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To identify the novel, noninvasive biomarkers to assess the outcome and prognosis of breast cancer (BC), patients with high
sensitivity and specificity are greatly desired. Herein, the miRNA expression profile and matched clinical features of BC patients
were extracted from The Cancer Genome Atlas (TCGA) database. The preliminary candidates were screened out by the
univariate Cox regression test. Then, with the help of LASSO Cox regression analysis, the hsa-let-7b, hsa-mir-101-2, hsa-mir-
135a-2, hsa-mir-22, hsa-mir-30a, hsa-mir-31, hsa-mir-3130-1, hsa-mir-320b-1, hsa-mir-3678, hsa-mir-4662a, hsa-mir-4772,
hsa-mir-493, hsa-mir-556, hsa-mir-652, hsa-mir-6733, hsa-mir-874, and hsa-mir-9-3 were selected to construct the overall
survival (OS) predicting signature, while the hsa-mir-130a, hsa-mir-204, hsa-mir-217, hsa-mir-223, hsa-mir-24-2, hsa-mir-29b-
1, hsa-mir-363, hsa-mir-5001, hsa-mir-514a-1, hsa-mir-624, hsa-mir-639, hsa-mir-659, and hsa-mir-6892 were adopted to
establish the recurrence-free survival (RFS) predicting signature. Referring to the median risk scores generated by the OS and
RFS formulas, respectively, subgroup patients with high risk were strongly related to a poor OS and RFS revealed by Kaplan-
Meier (K-M) plots. Meanwhile, receiver operating curve (ROC) analysis validated the accuracy and stability of these two
signatures. When stratified by clinical features, such as tumor stage, age, and molecular subtypes, we found that the miRNA-
based OS and RFS classifiers were still significant in predicting OS/RFS and showed the best predictive values than any other
features. Besides, functional prediction analyses showed that these targeted genes of the enrolled miRNAs were enriched in
cancer-associated pathways, such as MAPK/RTK, Ras, and PI3K-Akt signaling pathways. In summary, our observations
demonstrate that the novel miRNA-based OS and RFS signatures are independent prognostic indicators for BC patients and
worthy to be validated by further prospective studies.

1. Introduction

A sum of 268,600 new invasive breast cancer (BC) cases are
estimated in the United States in 2019, with an approximate
41,760 BC-related deaths [1]; the average 5-year survival rate
for women with invasive breast cancer is 90%, and the aver-
age 5-year overall survival (OS) of BC patients are different
from 99% to 27% due to the different stages of pathological
development. It is worthy of note that many factors including
the size of the tumor, the number of lymph nodes that
contain cancer, and other features of the cancer that affect
how quickly cancer will grow and how well treatment works

may have a crucial role in BC patients’ OS and disease-free
survival. Besides, Breast Cancer Index, OncotypeDX, Pro-
signa, EndoPredict, MammaPrint, Mammostrat, and IHC4
are also validated by clinical trials, some of which have
already been approved by FDA and listed in the guidelines
[2]. For example, the OncotypeDX model, a 21-gene signa-
ture, is regarded as one of the best-validated breast cancer
multigene signatures, suggesting a stratification of the five-
year or ten-year risk of distant relapse [3].

Recently, the detection of free circulating microRNAs
(miRNAs) allows the establishment of multivariate models
or signatures, which could be used to monitor the disease
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status and predict the prognosis of cancer patients. miRNAs
are a class of noncoding RNA (ncRNA) molecules. As the
single-strand RNA is small, they have recently emerged as
pivotal gene expression regulatory molecules in the multicel-
lular organism [4]. Accumulating evidence has shown that
expression of the miRNA and its target genes is influenced
at numerous levels, including epigenetic effects, promoter
regulation, RNA processing and stability, and translation,
having functional effects on cell proliferation, apoptosis,
metastasis, and sensitivity to chemotherapy and radiotherapy
in breast cancer [5]. Furthermore, studies have highlighted
the significant value of miRNA in predicting prognosis of
BC, especially for invasive BC [6]. The most well-known
example is that overexpression of miR-21 and miR-210
results in shorter overall survival of BC patients [7]. The Can-
cer Genome Atlas (TCGA) provided us with complicated
clinical characteristics and more than cancer genomics [8].
Screened by 1000 BC samples, we retrieved to make an
understanding of the relationship of miRNA expression level
with the prognosis and outcome of BC patients.

Herein, we applied the least absolute shrinkage and
selection operator (LASSO) method aiming to develop
two miRNA-based prognosis signatures for overall survival
(OS) and recurrence-free survival (RFS) prediction, respec-
tively, based on The Cancer Genome Atlas (TCGA) data-
base [9–11].

2. Materials and Methods

2.1. Data Source from TCGA. Normalized read counts of
miRNA expression profiles of 1098 BC patients in com-
bination with clinicopathological and molecular informa-
tion were obtained from the TCGA website in July 2019
(https://xenabrowser.net/datapages/?cohort=TCGA%20Breast
%20Cancer%20(BRCA)&removeHub=https%3A%2F%2Fxe
na.treehouse.gi.ucsc.edu%3A443). And 1057 patients with
available OS information and 886 patients with available
RFS information were extracted for downstream analysis of
OS-associated and RFS-associated marker detection, respec-
tively. These patients were randomly arranged by 7 : 3 in the
order of training cohort and validation cohort by a
computer-generated allocation sequence for both OS- (740
vs. 317) and RFS-related (620 vs. 266) analyses, respectively.

2.2. Candidate OS/RFS-Relevant Gene Identification and
Signature Generation. The univariate Cox regression test
and Kaplan-Meier (K-M) survival analysis were executed to
screen out the potential OS/RFS-relevant miRNAs. A P value
less than 0.05 was considered statistically significant. Then,
we applied the LASSO Cox regression test and Cox’s propor-
tional hazards (HRs) to find out the key miRNAs. The regu-
larization parameter λ determined by the crossvalidated
standard error (SE) introduced the penalties of the model
establishing the process to avoid overfitting and the larger λ
[12]. Then, a list of miRNAs was eventually picked up, of
which β‐coefficients > 0. Finally, the risk score formulas
composed of the sum values of miRNA expression weighted
by the multivariate Cox regression coefficients were obtained.
The median risk score was set as the cutoff point, according

to which the BC patients were assigned into high- and low-
risk subgroups.

2.3. Evaluation of the miRNA-Based Risk-Predictive Models.
The K-M plot was employed to verify the survival difference
between high- and low-risk populations. The area under the
curve (AUC) of the receiver operating characteristic (ROC)
curve was employed to determine the efficiency and accuracy
of the OS/RFS classifier. Moreover, to confirm whether the
OS and RFS signatures are independent prognostic markers
of BC patients, we performed stratified analysis by different
clinical features (gender, age, tumor grade, new tumor event
after initial treatment, and molecular subtypes).

2.4. Functional Annotation of Identified miRNAs. We
obtained potential target genes of prognostic miRNAs for
BC OS/RFS-relevant miRNAs from TargetScan, miRTar-
Base, and miRDB databases [13–15]. Cytoscape software
was used for the visualization of the miRNA-target network
to understand miRNA function and regulatory mechanisms.
Besides, we further performed the Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway, the Gene Ontology
(GO), and the Reactome analyses for miRNA-targeted genes.

3. Results

3.1. Identification of OS/RFS-Related miRNA and
Construction of an miRNA-Based Prognostic Model. We
enrolled a total of 1098 BC patients, with available miRNA
expression data from TCGA database. For OS-related
miRNA detection, 1057 patients with available OS informa-
tion were extracted and were randomly separated into a
training set (n = 740) and validation set (n = 317) (Table 1).
For RFS-related analysis, 886 patients with available RFS
information were extracted and were randomly sorted into
a training set (n = 620) and validation set (n = 266)
(Table 2). The univariate Cox regression analysis revealed
23 OS-related miRNAs (P < 0:05) (Figure S1A) and 20
RFS-related miRNAs (Figure S1B). Of the miRNA profile in
Figures 1(a)–1(b), a set of 17 OS-relevant miRNAs with the
coefs were applied to establish the risk score formula of OS.
Herein, we constructed a 17-miRNA-based OS classifier as
follows. Risk score = −0:041 ∗ let‐7b + 0:009 ∗miR‐101‐2 −
0:066 ∗ miR‐135a‐2 + 0:212 ∗miR‐22 − 0:100 ∗miR‐30a −
0:148 ∗ miR‐31 − 0:124 ∗miR‐3130‐1 − 0:315 ∗miR‐320b‐
1 + 0:253 ∗miR‐3678 + 0:131 ∗miR‐4662a − 0:194 ∗miR‐
4772 + 0:090 ∗miR‐493‐0:181 ∗miR‐556‐0:076 ∗miR‐652
− 0:246 ∗ miR‐6733 + 0:198 ∗miR‐874 + 0:083 ∗miR‐9‐3
(Figure 1(c) and Table S1). For RFS-related miRNAs,
LASSO-penalized Cox analysis was performed to draw out
the predicting signature of the 13-miRNA-based RFS
classifier (Figures 1(d) and 1(e)), the risk score formula =
−0:313 ∗ miR‐130a − 0:113 ∗miR‐204 + 0:370 ∗miR‐217‐
0:226 ∗ miR‐223 + 0:597 ∗ miR‐24‐2 − 0:047 ∗miR‐29b‐1
− 0:128 ∗miR‐363 + 0:447 ∗miR‐5001 − 0:275 ∗miR‐514a
‐1 + 0:280 ∗ miR‐624 + 0:474 ∗miR‐639‐0:461 ∗miR‐659‐
0:268 ∗miR‐6892 (Figure 1(f) and Table S2). In Figure 1(f),
we identified five miRNA genes (miR-217, miR-24-2, miR-
5001, miR-624, and miR-639) that have a positive impact
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on the RFS of BC patients, as well as the other eight miRNAs,
including miR-130a, miR-204, miR-223, miR-29b-1, miR-
363, miR-514a-1, miR-659, and miR-6892, which were
negatively correlated with the recurrence of BC patients.

3.2. Verification of the miRNA Signatures in Training and
Validation Sets. The risk score could be obtained by the mul-
tiplication of the regression coefficient of each selected
miRNA and the normalized expression results derived from
each patient, and we then ranked these patients referring to
the risk scores. As such, high-risk and low-risk groups were
distributed according to the median risk score. The K-M
curves were applied to compare the OS of the two subgroups.
The results showed that the high-risk patients have a remark-
ably shorter OS than the low-risk patients (P < 0:0001,
Figure 2(a)) in both the training and validation sets
(P < 0:0001, Figure 2(c)). In ROC analysis to assess the
accuracy of the 17-miRNA-based signature, the AUC values
at 5-year survival achieved 0.703 (95% CI: 0.628-0.781) and
0.746 (95% CI: 0.657-0.835) in the training cohort and val-

idation cohort, respectively (Figures 2(b) and 2(d)), showing
favorable discrimination for BC patients. For the 13-miRNA-
based RFS classifier, significant differences were exhibited
between the two groups in both the training and validation
sets (P = 0:0036, Figure 2(e); P = 0:00024, Figure 2(g)). And
the AUC of the ROC curves of RFS was 0.676 in the testing
set (Figure 2(f)) and 0.760 in the validation set (Figure 2(h)).

3.3. Functional Enrichment Analysis of the Target Gene. To
evaluate the potential function of target miRNA in the
OS/RFS signatures, the miRNA-miRNA network for the
downstream genes of the miRNAs related to the OS/RFS
classifier was screened and displayed in Figure S2A-B with
the visualization tool Cytoscape. We also summarized the
OS/RFS-relevant genes into GO, KEGG, and Reactome
analyses. The analyses revealed that target genes of different
miRNAs were significantly enriched in many biological
processes related to tumorigenesis and progression processes,
such as regulation of cell morphogenesis, cell-substrate
adherens junction, transcription factor activity, and pathways

Table 1: The clinicopathological parameters of the overall survival-related training and validation sets.

Parameter Training set (%) (N = 740) Validation set (%) (N = 317) Fisher’s exact test (P value) SMD

Sex 0.95 0.026

Male 9 (1.2) 3 (0.9)

Female 731 (98.8) 314 (99.1)

Age (year) 0.876 0.015

≤60 410 (45.4) 187 (56.2)

>60 330 (44.6) 139 (43.8)

Stage 0.828 0.085

I 128 (17.4) 50 (15.9)

II 412 (56.1) 184 (58.6)

III 169 (23.0) 72 (22.9)

IV 16 (2.2) 4 (1.3)

X 10 (1.4) 4 (1.3)

Note: 12 patients of the breast cancer cohort (overall survival) were male.

Table 2: The clinicopathological parameters of the recurrence-free survival-related training and validation sets.

Parameter Training set (%) (N = 620) Validation set (%) (N = 266) Fisher’s exact test (P value) SMD

Sex 1 0.015

Male 8 (1.3) 3 (0.1)

Female 612 (98.7) 263 (98.9)

Age (year) 0.904 0.014

≤60 354 (57.1) 150 (56.4)

>60 266 (42.9) 116 (43.6)

Stage 0.117 0.208

I 113 (18.3) 41 (15.5)

II 357 (58.0) 146 (55.3)

III 128 (20.8) 72 (27.3)

IV 7 (1.1) 4 (1.5)

X 11 (1.8) 1 (0.4)

Note: 11 patients of the breast cancer cohort (overall survival) were male.
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such as signaling by the receptor tyrosine kinase, Ras, and
PI3K-Akt signaling pathway (Figure 3).

3.4. Multivariate Analyses and Subgroup Analysis. Multivar-
iate analyses confirmed that the OS and RFS signatures were

the independent indicators for BC patients (Table S3 and
Table S4). We found that the predictive value of our signature
was superior to the clinicopathological features, such as sex,
age, tumor stage, new tumor event after initial treatment,
and molecular subtypes alone. Then, nomograms were
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Figure 1: Construction of the OS/RFS miRNA signatures. Tuning parameter (λ) selection crossvalidation error curve for OS/RFS-relevant
miRNA. The vertical lines were drawn at the optimal values by the minimum criteria and the 1-SE criteria (a, d). The LASSO coefficient
profiles of 17 overall survival-related miRNAs; the vertical line is drawn at the value chosen by 10-fold crossvalidation (b). The LASSO
coefficient profiles of 13 recurrence-free survival-related miRNAs; the vertical line is drawn at the value chosen by 10-fold crossvalidation
(e). Hazard ratio of the enrolled OS-related miRNAs (c) and enrolled RFS-related miRNAs (f). LASSO coefficient profiles of OS-relevant
miRNAs associated with the prognosis of patients with breast cancer (a–c); LASSO coefficient profiles of RFS-relevant miRNAs associated
with the prognosis of patients with breast cancer (d–f).
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generated by combing our classifier and clinicopathological
features, and the results indicated that the nomogram had
the best predictive value, followed by our classifier (Figure 4).

In addition, patients with complete information of
gender, age, tumor grade, new tumor events after initial treat-
ment, and molecular subtypes were included for further
subgroup analysis. According to Figure 5, the OS classifier
has independently predictive ability regardless of age (<60,
≥60). In the case of gender and tumor grade, the OS classifier
showed more value in female (P = 6×10−4) and stage I/II
patients (P = 0:00074) than in male (P = 1) and stage III/IV
patients (P = 0:24), respectively. The miRNA-based OS pre-
dicting signature was still significant for these patients with-
out new tumor events (P = 0:002). K-M curves of patients
with different molecular subtypes demonstrated that the
miRNA-based OS signature was more suitable for the risk
prediction in luminal B (P = 0:014), positive ER status
(P = 0:0022), negative HER2 status (P = 0:0015), and positive
PR status (P = 0:0054) subgroups.

In addition, similar results were obtained for the miRNA-
based RFS signature. As validation was performed on distinct
ages (≥60 vs. <60) and the tumor stage (I/II vs. III/IV),
the results showed the similar prognostic value (Figure 6).
When adjusted by sex, the RFS signature remained to be an
independent prognostic biomarker with restriction to female
(P < 0:0001). The K-M curve analysis stratified by different
molecular subtypes revealed remarkable discriminations in
patients with different ER, HER2, and PR statuses. In respect
of the intrinsic subtype of PAM50, reliability and general
applicability for distinguishing each group were observed
with basal-like (P = 0:009), HER2-enriched (P = 0:023), and
luminal A (P = 0:0054) instead of luminal B and normal-
like subgroups.

4. Discussion

The LASSO method is an innovative shrinkage and selection
method for regression. Characterized as a high-dimensional
predictor, it has been applied to classify the candidate
miRNA genes and expression signature relevant to diagnosis
and prognosis in the large dataset [16, 17]. In this study, we
investigated and confirmed that the miRNA-based OS/RFS
classifiers might potentially facilitate predicting the progno-
sis and clinical outcome of BC patients. Our results demon-
strated that the OS model could distinguish the patients of
BC with poor and good overall survival according to their
risk score, and the 13-miRNA-based RFS classifier was
robust to predict the outcomes of patients with BC. The
ROC curve analysis of the two signatures revealed that the
AUC was more significant than 0.7, which showed moderate
predictive performance in the training cohort and validation
cohort. Moreover, we also performed stratification analysis,
and the results showed that the miRNA-based OS/RFS
signature could be regarded as an independent prognostic
factor of BC and patients in the high-risk group showed
more reduced survival than patients in the low-risk group
significantly after considering the various variables, such as
gender, age and stages, and some molecular subtypes (ER
status, HER2 status, and PR status). Furthermore, the result
of GO and KEGG analyses revealed that the target genes of
the OS/RFS signatures were involved in the related pathways
such as Ras, MAPK, and PI3K-Akt signaling pathways,
which were closely correlated with the differentiation, prolif-
eration, migration, and invasion of the cancer cells [18, 19].
Besides, according to the functional analysis, the down-
stream genes might play critical roles during the regulation
of cell morphogenesis, postsynapsis, and transcription factor
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Figure 2: OS/RFS miRNAs predict the signature performance in breast cancer patients. Kaplan-Meier curves of the low- and high-risk
groups divided by the 17-miRNA-based OS-predictive signature in the training cohort (a) and validation cohort (c). Kaplan-Meier
curves of the low- and high-risk groups divided by the 13-miRNA-based RFS-predictive signature in the training cohort (e) and
validation cohort (g). ROC curves of the low- and high-risk groups divided by the 17-miRNA-based OS-predictive signature in the training
cohort (b) and validation cohort (d). ROC curves of the low- and high-risk groups divided by the 13-miRNA-based RFS-predictive
signature in the training cohort (f) and validation cohort (h).
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Figure 3: Continued.
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Figure 3: Functional enrichment analysis depicted the biological pathways and processes associated with OS/RFS-correlated genes. The
results of GO-BP biological process enrichment (a), GO-CC biological process enrichment (b), GO-MF biological process enrichment
(c), hallmark biological process enrichment (d), KEGG signaling pathway analysis (e), Reactome biological process enrichment (f).

False-negative rate (%)

Tr
ue

-n
eg

at
iv

e r
at

e (
%

)

0 25 50 75 100

0

25

50

75

100

Nomogram
Classifier

Sex
Age

Stage
New_tumor_event

PAM50_mRNA
ER_status

HER2_final_status
PR_status

AUC
77.9 [65.7;90.2]
77.6 [65.7;89.5]
50.6 [49.8;51.5]
66.6 [54.0;79.2]
66.4 [55.2;77.6]
68.6 [56.2;81.1]
54.8 [39.0;70.6]
48.8 [37.1;60.6]
46.7 [36.8;56.7]
50.0 [38.4;61.6]

(a)

False-negative rate (%)

Tr
ue

-n
eg

at
iv

e r
at

e (
%

)

0 25 50 75 100

0

25

50

75

100

AUC
Nomogram

Classifier
Sex
Age

Stage
PAM50_mRNA

ER_status
HER2_final_status

PR_status

86.5 [79.8;93.2]
82.8 [75.6;90.0]
50.6 [49.8;51.5]
51.6 [39.6;63.5]
64.6 [53.3;76.0]
56.7 [45.4;68.1]
54.2 [45.0;63.4]
51.4 [45.0;57.9]
56.9 [46.6;67.1]

(b)
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activity, contributing to the mechanism description of the
current work.

Generated by the LASSO regression method combin-
ing TCGA database, the miRNA-based prognosis model
has been identified and verified in different tumors of
recent researches [20–22]. Lai et al. [22] established a
six-miRNA-based signature to predict the five-year OS in
a small population of BC patients. In the study conducted
by He et al. [23], they selected five miRNA candidates to
establish the prognosis predicting signature. Although the
signature has some impacts on the prognosis prediction,
initially, these candidates were not strongly associated with
the prognosis of BC patients revealed by the univariate
Cox regression test. The further pathway enrichment analy-
ses based on the targeted genes revealed the potential
mechanisms of how these targeted genes influence the
tumorigenesis and progression of BC. That is why we could
not completely rely on the findings, enriched by the targeted
genes of nonsignificant miRNAs. For the study conducted
by Volinia et al. [24], they established and validated a
miRNA signature clinically and their work provides criti-
cal guidance for clinical decision. It would be better if
they pay slightly more attention to reveal the potential
mechanisms of how these miRNAs or their targeted genes

influence the fate of BC patients. In our work, we synthe-
sized the advantages of these studies and achieved satis-
fied results.

In our work, a supervised OS miRNA signature is com-
posed of 17 miRNAs, which have been investigated to
result in the molecular characterization of several cancer
types. Functions of the most relative miRNA such as let-
7b, miR-101-2, miR-22, miR-30a, miR-31, miR-493, miR-
652, miR-874, and miR-9-3 have been classified to be pri-
marily attributed to the occurrence, development, and
metastasis of BC. Besides, we also tested the expressions
of these miRNAs (both OS- and RFS-related miRNAs) by
comparing the high-risk and low-risk groups (Figure S3)
and found that the tendency of their expression was
consistent with the univariate Cox regression test. In the
MDA-MB-231 and MDA-MB-468 cells, Zhang et al. [25]
confirmed that the silencing of HOST2 induced cell
proliferation inhibition and cell redistribution by the target
miRNA of let-7b. Similarly, the let-7b miRNA gene was
involved in the epithelial-to-mesenchymal transition process
and cell growth in BC cells concerning Al-Harbi et al.’s
report [26]. Li et al. [27] evaluated the clinical value of
miR-101-2 for the prognosis and diagnosis of BC and
concluded that downexpression of miR-101-2 could be
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Figure 5: Subgroup analyses of the miRNA-based overall survival-related signature.
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utilized as a diagnostic marker, previously validated by a
1064-case-control study in 2014 [28]. miR-22 has been
reported to play a dual role in the prognosis and
recurrence of BC [23, 29, 30]. Damavandi et al. [31] firstly
demonstrated a significant upregulation of miR-22 in
breast cancer tissues through RT-PCR, and then, both Zou
et al. and Liu et al.’s [32, 33] studies showed that aberrant
expression of miRNA decreased the MCF-7 BC cell’s
ability to proliferate, migrate, and invade, facilitating our
understanding of the molecular mechanism underlying the
malignant behaviors of breast cancer cells. Unlike miR-22’s
protective role, downregulating miR-9-3 promotes breast
cancer cell proliferation [34]. The impact of miR-30a and
miR-31 on the initial and progress of BC seems to be
deeply investigated than that in miR-22’s studies. Other
than the favorable biological functions such as inhibition
of cell proliferation and migration [35, 36] and activation
of the IGF1R/PI3K/AKT pathway [37], miR-31 influences
the BC apoptosis by protein kinase C epsilon [38, 44] and
regulates stem cell self-renewal and tumorigenesis by
Wnt/β-catenin signaling [39], which is consistent with our
enrichment analysis. Among the potential miRNA genes in
the present study, we found that overexpression of miR-493
has been negatively correlated with monitoring the fidelity

of chromosome segregation by mitotic arrest deficient-2
(MAD2), which predicts the efficacy of taxane chemotherapy
[40]. For the miR-874 gene, some fundamental researches
have already focused on predicting the tumor relapse and
survival of BC patients [24, 41, 42].

With respect to the possible effects of the miRNAs on
the RFS signature, a wide range of published literature has
been investigated. miR-130a, a well-known tumor suppressor
gene, is downregulated in human BC tissues and exosomes
from circulating blood [43]. Higher expression levels of
miR-130a can differentiate tumors from normal samples;
also, higher expression levels of miR-130a can discriminate
the molecular subtypes of breast cancer in a recent study
[44]. miR-204-5p overexpression has a significant role in
alteration in tumor metastasis and immune cell reprogram-
ming by PI3K/Akt signaling in mouse breast cancer models
[45]. miR-217 could suppress TNBC cell growth, migration,
and invasion by downregulating the KLF5 expression [46].
Fabris et al. [47] revealed that patient radiotherapy (RT) after
a lumpectomy has the poorer RFS as RT-induced miR-223
efficiently prevented BC cell growth by the EGFR pathway.
Notably, through dampening cell survival, the overexpres-
sion of miR-24-2 reduces the growth of BC [48]. Also, miR-
29b1 and miR-639 have been demonstrated to be informative
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Figure 6: Subgroup analyses of the miRNA-based recurrence-free survival-related signature.
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biomarkers associated with the survival and recurrence of BC
patients in related researches [49, 50]. The other three genes,
miR-5001, miR-514a-1, and miR‐6892, have not been indi-
vidually studied.

In conclusion, the current study shows novel miRNA-
based OS and RFS prognostic models. Future large sample
size, multicenter, and prospective clinical validations are
warranted to verify these predictive tools before application
in routine clinical practice.
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