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Recent studies have highlighted the therapeutic efficacy of immunotherapy, a class of
cancer treatments that utilize the patient’s own immune system to destroy cancerous
cells. Within a tumor the presence of a family of negative regulatory molecules, collec-
tively known as “checkpoint inhibitors,” can inhibit T cell function to suppress anti-tumor
immunity. Checkpoint inhibitors, such as CTLA-4 and PD-1, attenuate T cell proliferation
and cytokine production.Targeted blockade of CTLA-4 or PD-1 with antagonist monoclonal
antibodies (mAbs) releases the “brakes” on T cells to boost anti-tumor immunity. Gen-
erating optimal “killer” CD8 T cell responses also requires T cell receptor activation plus
co-stimulation, which can be provided through ligation of tumor necrosis factor recep-
tor family members, including OX40 (CD134) and 4-1BB (CD137). OX40 is of particular
interest as treatment with an activating (agonist) anti-OX40 mAb augments T cell differen-
tiation and cytolytic function leading to enhanced anti-tumor immunity against a variety of
tumors. When used as single agents, these drugs can induce potent clinical and immuno-
logic responses in patients with metastatic disease. However, each of these agents only
benefits a subset of patients, highlighting the critical need for more effective combinatorial
therapeutic strategies. In this review, we will discuss our current understanding of the cellu-
lar and molecular mechanisms by which OX40 agonists synergize with checkpoint inhibitor
blockade to augment T cell-mediated anti-tumor immunity and the potential opportunities
for clinical translation of combinatorial immunotherapeutic strategies.
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INTRODUCTION
Immunotherapy has become a major focus of anti-cancer ther-
apy regimens and for good reason: when it works, patients can
have long-lasting anti-tumor immune responses that not only
eradicate primary tumors but metastatic lesions as well. Recently,
investigators have focused on harnessing the power of checkpoint
inhibitors, such as CTLA-4 and PD-1, to release the “brakes”
on an anti-tumor T cell response through antibody-mediated
antagonism of these receptors. However, checkpoint inhibition
alone is not sufficient to promote tumor regression in a major-
ity of patients. Generating a robust therapeutic immune response
requires not only releasing the “brakes” but also stepping on the
“gas.” T cell co-stimulation through receptors, like OX40 or 4-1BB,
provides a potent “go” signal that actively promotes the expansion
and proliferation of killer CD8 and helper CD4 T cells. Here, we
discuss recent advances in the field of OX40 immunotherapy and
the promise of triple combination therapy in the (not so distant)
future.

OX40: STEPPING ON THE GAS
OX40 (CD134; TNFRSF4) is a member of the TNFR super-family
and was originally characterized as a receptor that was primarily
expressed by rat CD4 T cells from the thymus and lymph nodes fol-
lowing stimulation with concanavalin A (1). Subsequent research
demonstrated that in both mice and humans, OX40 is expressed by
CD4 and CD8 T cells during antigen-specific priming (2–5). OX40

expression is induced following TCR/CD3 cross-linking, and by
the presence of inflammatory cytokines, including IL-1, IL-2, and
TNF-α. The expression of OX40 following antigen encounter is
largely transient for both CD4 and CD8 T cells (24–72 h), with
the duration of OX40 expression by CD8 T cells reported to be
shorter than for CD4 T cells (6). In the absence of activating
signals, relatively few mature T cell subsets have been shown to
express OX40 at biologically relevant levels (7). However, the con-
stitutive expression of OX40 by follicular helper CD4 T cells (Tfh)
has been described in both mice and humans (8–11). Within ger-
minal centers, the CD4+/CXCR5+/CCR7− subpopulation of Tfh
cells have been shown to have the highest level of OX40 expression
and are thought to be important regulators of antibody production
(12–14). In mice, OX40 is also constitutively expressed on FoxP3+

regulatory T cells (Treg cells), in contrast to human Treg cells
where its expression is inducible (7). In contrast, antigen-specific
activation can induce OX40 expression by numerous subsets of
differentiated CD4 and CD8 T cells. In a murine model system
(OT-II), Th1 and Th17 cells were both capable of a similarly
robust induction of OX40 in response to peptide-activation (15).
In humans, a substantial proportion of tumor-infiltrating CD4 T
cells express OX40, presumably due to recognition of tumor anti-
gens, and the frequency of OX40+ CD4 T cells may be prognostic
for patient outcomes (16, 17). Similarly, activated peripheral CD8
T cells have also been shown to express OX40 in mice and humans
(18, 19).
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Ligation of OX40 on CD8 and conventional (non-regulatory)
CD4 T cells, using either its natural ligand (OX40L) or agonist
antibodies, promotes their survival and expansion. Evidence of
this comes from studies using OX40- and OX40L-deficient mice,
which are discussed in detail in several recent reviews (7, 20). These
studies demonstrated that OX40- or OX40L-knockout mice had
reduced expansion of both CD4 and CD8 T cells, combined with
defective memory responses following antigen challenge, indicat-
ing the importance of endogenous OX40 expression in regulating
T cell expansion (20–25). Furthermore, treatment with agonist
anti-OX40 monoclonal antibodies (mAbs) along with TCR stim-
ulation in wild-type animals induced expansion, differentiation,
and increased survival of CD4 and CD8 T cells. Likewise, deple-
tion of CD8 or CD4 T cells eliminated the ability of anti-OX40
mAbs to induce tumor regression in several tumor models (23, 24,
26–28). One study demonstrated that anti-OX40 administration
was sufficient to overcome CD8 T cell tolerance to a self-antigen
and restored their cytotoxic activity, highlighting the therapeutic
potential for OX40 agonists (29). This is of particular importance
for patients with cancer, as T cell tolerance to the tumor is a major
obstacle for therapeutic modalities. Another group has demon-
strated that enhanced CD8 T cell function following anti-OX40
treatment was mediated by the induction of CD40L expression
on effector T cells thereby promoting DC maturation, because
CD40−/− mice have significantly fewer CD11c+ dendritic cells
that migrate into the draining lymph nodes following anti-OX40
mAb (30). In fact, CD40−/−mice treated with anti-OX40 mAbs all
succumb to their tumors in contrast to wild-type mice, which have
a 60% survival rate, suggesting the importance of CD40 expression
following OX40 stimulation. Collectively, these data suggest that
exogenous manipulation of OX40 signaling can boost stagnant T
cell responses.

Several investigators have conducted studies to determine the
mechanism by which OX40 promotes T cell survival. It has been
demonstrated that following activation, OX40-deficient CD4 T
cells failed to sustain expression of the anti-apoptotic proteins
Bcl-xL and Bcl-2. Moreover, the survival of activated CD4 T cells
was rescued by retroviral transduction of Bcl-xL or Bcl-2 (23). Sus-
tained expression of Bcl-xL was also necessary for the survival of
tumor-reactive CD8 T cells following OX40 co-stimulation (31).
Subsequent studies demonstrated that OX40 signaling in T cells
induced expression of Survivin, and this was required to regu-
late and sustain T cell division over time. Survivin expression was
maintained via the sustained activation of PI3K and PKB by OX40
signaling (32). However, Survivin expression does not supersede
the requirement for Bcl-xL and Bcl-2 following OX40 signaling in
order to inhibit T cell apoptosis. Enhanced expression of Survivin
and Bcl-2 family members is mediated via activation of IκB kinase
and NF-κB1 following OX40 signaling (33). Other investigators
have shown that TRAF2 is required following OX40 signaling in
antigen-specific CD4 T cells, as the expression of a dominant neg-
ative TRAF2 in CD4 T cells inhibited their expansion, survival, and
cytokine production (34). One of the functions of TRAF2 appears
to be to prevent CTLA-4 expression following T cell co-stimulation
through OX40, as CTLA-4 blockade at the time of T cell prim-
ing with antigen and anti-OX40 mAbs partially restored defective
expansion in mice expressing a dominant negative TRAF2 protein.

It remains unknown whether the same TRAF adaptors and NF-κB
pathways are activated in T cells following ligand binding by other
TNFR family members, such as CD27 and GITR (35, 36). Sim-
ilarities and differences in the signaling pathways activated by T
cell co-stimulatory receptors, including both TNFR family mem-
bers, like OX40 and CD27, and immunoglobulin super-family
members, like CD28 and B7 families, has been reviewed exten-
sively elsewhere (37). The activation of multiple pathways by both
co-stimulatory receptor super-families results in enhanced cell
growth and effector function, and improves survival (37). Numer-
ous investigators are currently testing the modulation of these
receptors for various clinical applications and immunotherapies.

Preclinical studies demonstrated that treatment of tumor-
bearing hosts with OX40 agonists, including both anti-OX40 mAb
and OX40L-Fc fusion proteins, resulted in tumor regression in
several preclinical models (20, 26, 27, 38–40). Recent studies have
investigated the mechanisms by which these agonists function. In
addition to promoting effector T cell expansion, since OX40 is
constitutively expressed on Treg cells, OX40 agonists have the abil-
ity to directly regulate Treg cells. There are conflicting reports on
whether these agonists promote or diminish Treg cell responses.
Some have observed that anti-OX40 mAbs blocked the suppressive
function of Treg cells in vivo, while others have observed Treg cell
expansion (27, 41–43). These studies suggest that anti-OX40 can
push Treg cells in both directions, depending upon the context
of stimulation and the cytokine milieu. Indeed, the importance
of the OX40 co-stimulatory pathway in regulating immunity is
exemplified by the presence of autoimmune-like disease in mice
with constitutive expression of OX40L (44, 45).

OX40 signaling has also been shown to inhibit the produc-
tion of IL-10 by and suppressive function of Treg cells (46).
Supporting these data, administration of anti-OX40 mAbs prior
to tumor engraftment rendered Treg cells functionally inactive
through inhibition of IL-10 production and elimination of Treg
cell-mediated suppression of CD8 T cell responses (27, 30, 41).
One recent report observed that cells expressing activating FcγR
were required for the selective depletion of Treg cells from tumors,
while there was no change in Treg cells in the draining lymph
nodes at day 5 following anti-OX40 therapy (47). Other studies
confirm that even at later time points following anti-OX40 treat-
ment, there is no change in the frequency of Treg cells in the
draining lymph nodes, so this effect may be localized to the tumor
(27). In fact, this effect may be transient, as another report showed
that at day 7 there was no difference in Treg cell frequency in the
tumor between control-treated and anti-OX40-treated mice using
the same CT26 colon cancer model (28). This study in particular
also suggests that the immunological effects of anti-OX40 therapy
can vary based on the tumor model examined; thus, one must be
cautious of making generalizations regarding the precise mecha-
nism of OX40 agonists. Other studies report that anti-OX40 mAbs
reduce the suppressive activity of Treg cells in vitro and in vivo (27,
41). Whether anti-OX40 functions via Treg cell suppression, dele-
tion, or both, treatment with these agonists should diminish the
inhibitory effects mediated by Treg cells and thereby promote anti-
tumor CD8 T cell responses necessary to maintain long-term anti-
tumor immune responses. It is likely that multiple mechanisms are
important for the anti-tumor activity of OX40 agonists.
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The ability of OX40 agonists to regulate immune responses,
as well as the expression of OX40 on CD4 and CD8 lymphocytes
from the tumors and tumor-draining lymph nodes in mice and
humans (38, 40, 48), led investigators to examine OX40 manip-
ulation as a treatment for cancer patients. Recently, the use of
anti-OX40 monotherapy was tested in a Phase 1 trial in patients
with solid tumors, with promising results (49). Twelve out of 30
patients receiving an OX40 agonist had regression of at least 1
metastatic lesion with only 1 cycle of treatment. Patient toxici-
ties were much milder for anti-OX40 mAbs compared to more
severe toxicities, i.e., autoimmune-like disease, colitis, etc., caused
by treatment with CTLA-4 blockade (ipilimumab), and most fre-
quently included a temporary lymphopenia. Patients receiving the
OX40 agonist had an expansion of CD4 (non-Treg cells) and
CD8 T cells following drug infusion with concomitant expres-
sion of activation markers CD38 and HLA-DR. Unlike treatment
with ipilimumab, treatment with an OX40 agonist did not induce
expansion of Treg cells either in the blood or the tumor (49,
50). What investigators did observe was that two out of three
patients had IFN-γ-producing CD8 T cells following stimulation
with autologous tumor cell lines in vitro, suggesting a tumor-
specific T cell response, though the antigens they recognize remain
unknown. Unfortunately, the development of human anti-mouse
antibodies to the drug precluded continued treatment (49). Med-
Immune has several Phase 1 clinical trials investigating OX40 ago-
nists including NCT02318394,NCT02205333,and NCT02221960.
Indeed, the use of OX40 agonists in the clinic represents an exciting

new chapter in cancer immunotherapy. Further studies and patient
immune monitoring will provide further insight into the mech-
anisms by which OX40 agonists enhance an anti-tumor immune
response. Nevertheless, despite all the positive data supporting the
use of OX40 agonists in cancer, it is unlikely that anti-OX40 alone
will be sufficient to cure all patients or all tumor types. However,
there is great promise that combination immunotherapy incorpo-
rating both OX40 and checkpoint inhibition may be able to do
what single agents alone cannot (Figure 1; Table 1).

COMBINATION OX40 AGONISM AND CHECKPOINT
BLOCKADE: RELEASING THE BRAKES ONLY GOES SO FAR
CTLA-4 BLOCKADE WITH OX40 AGONISM
In contrast to OX40, CTLA-4 is a negative regulatory surface mole-
cule on T cells that competitively inhibits the CD28 co-stimulatory
pathway by binding to B7-1 and B7-2. CTLA-4 is constitutively
expressed on Treg cells and absent on naïve T cells, though expres-
sion is induced upon T cell activation as a means to attenuate and
restrict T cell responses. This negative regulator is vital to prevent
expansion of autoreactive T cells, as evidence by overt lympho-
proliferative disease in CTLA-4 knockout mice (85, 86). Along
these lines, inhibition of CTLA-4 using mAbs boosted effector CD4
and CD8 T cell function while inhibiting the suppressive function
of Treg cells (87–91). These data led investigators to hypothe-
size that removing the “brakes” on a T cell response via CTLA-4
blockade would effectively allow the immune system to eliminate
cancer cells and induce long-lasting anti-tumor immunity. Indeed,

FIGURE 1 | Model of OX40 agonism in combination immunotherapy
radiation and chemotherapy can induce the release of
tumor-associated antigens by the tumor. Patients can be immunized
against these tumor-associated antigens to induce a robust immune
response. Agonism of OX40, as well as other co-stimulatory molecules,
can boost the generation of tumor-reactive effector T cells. OX40 agonism

combined with checkpoint inhibition, via CTLA-4 or PD-1 blockade, or
additional immunotherapy can further augment an effector T cell response.
OX40 agonism can also inhibit Treg cell function, alleviating
immunosuppression in the tumor microenvironment. OX40 agonism with
combination therapy may provide a microenvironment more amenable to
direct killing by effector T cells. *r denotes recombinant IL-2.
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Table 1 | Summary of animal studies using OX40 agonists alone or in combination.

OX40

agonist

Combination Cancer model Curative Key findings Reference

OX86 a4-1BB MethA sarcoma Yes Significant survival benefit; boosted T cell response (51)

OX86 a4-1BB, adoptive cell

therapy

B16-F10 melanoma Yes Significant survival benefit; monotherapy ineffective; boosted

T cell response

(52)

OX86 a4-1BB, aPD-L1 c-Myc Tg hepatoma Yes Significant survival benefit; boosted T cell response (53)

OX86 a4-1BB, immunization N202.1A mammary Yes Significant survival benefit (54)

OX86 aCD25 CT26 colon No Monotherapy alone effective; aCD25/aOX40 combo

eliminated survival benefit of monotherapy

(27)

OX86 aCTLA-4 TRAMP-C1 prostate Yes Significant survival benefit; boosted T cell response; induced

Th2 cytokine production by CD4

(55)

OX86 aCTLA-4 MCA-205 sarcoma Yes Significant survival benefit (55)

OX86 aCTLA-4, aIL-4 TRAMP-C1 prostate Yes Significant survival benefit for triple combo; aOX40/aCTLA-4

combo also effective but less than triple

(55)

OX86 aCTLA-4, CpG A20 lymphoma Yes Significant survival benefit for triple combo; monotherapy also

effective but less than triple combo

(56)

OX86 aCTLA-4, CpG 4T1 mammary Yes Significant survival benefit; reduced metastases (56)

OX86 Adoptive cell therapy E.G7 thymoma Yes Significant survival benefit; monotherapy ineffective; boosted

T cell response

(57)

OX86 Adoptive cell therapy TRAMP-C1 prostate No Prolonged survival; monotherapy ineffective (24)

OX86 Adoptive cell therapy,

immunization

TRAMP-C1 prostate No Prolonged survival; monotherapy ineffective; boosted T cell

response

(29)

OX86 aDR5, aCD40, a4-1BB

(trimAb)

4T1 mammary No No effect of adding aOX40 to trimAb (58)

OX86 aPD-1 ID8 ovarian Yes Significant survival benefit; monotherapy ineffective; boosted

T cell response; reduced MDSCs

(59)

OX86 Arginase inhibitor MCA-205 sarcoma Yes Significant survival benefit; monotherapy marginally effective;

boosted T cell response; reduced MDSCs and TAMs

(60)

OX86 Caloric restriction MCA-205 sarcoma Yes Significant survival benefit (61)

OX86 CpG TUBO mammary No Delayed tumor progression; prolonged survival (62)

OX86 CpG and aCTLA-4,

aGITR, or aFR4

A20 lymphoma Yes Significant survival benefit for aOX40/aFR4/CpG and

aOX40/aCTLA-4/CpG combos; aOX40/aCTLA-4 combo

ineffective; boosted T cell response

(63)

OX86 CpG, immunization MOPC-21 myeloma Yes Significant survival benefit; monotherapy marginally effective;

reduced IL-10 and Treg cells

(64)

OX86 Cyclophosphamide B16 melanoma Yes Significant survival benefit; monotherapy ineffective; boosted

T cell response

(65)

OX86 Cyclophosphamide,

adoptive cell therapy

B16 melanoma Yes Significant survival benefit; aOX40/cyclophosphamide only

marginally effective; boosted T cell response

(66)

OX86 Dasatinib P815 mastocytoma Yes Significant survival benefit; monotherapy marginally effective;

boosted T cell response

(67)

OX86 IL-12 MCA-205 H12 sarcoma Yes Significant survival benefit; monotherapy ineffective in aged

mice

(68)

OX86 IL-12 transduced cells,

immunization

A20 lymphoma Yes Significant survival benefit; monotherapy marginally effective (69)

OX86 IL-12, a4-1BB MCA26 colon Yes Significant survival benefit; monotherapy ineffective; boosted

T cell response

(70)

OX86 IL-12, immunization TRAMP-C1 prostate Yes Significant survival benefit (68)

(Continued)

Frontiers in Oncology | Tumor Immunity February 2015 | Volume 5 | Article 34 | 4

http://www.frontiersin.org/Tumor_Immunity
http://www.frontiersin.org/Tumor_Immunity/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Linch et al. Combination immunotherapy with OX40 agonism

Table 1 | Continued

OX40

agonist

Combination Cancer model Curative Key findings Reference

OX86 IL-2 complexes

(rIL-2+ aIL-2)

MCA-205 sarcoma Yes Significant survival benefit; monotherapy marginally effective;

prolongs survival and boosted T cell response in an anergy

model

(71)

OX86 Immunization NT2 mammary Yes Significant survival benefit; boosted T cell response (72)

OX86 Immunization B16-F10.9 melanoma Yes Significant survival benefit (73)

OX86 None B16-F10 melanoma No Significant survival benefit only with CD4 depletion;

monotherapy ineffective

(74)

OX86 None CT26 colon Yes Significant survival benefit; monotherapy ineffective in aged

mice

(75)

OX86 None MCA-205 H12 sarcoma Yes Significant survival benefit; monotherapy ineffective in aged

mice

(75)

OX86 None Renca renal No Prolonged survival (76)

OX86 None CT26 colon No Delayed tumor progression; prolonged survival (76)

OX86 None CT26 colon Yes Significant survival benefit when administered intra-tumorally;

survival benefit eliminated in CD40−/− mice

(30)

OX86 None CT26 colon Yes Significant survival benefit; reduced Treg cells via FcgammaR (47)

OX86 None CT26 colon Yes Significant survival benefit that requires CCR7 (27)

OX86 None N2C mammary Yes Significant survival benefit (27)

OX86 None TSA mammary Yes Significant survival benefit (27)

OX86 None MCA-203 sarcoma Yes Significant survival benefit (27)

OX86 None BM185 leukemia Yes Significant survival benefit; boosted T cell response (77)

OX86 None A20 lymphoma Yes Delayed tumor progression (63)

OX86 None A31 lymphoma No Marginal effect on tumor progression (78)

OX86 None CT26 colon No Marginal effect on tumor progression (78)

OX86 None B16-F10 melanoma Yes Significant survival benefit (79)

OX86 None B16-D5 melanoma No No effect (40)

OX86 None MCA-205 sarcoma Yes Significant survival benefit (40)

OX86 None MCA-203 sarcoma Yes Significant survival benefit (40)

OX86 None GL261 glioma Yes Significant survival benefit (40)

OX86 Radiotherapy LLC lung Yes Significant survival benefit; monotherapy prolonged survival;

boosted T cell response

(80)

OX86 Radiotherapy 3LL lung Yes Significant survival benefit (26)

OX86 Radiotherapy,

immunization

MCA-205 sarcoma Yes Significant survival benefit; monotherapy ineffective (81)

OX86 Radiotherapy,

immunization

GL261 glioma Yes Significant survival benefit; monotherapy ineffective (81)

OX86 Surgical resection MCA-205 H12 sarcoma Yes Significant survival benefit; boosted T cell response (26)

Fc-OX40L CpG, immunization GL261 glioma Yes Significant survival benefit; boosted T cell response; survival

dependent on B and NK cells

(82)

Fc-OX40L CpG, immunization GL261 glioma Yes Significant survival benefit; boosted T cell response (83)

Fc-OX40L None MCA-205 sarcoma Yes Delayed tumor progression; boosted T cell response; induced

OX40 expression on DCs

(84)

Fc-OX40L None B16-F10 melanoma Yes Significant survival benefit (79)

Fc-OX40L None MCA-205 sarcoma Yes Significant survival benefit (79)

(Continued)
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Table 1 | Continued

OX40

agonist

Combination Cancer model Curative Key findings Reference

Fc-OX40L None MCA-303 sarcoma Yes Significant survival benefit (79)

Fc-OX40L None SM1 mammary Yes Significant survival benefit (79)

Fc-OX40L None CT26 colon Yes Significant survival benefit (39)

Fc-OX40L None RENCA renal Yes Significant survival benefit (76)

Fc-OX40L None CT26 colon Yes Significant survival benefit (76)

Fc-OX40L Temozolomide, CpG,

immunization

GL261 glioma Yes Significant survival benefit by adding temozolomide (83)

investigators have demonstrated the potency of checkpoint inhi-
bition in cancer (90, 92–96). Clinical use of ipilimumab to block
CTLA-4 has demonstrated improved survival in patients with
metastatic melanoma (97–99). However, only a subset of patients
treated with ipilimumab exhibit an objective clinical response (97).
Thus, it is clear that additional strategies are necessary to improve
patient outcomes and reduce lymphocyte dysfunction in cancer.

Investigators have tested whether combination immunother-
apy, targeting both co-inhibitory and co-stimulatory molecules, is
capable of overcoming tumor immune tolerance to induce a potent
CD8 T cell response and ultimately tumor regression. The hypoth-
esis behind this research is that because these molecules target
distinct and also complementary pathways that tumor regression
and the induction of a cytolytic T cell response may be ampli-
fied. Recent data from our laboratory indicated that combined
anti-OX40/anti-CTLA-4 mAb therapy dramatically improved sur-
vival in the poorly immunogenic TRAMP-C1 prostate and the
more immunogenic MCA-205 sarcoma models. Specifically, this
combination therapy induced robust effector CD4 and CD8 T
cell responses necessary to induce tumor regression (55). Like-
wise, Marabelle et al. recently demonstrated that combined anti-
OX40/anti-CTLA-4 (with adjuvant CpG) was capable of inducing
regression of local and distant tumors using several aggressive
tumor models when administered intra-tumorally. The mech-
anism for intratumoral administration of combination therapy
appears to be through depletion of Treg cells at the tumor site,
allowing for a greater influx of CD8 T cells into the tumor (56).
In contrast, when this combination therapy is given systemically,
we observed no change in the frequency of Treg cells in the tumor,
while the frequency actually increased in the draining lymph node
(55). The route of administration may explain these differences as
the same study showed that intratumoral administration of com-
bined anti-OX40/anti-CTLA-4 did not affect Treg cells at a distant
tumor site (56). However, Houot and Levy observed a reduction in
Treg cells following systemic administration of combination ther-
apy (63). These differences should be investigated further, but may
be linked to the tumor model (lymphoma versus prostate-derived
tumor), antibody clone (9D9 versus 9H10 for CTLA-4 blockade),
dosing, or timing of therapy. In fact, the treatment regimen for
combination immunotherapy, whether it is concurrent, staggered,
or sequential, may prove very important in determining survival
and immunological outcomes in cancer.

Another interesting observation from preclinical studies using
combined anti-OX40/anti-CTLA-4 therapy was the induction of
a population of Th2-cytokine secreting (IL-4+, IL-5+, IL-13+,
IL-2−, TNF-α−) CD4 T cells (55). IL-4 was the primary driver
of Th2 CD4 T cell differentiation as IL-4 blockade augmented
the efficacy of combined anti-OX40/anti-CTLA-4 therapy in the
TRAMP-C1 model. However, it remains unclear what immune
subsets are affected by IL-4 or anti-IL-4 therapy. Furthermore, it
is not known whether the expansion of Th2 CD4 T cells limits
the efficacy of combination therapy. Previous work has demon-
strated that low-affinity TCR signaling preferentially elicits Th2
CD4 T cell responses (100, 101). Whether this holds true fol-
lowing combined anti-OX40/anti-CTLA-4 therapy is currently
an active area of investigation in our laboratory. If this hypoth-
esis is correct, then one might speculate that a Th2 response
could be redirected toward a more favorable Th1 response when
combined with an antigen-specific vaccine, thereby boosting the
efficacy of combination therapy without the need to block IL-4
in patients. Further studies to elucidate the connection between
anti-OX40/anti-CTLA-4 combination therapy and IL-4 will be of
interest as anti-OX40 progresses in the clinic.

PD-1 BLOCKADE WITH OX40 AGONISM
A structural relative of CD28 and CD33, PD-1 is a transmem-
brane protein that plays a fundamental role in the inhibition of
activated lymphocytes (102–106). High levels of PD-1 expression
are frequently associated with populations of exhausted T cells,
but robust expression of PD-1 has been observed in multiple
subsets of activated lymphocytes, including T, B, and NK cells.
PD-1 has two closely related ligands, PD-L1 and PD-L2, which are
expressed by multiple cell types, and PD-L1 has a soluble isoform
that can be secreted by some cancer cell lines and is detectable in
the sera of some tumor-bearing hosts (107–109). PD-L1 is also
abundantly expressed by numerous tumors and can be induced
by exposure to both Type I and Type II interferons (110–113).
Engagement of PD-1 on activated T cells decreases their capacity
for a cytotoxic response following antigen recognition, suppresses
proliferation, and potentiates apoptosis (107, 114–118). Both PD-
1 and PD-L1 blockade have shown significant efficacy in a range of
murine and human cancer models (103,112,119). Multiple studies
have demonstrated that disruption of PD-1 signaling induced the
expansion and cytolytic capacity of effector T cell populations and
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increased their infiltration into tumors (119–131). PD-1 blockade
has also been shown to reduce the frequency and function of Treg
cells within some tumors (124, 127, 128, 130, 132).

In clinical trials, checkpoint inhibition via PD-1 or PD-L1
blockade has shown substantial promise with respect to both effi-
cacy and safety (133–136). In September 2014, The FDA approved
the first anti-PD-1 mAb (pembrolizumab) for use in the treat-
ment of advanced metastatic melanomas (137). Two additional
anti-PD-1 mAbs, nivolumab and pidilizumab, and two anti-PD-
L1 mAbs have also demonstrated encouraging efficacy in ongoing
clinical trials (138–143). The unique mechanism of action respon-
sible for the efficacy of PD-1/PD-L1 blockade makes this pathway
an excellent candidate for combinatorial immunotherapies (58,
144). Indeed, combined blockade of PD-1 and CTLA-4 has gener-
ated impressive results in both preclinical and clinical trials (145).
Disruption of PD-1 signaling can also synergize with LAG3 block-
ade, radiotherapy, BRAF inhibitors, and many other treatment
strategies (146–150). However, one of the limitations of PD-
1/PD-L1 blockade has been a difficulty in initiating a protective
immune response against poorly immunogenic or large tumors
(110, 112). Because of this, PD-1 blockade may be uniquely well
suited for combinatorial immunotherapy strategies incorporating
agents that support the development of tumor-reactive effector
lymphocytes – treatments such as T and NK cell mAb agonists or
tumor-specific immunization (119, 151, 152).

Administration of an OX40 agonist has multiple immuno-
logical effects that may complement the activity of PD-1/PD-L1
blockade. First, ligation of OX40 supports the expansion, survival,
and effector function of activated CD4 and CD8 T cells, popula-
tions that express the PD-1 receptor. Second, OX40 co-stimulation
has been reported to enhance the ability of T cells to respond
productively to lower affinity antigens and OX40 ligation can
enhance IFN-γ production by T cells in response to TCR stimula-
tion. Because many cancerous cells up-regulate PD-L1 in response
to IFN-γ exposure, PD-1/PD-L1 blockade may uniquely comple-
ment the therapeutic efficacy of OX40-driven effector lymphocytes
within the tumor microenvironment. Furthermore, because can-
cerous cells may also up-regulate antigen presentation in response
to IFN-γ exposure, the combination of PD-1 blockade and OX40
agonism may support a pro-inflammatory feedback loop within
the tumor microenvironment that further augments anti-tumor
immunity.

In a recent report, Guo and colleagues observed that PD-1
blockade synergized with an agonistic anti-OX40 mAb to promote
regression of an implantable murine ovarian cancer, ID8, which
was non-responsive to either monotherapy (59). The authors
reported that the combination significantly increased the ratio of
CD8 T cells at the tumor site (peritoneal cavity), relative to both
Treg cells and myeloid-derived suppressor cells (MDSCs). They
also reported that the combination of anti-OX40 and anti-PD-1
mAbs dramatically expanded peritoneal CD4 and CD8 effector
memory cells, while reducing the frequency of the naïve T cells.
They observed that tumor-resident T cells from the anti-PD-
1/anti-OX40 group produced significantly higher levels of IFN-γ
in response to PMA stimulation. In addition, splenocytes from
these mice showed increased reactivity toward an ID8-specific
antigen, mesothelin. Unsurprisingly, T cell depletion experiments

indicated that the therapeutic effect was entirely dependent on
the presence of CD8 T cells and partially dependent on CD4
T cells. Notably, the authors reported that cultured ID8 can-
cer cells expressed minimal PD-L1 or PD-L2, which may sup-
port the hypothesis that OX40-stimulated T cells induce PD-L1
expression at the tumor site via enhanced IFN-γ production. A
separate study reported that triple combination therapy, using co-
stimulatory anti-OX40 and anti-4-1BB mAbs and an inhibitory
anti-PD-1 mAb, was uniquely effective in a murine hepatocellular
carcinoma model, with enhanced tumor infiltration of cytotoxic
effector T cells (153). Moving forward, a deeper understanding
of the immunological interplay between PD-1/PD-L1 and OX40-
targeted therapies will help identify and refine complementary
therapeutic interventions. Although currently somewhat sparse,
the existing body of evidence suggests PD-1 blockade is likely to
synergize with OX40 agonists and may be particularly well suited
for tumors that are naturally immunogenic and/or express high
levels of PD-L1.

One issue that needs to be considered when moving these com-
binations to the clinic is the potential for increased toxicity and
immune-related adverse events (irAEs). As described above, the
results from a Phase 1 clinical trial (NCT01644968) conducted in
patients with late-stage cancer indicated that OX40 immunother-
apy was generally well tolerated. The majority of irAEs were
relatively minor (Grade 1 and 2), while all of moderate to severe
(Grade 3 and 4) irAEs were due to treatment-induced lymphope-
nia that was shown to be temporary (49). In comparison, a larger
Phase 1 study of melanoma and renal cancer patients receiving
anti-PD-1 observed moderate or severe irAEs in 14% (41/296) of
patients (143). For anti-CTLA-4 monotherapy, the incidence of
irAEs is highly dose-dependent but the frequency of moderate or
severe irAEs for patients being treated with anti-CTLA-4 tends to
be between 20 and 40% (154). Importantly, patients receiving a
combination of anti-CTLA-4 and anti-PD-1 were more likely to
experience Grade 3 or 4 irAEs (53%), although this combination
yielded a substantially higher objective response rate than either
monotherapy (155). The efficacy and toxicity of combining anti-
OX40 therapy with either CTLA-4 or PD-1 has not been evaluated
in humans, although Phase 1 clinical trials for both combinations
are currently accruing patients (NCT02205333). Because anti-
OX40 therapy augments the development, activity, and survival of
effector lymphocyte populations, it is possible that the combina-
tion of anti-OX40 with checkpoint blockade will produce a higher
frequency of irAEs than the respective individual treatments. How-
ever, synergy between anti-OX40 therapy and checkpoint blockade
may yield objective responses at lower dosages than are required
when each drug is used as a monotherapy. Overall, the ongoing
clinical experience with anti-CTLA-4 suggests that modulating
dosages and clinically managing irAEs can be an effective strategy
to alleviate symptoms and maintain patients on treatment (156).

ON THE HORIZON: OTHER CHECKPOINT INHIBITORS WITH POTENTIAL
SYNERGY
Like OX40, CTLA-4, and PD-1, T cells express numerous cell
surface receptors capable of modulating an anti-tumor immune
response. Here, we touch on several surface receptors that when
targeted may synergize with OX40 agonists (Figure 1). A member
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of the immunoglobulin super-family, Lymphocyte Activation
Gene 3 (LAG3) is expressed by subsets of both activated and
exhausted lymphocytes and plasmacytoid dendritic cells, and plays
a key role in regulating the effector activity of tumor-associated
lymphocytes (145, 157, 158). In some tumors, LAG3 is highly
expressed by infiltrating effector T cells. LAG3 is known to inter-
act with MHC-II receptors, and blockade of LAG3 has been
shown to support effector T cell activity both in vitro and in vivo
(159–164). Experiments suggest a synergistic interaction between
combination anti-PD-1 and anti-LAG3 therapies that appears to
enhance anti-tumor immunity, in part by preventing exhaus-
tion and anergy in effector T cell populations (146, 149, 165).
Although no studies have yet been published that directly eval-
uate the efficacy of combined anti-LAG3/anti-OX40 treatment,
the current understanding of the mechanisms that underlie each
therapy suggest the potential for cooperative activity. Specifically,
OX40 agonists induce expansion and infiltration of effector T cells
into the tumor, and the cytotoxic activity of these cells in the
tumor microenvironment may be supported by LAG3 blockade.
Additionally, many tumor cells and APCs up-regulate MHC-II
expression in response to IFN-γ exposure and because OX40 ther-
apy increases IFN-γ production by infiltrating T cells, there may
be a rational basis for evaluating this combination.

Another possible target for combination therapy with
anti-OX40 mAb is through targeted blockade of killer
immunoglobulin-like receptors (KIRs). Primarily expressed by
NK cells, KIRs are a class of transmembrane proteins that are
important regulators of antigen-specificity and cytotoxic activity
(166, 167). KIR family receptors are known to interact with MHC
molecules on adjacent cells, with each KIR having specificity for
different MHC subsets (168). KIRs can transduce either activating
or inhibitory signals, and the balance between these signals is crit-
ical for mediating both self-tolerance and cytolytic activity. As a
cancer immunotherapy, blockade of inhibitory KIRs using mAbs
has demonstrated promise in murine tumor models and is being
evaluated in early-stage clinical trials (169–172). Although the
direct combination of OX40 agonism and inhibitory KIR blockade
has not been reported, one might surmise that this combina-
tion might induce a potent anti-tumor response. Inhibitory KIR
blockade, which can induce NK-cell-mediated tumor lysis, may
promote the release of tumor-associated antigens. These antigens
may provide TCR stimulation to OX40-stimulated T cells, thereby
enhancing the effects of anti-OX40 therapy. It will be interesting
to see what clinical trials unfold, and whether these combinations
will be tested in the near future.

T cell immunoglobulin mucin 3 (TIM3) and B- and T-
lymphocyte attenuator (BTLA, CD272) are also cell surface recep-
tors that are expressed by effector T cell populations and transduce
inhibitory signals (145). TIM3 is expressed on tumor-reactive
CD8 T cells and antibody-mediated blockade of TIM3 enhanced
their ability to produce IFN-γ (173). Galectin-9, which is highly
expressed by some tumors, has been reported to be the natural
ligand for TIM3, although this relationship is somewhat contro-
versial (174, 175). Blockade of TIM3 promoted tumor regression,
both as a monotherapy and in combination with anti-PD-1 (173,
176, 177). BTLA is expressed at a high level by tumor-reactive
CD8 T cells and interaction with its ligand, HVEM, can inhibit the

functional activity of this population (178, 179). Because HVEM
is expressed by some tumors, and BTLA-deficient mice mount
more robust T cell responses, blockade of this target has been pro-
posed as a cancer immunotherapy (180–182). Similar to LAG3
blockade, targeting TIM3 and/or BTLA may augment the effi-
cacy of OX40 therapy by supporting the expansion, survival, and
cytotoxic effector function of lymphocytes, particularly within the
microenvironment of the tumor (183–186).

Beyond checkpoint inhibition, several other therapeutic inter-
ventions have been reported to complement the anti-tumor activ-
ity of OX40 stimulation, including other immune-stimulatory
mAbs, recombinant IL-2, immunization, radiotherapy, intratu-
moral TLR ligands, chemotherapeutics, and more (26, 53, 54, 63,
65, 70, 71, 80, 153, 187–192). One study investigated the combi-
nation of anti-OX40 mAbs and the chemotherapeutic cyclophos-
phamide, which is known to activate tumor-reactive T cells and
selectively deplete Treg cells. This combination initiated tumor
regression in the poorly immunogenic B16 melanoma model and
induced a potent anti-tumor T cell response (65). Mechanistic
studies revealed that anti-OX40 and cyclophosphamide induced a
memory CD4 T cell population capable of producing both Th1
and Th2 cytokines (66). Other investigators have looked at the use
of anti-OX40 surgical resection or radiation of the tumor. These
experiments demonstrated that an OX40 agonist administered at
the time of resection prevented local disease recurrence, and when
combined with radiation prolonged survival and the frequency
of disease-free animals (26). These studies contributed to the
design of two clinical trials; one examining radiation, cyclophos-
phamide, and anti-OX40 in patients with metastatic prostate can-
cer (NCT01303705); and the other using combination stereotactic
body radiation and anti-OX40 in patients with metastatic breast
cancer (NCT01862900).

TRIPLE COMBINATIONS AND BEYOND. . .

Because anti-tumor immunity is directed by a dynamic constella-
tion of signals, maximizing the therapeutic benefit of lympho-
cyte agonists, such as anti-OX40 mAbs, will likely depend on
incorporating multiple complementary interventions. The most
viable candidates for combinatorial therapies are those that have
already achieved FDA-approval, especially since anti-OX40 itself
remains experimental. One particularly intriguing possibility is
a triple combination of OX40 agonism with concomitant PD-1
and CTLA-4 blockade. The distinct mechanisms underlying PD-
1 and CTLA-4 blockade have already been shown to synergize
in the treatment of many murine and human cancers (135, 140,
150, 155, 193, 194). A “triple threat” immunotherapy approach
that includes OX40 stimulation may help augment the efficacy
of dual PD-1/CTLA-4 blockade by enhancing the expansion, sur-
vival, and cytolytic activity of tumor-reactive effector T cells. Other
FDA-approved therapies, such as recombinant IL-2 and radio-
therapy, may also be well suited for multiplex immunotherapy
approaches that incorporate both OX40 stimulation and check-
point inhibitor blockade. Administration of IL-2 can augment the
activity of OX40 stimulation, in part because it stimulates the
proliferation of T cells and their up-regulation of the OX40 recep-
tor through a JAK3/STAT5-dependent mechanism (71, 195–199).
Radiotherapy can also complement OX40 treatment and may be
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a valuable tool for disrupting the immune suppressive microen-
vironment of established tumors and releasing tumor-associated
antigens for recognition by the immune system (26, 80, 147,
153, 200, 201). Because each of the aforementioned approaches
utilizes a distinct mechanism, varied combinations of these strate-
gies may yield unique therapeutic efficacy when combined with
OX40 agonism (Table 1). Indeed, overcoming the challenge of
mounting a curative immune response in a diverse population
of patients will almost certainly require multiple complemen-
tary therapeutic modalities to overcome the immunosuppressive
tumor microenvironment of established tumors and provide a
protective anti-tumor immune response.
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