Delivery Delivery by caesarean section (no/yes)

13 Smoking Smokes cigarettes (no/yes)

14 Insurance Covered by health insurance (no/yes)

15 Occuptiion Occupation (No/Yes)

16 Sex of child Sex of child (Male/Female)

17 Ethnicity Ethnicity (Amahara/Oromo/Tigrie/Somali/Guragie/Others

18 Parity Parity lab (1/2/3/4/5 +)

19 BTI Birth Interval (Numeric)

20 Marital Current marital status

21 Religion Religion(orthodox/muslim/protestant/others)

22 Region Region (11 categories)

23 Desirability Desirability of the pregnancy (then/later/no more)

24 Sign in ANC Sign Complexity during Antenatal care visit(s) (No/Yes)

25 Nutritional Nutritional counseling (No/Yes)



Page 5 of 16Bekele ﻿BMC Medical Informatics and Decision Making          (2022) 22:232 	

samples that do not belong to the target class. False Posi-
tives (FP) refers to the samples incorrectly labelled as the 
target class when they are not. False Negatives (TN) refer 
to the samples incorrectly labelled as not the target class 
when they are [24].

Accuracy measures how many of the cases are cor-
rectly identified/predicted by the model [24], i.e. correct 
prediction divided by the total sample size; Recall or Sen-
sitivity measures the rate of true positives, how many of 
the actual positive cases are identified/predicted as posi-
tive by the model; Precision measures how many of the 
positive predicted cases are actually positive; F1-Score 
combines the precision and recall of the model and it is 
defined as the harmonic mean of the model’s precision 
and recall; Area Under Curve (AUC) is the Area under 
the receiver operating characteristic curve and provides a 
comprehensive assessment of the accuracy of a model by 
screening the range of threshold values for the decision 
making; ROC curves is a receiver operating characteris-
tic (ROC) curve illustrates the performance of a binary 

classification algorithm as a function of Ture positive 
rate and false positive rate; Precision-Recall tradeoff (AP) 
calculates the Area Under the Precision-Recall Curve to 
get one number that describes model performance; Area 
under Receiver operating characteristics curve (AUROC) 
makes use of True Positive Rates (TPR) and False Positive 
Rates (FPR) [24].

Results
Exploratory data analysis (EDA)
The total count of the sample is 2110. As shown in 
Table  2, the average age of mothers in the sample is 
28  years, the mother’s oldest is 47  years, whereas the 
youngest mother is 16 years old. The average registered 
body mass index is 22.445, the maximum index is 39.15, 
and the minimum index is 1358. Antenatal visit: 5 mean, 
20 maximum and 0 minimum. The average birth order 
registered is 2.8, with a standard deviation of 2.1 and a 
maximum of 13. The average recorded birth weight is 
3268.983 g, the maximum weight is 6000, the minimum 

Data preprocessing

5-fold CV

Feature selection Supervised Classification

Data Collection (EDHS)

Data Cleaning

Re-sampling

Training dataset (80%)

Test the predictive 
modelsTunning and Model 

selection

Build the Classifiers

Compare the performance of the classifiers

Testing dataset (20%)

Predict Low birth weight

Fig. 1  Flow chart of predictive classification

Table 2  Numerical attributes summary statistics

Q1, Q2, and Q3 are quartiles

Variable Mean SD Min Q1 Q2 Q3 Max

BMI 22.445 4.32.816 1358 19.23.3 21.42 24.94 39.15

Age 28.396 6.046 16 24 28 32 47

Visits 4.679 2.311 0 4 4 5 20

Birth Order 2.769 2.121 1 1 2 4 13

Birth weight 3268.983 824.046 500 3000 3010 3750 6000
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weight is 500, and quartiles one and three were 3000 and 
3750, respectively. Table 3 presented the cross-tabulation 
of target variable with its features. The continuous fea-
tures are somewhat normally distributed, and there are 
many outliers present. Preprocessing on the data con-
ducted to remove the irregularities. One-Hot Encoding 

on features conducted for the binary categorical fea-
tures, and dummy Encoding on features employed for 
more than two categorical features. Thus, there are 2110 
instances and 25 features and then the encoded features 
became 49. Figure  2 depicted the birth categories over 
the region in Ethiopia. The supplementary documents 

Table 3  Cross-tabulation Birth Weight Category and Features

LBW denotes Low Birth Weight; NBW denotes Normal Birth Weight

LBW % NBW % LBW % NBW %

Delivery by caesarean section Taking Iron Pills, Sprinkles Or Syrup

No 13.5 86.5 No 14.2 85.8

Yes 9.5 90.5 Yes 5.8 94.2

Residence Occupation

Urban 10.9 89.1 Not Working 13.3 86.7

Rural 15.4 84.6 Working 13.1 86.9

Smokes Cigarettes Sex Of Child

No 13.2 86.8 Male 10.9 89.1

Yes 9.6 90.4 Female 15.6 84.4

Health Insurance Child Is Twin

No 13.2 86.8 Single Birth 12.3 87.7

Yes 13.8 86.2 Multiple Birth 39.9 60.1

Under Age 18 (Mothers’) Current Marital Status

Under Age 18 44.9 55.1 Not Married 10.8 89.2

Age 18 Or Older 13 87 Married 13.4 86.6

Sign Of Complexity During ANC Nutritional Counseling

No 13.9 86.1 No 15.1 84.9

Yes 12.5 87.5 Yes 12.1 87.9

Educational Level Wealth Index Combined

No Education 18.3 81.7 Poor 15.7 84.3

Primary 11 89 Middle 17.3 82.7

Secondary >  =  11.3 88.7 Rich 11.7 88.3

Anemia Level Desirability Of The Pregnancy

Severe 53.9 46.1 Then 14 86

Moderate 13.6 86.4 Later 9.9 90.1

Mild 16.7 83.3 No More 8.7 91.3

Not Anemic 12.4 87.6

Religion Ethnicity

Orthodox 13.4 86.6 Amhara 15.8 84.2

Muslim 15.8 84.2 Oromo 16.3 83.7

Protestant 9.6 90.4 Tigrie 6.5 93.5

Others 1.6 98.4 Somalie 10 90

Guragie 16.7 83.3

Other 10.4 89.6

Ethnicity Parity

Amhara 15.8 84.2 1 9.8 90.2

Oromo 16.3 83.7 2 13.1 86.9

Tigrie 6.5 93.5 3 17.5 82.5

Somali 10 90 4 18.7 81.3

Guragie 16.7 83.3 5 +  12.4 87.6

Other 10.4 89.6
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included additional EDA results in Additional file 1: Figs. 
S1–S5.

Data Preprocessing
Through data processing, the number of samples in the 
data set is 2110 instance and 25 features. The LBW and 
Normal weight samples ratio is 1:9, which belongs to the 
category imbalanced data set. The study dataset resam-
pled to improve the imbalance ratio. This study employed 
the SMOTE method [21].

Implementation LBW prediction models
Once the preprocessing is done, the implementation of 
predictive models can commence. Numerous combina-
tions of parametric values and settings are carried out. 
The model is fine-tuned to get optimal performance. 
These settings are divided into four categories general, 
booster, learning task, and command line. Tuning can be 
done in a grid or by searching randomly. The grid search 
is used in this study. With many factors, grid search for 
the best solution might be challenging. It can be readily 
addressed by focusing on a smaller number of parameters 
with suitable parameter ranges. K-fold cross-validation is 
used during the model selection step to assess model per-
formance. Packages and libraries of Python utilized. The 
grid search is done in the following manner.

First, to check for over-fitting, the “n estimators” that 
define the model’s epoch are set to 100 and early stop-
ping rounds to 5. Second, find the best learning rate and 
gamma at the same time, as they have a direct impact on 
the model’s performance. 0.01, 0.02, 0.03, 0.06, 0.1, 0.2, 
and 0.3 are the grid values for the learning rate, whereas 
0, 0.1, 0.2, 0.5, and 1 are the grid values for the gamma. 
For model tuning, all potential combinations of these two 
parameter values are tested, and the ones that perform 
best are kept as the optimal values. Third, make a grid 
search across the max depth and min child weight in the 
ranges of 1–10 using the optimal learning rate values and 
gamma. Fourth, make a grid search across the regulari-
zation parameter reg lambda and subsample in the 0.1–1 
range simultaneously. Fifth, re-examine the model using 
a simultaneous grid search over gamma, reg lambda, and 
subsample to check for discrepancies between the opti-
mal values. This study divided the data into a training 
set and test set account 80% and 20%, respectively. The 
model performance, such as prediction evaluation met-
rics, can be compared against different ML algorithms 
and parameter settings. This study used the popular five-
fold cross-validation to avoid overfitting.

This study compared the eight different classifica-
tion methods to verify the superiority of one of the pro-
posed methods. The LBW outcome prediction of Logistic 
Regression (LR) (Fig.  3), Decisoin Tree (DT) (Fig.  4), 

Naive Bayes (NB) (Fig.  5), K-Nearest Neighbor (K-NN) 
(Fig.  6), Random Forest (RF) (Fig.  7), Support Vector 
Machine (SVM) (Fig. 8), Gradient Boosting (GB) (Fig. 9), 
and Extreme Gradient Boosting (XGB) (Fig. 10) method 
were depicted. The models are trained and tuned on the 
training dataset and compared the ML classifiers on the 
training prediction model. The model performance eval-
uation criteria are accuracy, AUC, F1, AP, ROC_AUC, 
and recall. Overall, RF has the best performance, and 
thus it was taken forward as the best ML algorithm. The 
results are shown in Table 4 and Fig. 11.

In this study, the RF model is the best classifier with all 
performance metrics and predicts LBW. 96.01% of aver-
age Precision implies the tradeoff between Precision and 
recall and computes the Area Under the Precision-Recall 
Curve. 89.72% of accuracy indicates the amount of cor-
rectly predicted cases in the XGB of LBW. 96.13% of Sen-
sitivity or recall implies actual LBW cases predicted as 
LBW by the classifier. F1-Score implied result of the Pre-
cision and recall of the model. Area Under Curve (AUC) 
was 90.01%, which provides a comprehensive assessment 
of the accuracy of a model by screening the range of 
threshold values for decision making.

As Table  4 presented, the percentage of normal and 
low birth weight targets that are classified is as low or 
normal birth weight. The hamming loss has the best 
value of 0 and the worst value of 1. The RF study’s Ham-
ming loss result is 0.103, which is practically the best of 
misclassification.

Furthermore, the Jaccard score is the ratio of the size of 
the intersection to the size of the union of predicted and 
ground truth label classes.

When combining predicted and actual classes, it is 
called a similarity coefficient. The best classification is 
one, and the poorest rating is 0. This study’s Jaccard score 
is 0.819, implying that the actual labels are best predicted.

Overall, the RF classifier outperforms the others. It is 
not proof that RF is always better than other algorithms, 
as the nature of the data might significantly impact which 
algorithms are employed. It could be argued that, among 
the most common tools, RF is the best tool for imple-
menting a predictive model employing the EDHS. The 
confusion matrix is shown in Fig. 12. Note that the num-
bers in the confusion matrix had been used to calculate 
the performance measures shown in Table 4.

Finally,  RF  classification of LBW, the results of an 
attribute in all the promotion trees are weighted and 
summed and then averaged to obtain the importance 
score. The   RF model provides an order of important fea-
ture for enhancing the accuracy of the prediction model 
while performing low birth weight prediction using the 
tree model method. As It is shown in Fig. 13.
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Table 4  Performance metrics of the classifiers
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Fig. 2  Birth weight by Region, Ethiopia
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According to previous research [1, 15, 16], Ethiopia is 
one of the countries with the most significant number of 
low birth weight babies globally. Furthermore, while the 

prevalence of low birth weight has decreased in the coun-
try from time to time, more work is needed to promote 
this decline and to limit the detrimental implications of 

Fig. 3  Logistic regression

Fig. 4  Decision tree
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Fig. 5  Naives bayes

Fig. 6  KNN
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the occurrence [1, 4, 13, 25]. In this study, the average 
birth weight was 3268.983 g, with a maximum of 6000 g 
and a minimum of 500 g, while quartiles one and three 

were 3000 and 3750 g, respectively. The sample’s mothers 
are 28 years old, with the oldest being 47 years old and 
the youngest being 16  years old. The average registered 

Fig. 7  Random forest (RF)

Fig. 8  SVM
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Fig. 9  Gradient boost

Fig. 10  Extream Grient boost
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BMI is 22.445, with a maximum index of 39.15 and a 
low of 1358. Antenatal visits: 5 on average, 20 on aver-
age, and 0 on average. With a standard deviation of 2.1 
and a maximum of 13, the average birth order is 2.8. The 
classification machine learning method compared, iden-
tified, and helped recognize specific attributes related to 
low birth weight in Ethiopia that can be used as interven-
tion targets. When compared to other machine learning 

classifier models such as the RF and KNN, the Extreme 
Gradient Boosting (XGB) model has the highest predic-
tion power among the predictive models built.

As the feature importance rank identified, Gender of 
the child, marriage to birth interval, mother’s occupation 
and mother’s age were the top four critical predictors 
of low birth weight in Ethiopia, according to the XGB 
model. This study is roughly in line with the findings 

Fig. 11  AUC-ROC curves of the classifiers

Fig. 12  Confusion matrix of the classifiers’
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research [6, 10, 14, 16, 22]. The findings of this study are 
similar to those of the subsequent analyses. The follow-
ing factors were associated with nearby low birth weight: 
region, religion, residency, birth type, birth prepared-
ness, fast and rapid breathing, maternal education, and 
maternal age [26]. The first important feature of Ethio-
pia’s predictors of low birth weight was the child’s gender. 
According to research conducted in Ethiopian hospitals, 
female newborns were more likely to develop LBW [27].

According to a 2011 EDHS study, there is a link 
between maternal education and proxy LBW [28]. Mul-
tiple births were more likely to result in proxy LBW dur-
ing the first and second parties than single births [29]. 
Research from Addis Ababa hospitals, capital of Ethio-
pia, on the other hand, found a link between proxy LBW 
and birth preparedness. According to the study, planned 
birth reduces the risk of proxy LBW by 70% compared 
to uncontrolled delivery [30]. When a pregnancy is 
unplanned, socioeconomic, psychological, behavioral, or, 
job-related concerns may be used to justify having LBW.

The mother’s age was one of the most critical indica-
tors of low birth weight in Ethiopia in this study. In Ethio-
pia, a mother’s age increases the likelihood of a low birth 
weight baby. The similarities between these studies might 
be due to mothers’ physiological, psychological, and 
behavioral immaturity in this age range, which affects 
their children’s ability to provide enough nourishment 
and care. Maternal education was linked to proxy LBW 
[31]. This study also discovered that Ethiopia’s region was 
one of the most critical indicators of low birth weight. 
Another study found that neonates born in the Gam-
bella and Somalia regions had a lower risk of becoming 
proxy LBW [28]. Maternal factors are probably to blame. 
Mothers from the Afar area may be more stunted or 

undernourished than those from Dire-Dawa, and vice 
versa for Somalia and Benishangul Gumz. Furthermore, 
the socioeconomic status may have a role in having low 
birth weight infants. For instance, Afar, Somalia, and 
the SNNPR have a lower socioeconomic level than Dire-
Dawa [17].

Neonates born in rural areas have a higher risk of proxy 
LBW than those born in urban areas [28]. However, the 
current study’s findings contradict a study done in Dire-
Dawa, which found no link [32]. Many couples prefer 
males and offer appropriate care for boys rather than 
females during conception. A desired later birth has a 
higher risk of proxy LBW than a planned birth [15].

Conclusions
Infant mortality and its implications have been linked 
to low birth weight. Predicting the LBW is thus a valu-
able preventative tool and predictor of newborn health 
hazards. This study used the Ethiopia Demographic and 
Health Survey 2016 to develop predictive LBW models. 
This study used Logistic Regression (LR), Decision Tree 
(DT), Naive Bayes (NB), K-Nearest Neighbor (K-NN), 
Random Forest (RF), Support Vector Machine (SVM), 
Gradient Boosting (GB), and Extreme Gradient Boost-
ing (XGB) to compare and find the best classifier for 
predictive classification. Before applying the predictive 
models, data preprocessing is carried out, including data 
cleaning. In this study, the classifier categories are nor-
mal and LBW. RF was the best classifier, predicting LBW 
with 91.60 percent accuracy, 91.60 percent Recall, 96.80 
percent ROC-AUC, 91.60 percent F1 Score, 1.05 percent 
Hamming loss, and 81.86 percent Jaccard score, accord-
ing to the research. As a result, the RF predicts the occur-
rence of LBW correctly and more effectively than other 

Fig. 13  Feature importance of the RF in the prediction classification
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classifiers. Gender of the child, marriage to birth interval, 
mother’s occupation and mother’s age were Ethiopia’s top 
four critical predictors of low birth weight. This study has 
a direct importance on Ethiopian health and preventative 
policymaking related with low birth weight.
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