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Abstract
1.	 Climate change is testing the resilience of forests worldwide pushing physiologi-

cal tolerance to climatic extremes. Plant functional traits have been shown to be 
adapted to climate and have evolved patterns of trait correlations (similar patterns 
of distribution) and coordinations (mechanistic trade-off). We predicted that traits 
would differentiate between populations associated with climatic gradients, sug-
gestive of adaptive variation, and correlated traits would adapt to future climate 
scenarios in similar ways.

2.	 We measured genetically determined trait variation and described patterns of 
correlation for seven traits: photochemical reflectance index (PRI), normalized 
difference vegetation index (NDVI), leaf size (LS), specific leaf area (SLA), δ13C 
(integrated water-use efficiency, WUE), nitrogen concentration (NCONC), and wood 
density (WD). All measures were conducted in an experimental plantation on 960 
trees sourced from 12 populations of a key forest canopy species in southwestern 
Australia.

3.	 Significant differences were found between populations for all traits. Narrow-
sense heritability was significant for five traits (0.15–0.21), indicating that natural 
selection can drive differentiation; however, SLA (0.08) and PRI (0.11) were not 
significantly heritable. Generalized additive models predicted trait values across 
the landscape for current and future climatic conditions (>90% variance). The 
percent change differed markedly among traits between current and future pre-
dictions (differing as little as 1.5% (δ13C) or as much as 30% (PRI)). Some trait cor-
relations were predicted to break down in the future (SLA:NCONC, δ13C:PRI, and 
NCONC:WD).

4.	 Synthesis: Our results suggest that traits have contrasting genotypic patterns and 
will be subjected to different climate selection pressures, which may lower the 
working optimum for functional traits. Further, traits are independently associ-
ated with different climate factors, indicating that some trait correlations may be 
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1  | INTRODUC TION

Forests are under pressure from climate change (Bonan, 2008; 
Canadell & Raupach, 2008; Chazdon, 2008; Riitters et al., 2002), 
and impacts are expected to reduce long-term resilience and func-
tion (Chazdon, 2008). Many organisms have evolved traits suited to 
their environment through the long-term process of natural selec-
tion resulting in local adaptation (Kawecki & Ebert, 2004). However, 
changes to climate might negatively impact those long-established 
patterns of local adaptation (Aitken & Whitlock, 2013; Hoffmann 
& Sgrò, 2011). While it may be many years until the full effects of 
global climate change are realized, the effects on local forest pop-
ulations have already been observed (Harris et al., 2018; Hoffmann 
et al., 2019). For example, climate change impacts include changes 
in forest distribution (Kelly & Goulden, 2008; Lenoir et al., 2010) 
and widespread tree mortality due to increased severity of drought 
and heat waves (Allen et al., 2010; Matusick et al., 2018; Williams & 
Dumroese, 2013). The range and complexity of impacts of climate 
change on forests are likely to disrupt current patterns of adapta-
tion, making it critical to understand the adaptive capacity of natural 
forests, and associated ecological and evolutionary constraints.

The adaptive capacity of trees may facilitate the long-term per-
sistence of natural forests. It is predicted that to account for climate 
change, many temperate tree species will have to migrate toward 
the poles or higher elevations (Aitken, Yeaman, Holliday, Wang, & 
Curtis-McLane, 2008), although this pattern is not ubiquitous (see 
Crimmins, Dobrowski, Greenberg, Abatzoglou, and Mynsberge 
(2011), e.g, of downward shift in species’ optimum elevation due 
to changes in water balance). Evidence suggests that species mi-
gration is not occurring or has been limited due to hard boundaries 
such as oceans or human-made barriers (Corlett & Westcott, 2013; 
Parmesan & Yohe, 2003; Zhu, Woodall, & Clark, 2012). However, 
many tree species show high levels of genetic variation and may have 
enough standing genetic variation for positive selection to occur 
to better match phenotype and future climate (Barrett & Schluter, 
2008).

Functional traits of tree species are indicative of patterns of 
adaptation to their environment (Reich, 2014), and the relationship 
between climate and some traits is well established (Wright et al., 
2005). Functional traits can reflect plant performance, stress, and al-
location and therefore are shaped by selective pressures as demon-
strated by trait variation along climatic gradients indicative of genetic 
adaptation (Reich et al., 2003). To date, there has been a focus on 
species mean trait values; however, for species to be able to adapt 

to climate change they require, heritable, intraspecific trait variation. 
Yet, a few studies focus on intraspecific trait variation and if these 
traits are genetically determined (e.g., Aranda et al., 2014; Schreiber, 
Hacke, & Hamann, 2015; Hajek, Kurjak, von Wühlisch, Delzon, & 
Schuldt,2016; Madani et al., 2018). There is growing appreciation of 
the importance of intraspecific variation in functional and complex 
traits in providing the capacity to adapt to climate change.

Functional traits, by definition, are indicative of their relationship 
to the environment (Shipley et al., 2016), and population differenti-
ation along climate gradients can be used to quantify the relative 
contribution of climate variables to patterns of trait differentiation 
(Madani et al., 2018). But these outputs would be unable to estimate 
the relative trait responsiveness to selection pressures. Estimating 
narrow-sense heritability is one way to calculate how much trait vari-
ation is due to genetics and estimate relative contribution of natural 
selection on trait differentiation (Geber & Griffen, 2003), allowing us 
to predict how traits may respond to new climate pressures through 
natural selection and genetic constraints. Together, trait heritability 
and climate gradients can help us predict how traits might individu-
ally and collectively evolve (or not) in the future.

The coordination of functional traits has been well studied 
(Reich, 2014; Wright, Falster, Pickup, & Westoby, 2006) and has been 
shown to be strongly linked to climate (Li et al., 2018; Mencuccini, 
Minunno, Salmon, Martínez-Vilalta, & Hölttä, 2015; Reich, 2014). 
The worldwide leaf economic spectrum (LES) consistently explains 
the complex relationship between environment and leaf traits and 
also coordination between leaf structure and function (Donovan, 
Maherali, Caruso, Huber, & de Kroon, 2011; Reich, Walters, & 
Ellsworth, 1997; Wright et al., 2004). Specifically, it is expected that 
thinner leaves (high specific leaf area values) would be adapted to 
cooler, wetter conditions and this pattern is coordinated with high 
nitrogen concentrations (Wright et al., 2004). In addition, traits can 
be correlated across a species’ distribution, even if no mechanis-
tic coordination is present (e.g., Wright et al., 2007). Relationships 
among ecologically important plant traits may be an adaptive signa-
ture from natural selection (Westoby, Falster, Moles, Vesk, & Wright, 
2002). Yet the genetic basis for functional trait variation is largely 
unknown, including the linkage among correlated or coordinated 
traits and their adaptive capacity to respond to climate change.

Genetic variation in plant traits within species is essential for 
them to adapt to novel climate conditions by influencing establish-
ment, survival, and fitness (Violle et al., 2007). Importantly, stand-
ing genetic variation will be required for traits to keep pace with 
selection imposed through processes of natural selection, enabling 

disrupted in the future. Genetic constraints and trait correlations may limit the 
ability for functional traits to adapt to climate change.
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a species to occupy a broad range of climates and adapt to novel 
climate conditions (Alberto et al., 2013). Therefore, measuring varia-
tion in functional traits, estimating their heritability, and identifying 
possible agents of selection in a foundation tree can provide critical 
information in how a species might continue to persist in a changing 
climate. Here, we use an experimental multipopulation plantation 
to assess trait variation in the foundational forest canopy species, 
Corymbia calophylla R. Br. K.D. Hill and L.A.S. Johnson (Eucalyptus 
sensu lato; family Myrtaceae), located in southwestern Australia. 
Measuring traits in an experimental plantation provides a common 
environment allowing for the isolation of genetic effects associated 
with phenotypic differences among populations. We expect that 
trait variation among populations will show unique patterns of ad-
aptation associated with their climate-of-origin. While some traits 
will be heritable and show strong shifts along climate gradients (e.g., 
water-use efficiency), other traits will have greater variation within 
and among populations, resulting in lower levels of heritability (e.g., 
SLA). We test the hypothesis that traits will be unequally affected by 
climate change, such that traits with higher levels of heritability will 
need to adapt to their new climates or migrate with their optimum 
climates. Finally, we ask if trait correlation and coordination, such as 
those within the LES paradigm, will maintain similar relationships in 
the future. We discuss the implications for the capacity to adapt to 
climate change and the ability to predict the coevolutionary trajec-
tories of functional traits.

2  | MATERIAL S AND METHODS

2.1 | Study species

Corymbia calophylla is a foundation forest canopy species located in 
Western Australia (WA). It is considered a foundation species be-
cause its characteristics are critical for forest structure and ecologi-
cal processes (Ellison et al., 2005). This species is an ideal candidate 
in which to study adaptation of functional traits because its distribu-
tion traverses strong environmental gradients over short distances, 
it has recently experienced mortality events attributed to climate 
change (Matusick, Ruthrof, Brouwers, Dell, & Hardy, 2013; Ruthrof, 
Matusick, & Hardy, 2015), and evidence of adaptation to climate 
has been identified in physiological experiments and genome–en-
vironment investigations (Ahrens, Byrne, & Rymer, 2019; Ahrens, 
Mazanec, et al., 2019; Aspinwall et al., 2017; Blackman, Aspinwall, 
Tissue, & Rymer, 2017).

2.2 | Experimental site and population sampling

This research was conducted in a plantation near Margaret River, 
WA (Figure 1), located in the cool–wet region of the distribution of 
C.  calophylla. Seed collection and trial design are described in de-
tail in Ahrens, Mazanec, et al. (2019). Briefly, 18 populations rep-
resented by 165 families were established at the experimental site 

for a total of 3,960 individuals in six replicated blocks. Families are 
defined here as individuals that have a known, common mother but 
an unknown father (i.e., half-sibs). We developed two separate data 
sets: the first was used to estimate trait heritability, while the sec-
ond was used to explore correlation and coordination among traits 
and its association with climate-of-origin. For the first data set, we 
focused on four populations representing four contrasting climate 
combinations covering the full geographic distribution of C.  calo-
phylla (BOO, cool–wet climate; CRI, cool–dry climate; HRI, hot–dry 
climate; SER, hot–wet climate; Figure 1). A total of 40 families (when 
available) from the four populations were sampled, with 12 replicate 
trees from each family, to provide estimates of phenotypic variance 
within and among families (480 trees). For the second data set, we 
collected data from 12 populations with four replicates from each of 
10 families (when available) to estimate variance within and among 
populations (480 trees; Table 1; Figure 1).

2.3 | Trait measurements

Traits were measured in March 2017 on C. calophylla trees that were 
29 months old and 2–3 m tall. For each individual tree, we removed a 
north facing, mid-canopy side branch at its intersection with the main 
stem. The side branch was removed in the morning (between 8 a.m. 
and 12 noon), stored in a cool box, and measured in the afternoon (be-
tween 12 noon and 6 p.m.). For each side branch, we collected data 
for seven separate traits: leaf-level spectrometer readings to calculate 
two indices (photochemical reflectance index (PRI) and normalized dif-
ference vegetation index (NDVI)), leaf size (LS), specific leaf area (SLA), 
integrated water-use efficiency (δ13C), nitrogen concentration (NCONC), 
and wood density (WD). All seven traits have shown close association 
to climate in past studies. Photochemical reflectance index (PRI) is a 
spectral physiological index that is an indicator of vegetation stress 
based on its sensitivity to radiance-use efficiency (RUE) and the xan-
thophyll cycle (Gamon, Serrano, & Surfus, 1997; Garbulsky, Peñuelas, 
Gamon, Inoue, & Filella, 2011). Leaf-level normalized difference veg-
etation index (NDVI), which is generally used to measure chlorophyll 
content by quantifying leaf greenness, and is closely related to fraction 
of absorbed photosynthetically active radiation (FPAR) (Myneni et al., 
2002; Peng & Gitelson, 2012). While not technically functional traits 
(PRI and NDVI), traits based on spectral properties of leaves can be 
indicative of photosynthetic activity and plant stress, and from hereon, 
we include these complex traits as functional traits for ease of discus-
sion. High water-use efficiency (WUE) is the link between photosyn-
thesis and evaporation (Yang et al., 2016) that translates to climatic 
tolerance under water limitation. Leaf size may be beneficial in certain 
circumstances as it can act as a major determinant of boundary layer 
thickness, particularly in low-wind conditions. Larger leaves generally 
experience higher temperatures, increasing carboxylation and other 
catabolic processes such as dark respiration (Jordan & Smith, 1995; 
Jones, 2013). Specific leaf area (SLA) varies across global climate gradi-
ents (Wright et al., 2004), and high SLA values increase tree susceptibil-
ity to drought-induced mortality (Greenwood et al., 2017). Water-use 
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efficiency is correlated with δ13C (an isotopic signature measuring the 
ratio of 13C and 12C (Farquhar & Richards, 1984)) and relates to leaf gas 
exchange properties (Cernusak et al., 2013; Diefendorf, Mueller, Wing, 
Koch, & Freeman, 2010). Nitrogen concentration (NCONC) is indicative 
of growth. Leaf nitrogen plays an important role in leaf physiological 
processes such as photosynthesis, respiration, and transpiration (Wang 

et al., 2016) and is an indicator of productivity (Ramoelo, Skidmore, 
Schlerf, Mathieu, & Heitkönig, 2011). The association between wood 
density (WD) and drought is more complicated and context depend-
ent, because it is associated with many ecological signals (Brodersen, 
2016; Gleason et al., 2016). Generally, high WD is associated with 
lower susceptibility to drought (Greenwood et al., 2017; Hacke, Sperry, 

F I G U R E  1   Distribution of Corymbia 
calophylla in southwestern Australia, 
and location of 12 populations overlaid 
on maps of (a) precipitation of the driest 
month (PDM) (mm), and (b) average 
maximum temperature of the warmest 
month (TMAX) (°C). The experimental 
planting site is denoted by the white point 
and labeled MR. The populations used 
for data set 1 are denoted by four colors 
for the four populations (BOO = Boorara, 
cool–wet climate; CRI = Cape Riche, 
cool–dry climate; HRI = Hill River, hot–
dry climate; SER = Serpentine, hot–wet 
climate), and all 12 populations (colored 
and black points) are used for data set 2
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TA B L E  1   The locations and climate-of-origin of each population within the study along with the total number of samples for each data 
set

Populations Latitude Longitude TMAX (°C) PMA (mm) 1

AI
PDM (mm)

Data set 1 Data set 2

Families Total Families Total

Warm, dry climate

HRI −30.3114 115.2016 31.7 563 2.56 4 9 110 9 36

MOG −31.0986 116.0509 33.3 579 2.56 10     10 40

LUP −32.5207 116.4990 31.6 635 2.22 12     9 40

Warm, wet climate

SER −32.3527 116.0764 30.5 1,173 1.12 12 11 123 11 44

CHID −31.8682 116.2229 32.2 900 1.54 12     10 40

PEE −32.6846 115.7427 30.4 885 1.49 10     8 40

Cool, dry climate

CRI −34.6015 118.7427 26.2 579 2.08 20 8 99 8 32

KIN −34.0812 116.3304 27.7 820 1.49 19     10 40

PLA −34.6534 117.4991 26.7 733 1.59 25     10 40

Cool, wet climate

BOO −34.6389 116.1238 25.6 1,159 0.95 24 11 136 10 40

CAR −34.4196 115.8213 25.9 1,106 1.02 20     10 40

BRA −33.9164 115.0833 26.1 1,072 1.04 11     9 40

Overall             39 468 114 472

Note: The four-population data set (data set 1) was used to estimate heritability, and the 12-population data set (data set 2) was used to test trait 
correlations and model trait distributions.
Abbreviations: 1

AI
,

1

aridity index
; PDM, precipitation of the driest month; PMA, mean annual precipitation; TMAX, maximum temperature of the warmest 

month.
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Pockman, Davis, & McCulloh, 2001), resulting in higher fitness in hot–
dry environments compared to trees with low WD by decreasing em-
bolism rates (Cochard, Casella, & Mencuccini, 2007).

A field spectroradiometer (ASD standard-resolution FieldSpec4, 
Malvern Panalytical) was used to measure leaf reflectance in the vis-
ible and reflected infrared spectral regions with 2,151 narrow bands 
(10 nm full width at half maximum) and 1 nm spacing between band 
centers. Measurements were made for three leaves using a leaf-clip 
attachment with its own light source and calibrated to % reflectance 
using data collected from a Spectralon white reference panel. Means 
for all bands among the three leaves were calculated for each indi-
vidual tree. Specific wavelengths were used to estimate the PRI and 
modified red-edge NDVI. The PRI was calculated with the following 
equation; Rxxx is the % reflectance at xxx nm (Gamon, Penuelas, & 
Field, 1992; Gamon et al., 1997):

The modified red-edge NDVI was calculated using the following 
equation (Sims & Gamon, 2002):

and was developed as an improvement to the standard NDVI to pro-
vide a more robust estimate of chlorophyll content (Tucker, 1979) 
across a wide range of species and leaf structures (Sims & Gamon, 
2002). Henceforth, this index will be referred to as “NDVI” in the text.

Specific leaf area (SLA) was measured on three fully matured 
leaves that were representative of the branch. After removing half 
of the petiole with a razor, the leaves were scanned into a computer 
using a Canon flatbed scanner (model # LiDE220) at 50 dpi. The leaves 
were kept in an airtight box with silica gel until they could be dried in 
an oven at 70°C for 48 hr. δ13C and nitrogen concentration (NCONC) 
were measured from leaves dried using a benchtop freeze dryer (Alpha 
1-4 LDplus Laboratory Freeze Dryer, Martin Christ). The leaves were 
grounded into a fine powder using a cyclotec mill (Foss Analytics) and 
sent for isotope analysis (ANU Isotope Laboratory) using a coupled 
EA-MS system (EA 1110 Carlo Erba; Micromass Isochrom). For wood 
density, a 3–4 cm piece of the thickest part of the branch was removed, 
excluding areas that included knots, the bark was removed, and the 
volume measured using the water displacement method. The piece 
of wood was then dried in a 70°C oven for 7 days before measuring 
for dry weight. Final wood density was calculated by dividing the dry 
weight by the volume (g/cm3).

2.4 | Statistical analyses

Using data set 1 with four populations, mixed-effects linear models 
were applied to estimate differences between populations using the 
lme function in the nlme package in R (R Core Team, 2018). For all 

linear models, family was considered a random effect and population 
considered a fixed effect. Post hoc Tukey tests were performed on 
the mixed-effects model results using the glht function in the mult-
comp package in R to confirm differences among populations.

We estimated the family level narrow-sense heritability and 
the relative effect of selection on each of the seven traits. Narrow-
sense heritability (ĥ2) captures the proportion of genetic variation 
attributed to additive genetic variance (Lynch & Walsh, 1998). Here, 
we used data set 1 with four populations within ASReml version 4.1 
(Gilmour & Dutkowski, 2004). Initial assessment of model fit was 
conducted using the following univariate random model:

where bi is the random effect of the ith block, pj is the random effect of 
the jth population, fi.k is the random effect of the kth family within the 
ith population, bi× fi.k is the block × family interaction effect, and eijk is 
the random error. Narrow-sense heritability was estimated using the 
following equation:

where ĥ2 is the narrow-sense heritability, �2
fam

 is the family within pop-
ulation variance component, �2

fam×block
 is the family × block interaction, 

and �2
error

 is the error component of variance. Eucalypts are known to 
have a mixed mating system; therefore, a coefficient of relationship 
(ρ = 1/2.5) was assumed to correct for selfing effects of about 30%, 
which, if not corrected for, could result in inflated estimates of her-
itability for growth traits (Bush, Kain, Matheson, & Kanowski, 2011; 
Costa e Silva, Hardner, & Potts, 2010; Griffin & Cotterill, 1988; Hodge, 
Volker, Potts, & Owen, 1996). Significance of family variance compo-
nents was determined using a log-likelihood ratio test as described in 
the ASReml manual by dropping the family component from the model 
and comparing these log-likelihood results to the full model.

Using data set 1 with four populations, we developed two prin-
cipal components analyses (PCA) based on family means to un-
derstand the relationship between populations, traits, and climate 
and used to inform the modeling step described below. The first 
PCA was performed with the seven measured traits (LS, WD, δ13C, 
NCONC, SLA, PRI, and NDVI) to view relative explanatory power of 
population differentiation using traits alone and identify possible 
trait–trait relationships. A second PCA explored the relationship 
between climate and traits. First, climate data were downloaded 
from WorldClim (Fick & Hijmans, 2017) (precipitation of the driest 
month (PDM), mean annual precipitation (PMA), precipitation variation 
(PRANGE), mean annual temperature (TMA), maximum temperature 
of the warmest month (TMAX), and temperature variation (TRANGE)), 
and Consortium for Spatial Information (CGIAR-CSI) (aridity index 
(AI); transformed to 1

AI
), and the data were extracted for the loca-

tion of each source population. For this study, AI was defined as 
meanannualprecipitation

meanannual evapotranspiration
 and we used the inverse of this ratio because 

it is more intuitive to interpret (i.e., the higher the number the more 

PRI =
R531−R570

R531+R570

mND705=
R750−R705

R750+R705−2×R445

yijkl=�+bi+pj+ fi.k+bi× fi.k+eijk,

ĥ2=
2.5×𝜎2

fam

𝜎2
fam

+𝜎2
fam×block

+𝜎2
error
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arid the climate). Four environmental variables (PDM, PMA, TMAX, 1
AI

) 
were included in the second PCA that was performed to characterize 
underlying patterns of correlation among independent and depen-
dant variables and to understand the correlation between climate 
and traits. We used the prcomp function in R and plotted the PCA 
using the ggbiplot function.

Using data set 2 with 12 populations, we explored four sets of 
correlations among seven traits. We deliberately use the term “cor-
relation” to describe the relationship between three of the trait pairs 
because coordination implies established mechanistic relationship, 
like those in the LES and have not been explicitly established for 
three of the correlations explored in detail here. The first correlation 
was between δ13C and PRI. PRI has been shown to be a measure 
of water stress and indirectly photosynthetic radiation-use effi-
ciency, while δ13C is a well-known measure of water-use efficiency. 
Together, radiation-use efficiency and water-use efficiency have 
been shown to be tightly correlated in wheat and soybean (Caviglia, 
Sadras, & Andrade, 2004). The second was LS and NDVI, which have 
similar relationships with fast-growth syndrome. Plants that have 
a fast-growth strategy also grow larger leaves (Cornelissen, 1999; 
Wright et al., 2017), as light is by far the most limiting resource for 
tree growth (Pacala et al. 1996), and light capture depends on the 
size of the leaves (Falster & Westoby, 2003; Pearcy, Muraoka, & 
Valladares, 2005; Pearcy, Valladares, Wright, & De Paulis, 2005). We 
expect a similar relationship for NDVI and have been shown to be 
a good predictor of aboveground biomass in trees (Goetz & Prince, 
1996; Malstrom et al., 1997; Wang, Rich, Price, & Kettle, 2004). 
Therefore, we would expect NDVI and LS to be highly correlated. 
The third was WD and NCONC, where we expect that the plants with 
lower WD would also have higher NCONC (e.g., (Beets, Gilchrist, & 
Jeffreys, 2001; Lindstrom, 1996)), where faster wood growth can be 
attributed to higher NCONC. The fourth association tested was be-
tween SLA and NCONC, which have been well described within the 
LES paradigm (Reich, 2014; Reich et al., 1997). Trait correlations were 
tested using linear models (function lm) on family means between 
the traits in R. The outputs were plotted using base R commands.

To estimate and predict trait change through geographic space 
and time, general additive models (GAM) were used to detect 
nonlinear relationships between trait and climate. A GAM uses a 
robust and efficient smoothing parameter (Wood, Pya, & Säfken, 
2016), and we were able to fit nonlinear smoothing terms using 
regression splines without any a priori assumptions. This property 
makes GAMs very useful for detecting nonlinear responses across 
a species distribution, and trait variation is generally nonlinearly 
associated with environment (Moran, Hartig, & Bell, 2016). The 
GAMs were performed using data set 2 with 12 populations and 
current bioclim variables downloaded from WorldClim (PDM, PMA, 
PRANGE, TMA, TMAX, TRANGE) and CGIAR-CSI ( 1

AI
) at the sampled pop-

ulation sources. Separate GAMs were developed for each trait in-
dividually, in order to evaluate how each trait might respond to 
climate change. We used the GAM function in the MGCV v1.8-24 
package in R (Wood, 2011) to perform the analyses. To minimize 
overfitting of the data, we only explored different combinations 

of up to three environmental variables and bound degree of 
smoothness to three for each variable (Araujo, Pearson, Thuiller, & 
Erhard, 2005), using cubic regression splines to control the degree 
of smoothness (Wood, 2006). The model that gave the highest R2 
and deviance explained are reported and discussed. Extrapolation 
of the GAM model outputs was performed using the predict func-
tion in R on the climate rasters of the distribution of C. calophylla, 
providing a predicted trait value for each pixel under current con-
ditions. These outputs were visualized using ggplot2 (Wickham, 
2016).

To predict the effects of climate change on trait distributions, 
raster files from 2070 under emissions scenario RCP 8.5 were down-
loaded from WorldClim under the CCSM4 simulation. A future arid-
ity index raster file was created using the ENVIREM package in R. 
The outputs of the GAM models were used to predict future trait 
distributions by substituting the current rasters with the future cli-
mate predicted rasters from RCP 8.5 CCSM4 simulation. In order 
to visualize where trait changes are predicted to occur, the differ-
ence between current and future trait distribution was estimated 
by subtracting the current distribution from the future distribution 
and dividing by the current trait values. This provides a proportional 
change value for each pixel in the distribution. These maps indicate 
the direction (e.g., higher or lower SLA) of trait evolution needed in 
order to maintain its predicted genotypic relationship with climate 
into the future. These outputs were standardized (proportional 
change), so the direction and proportional change among traits can 
be compared.

In order to test the hypothesis of possible uncoupling of trait 
correlation in the future, we compared the relationships between 
pairs of traits under the GAM-derived future trait values and 
GAM-derived current trait values for all pixels within the distribu-
tion (n = 106,833). The function linearHypothesis in the car pack-
age was used to test whether the slopes of the trait correlations 
were different between time frames. The similarity of the slopes 
between the current spatial patterns of the GAM-derived traits 
and the traits measured on the 12 populations in the plantation 
was also assessed.

3  | RESULTS

3.1 | Trait differentiation and heritability

All seven traits showed patterns of population differentiation 
(Figure 2). The two most extreme populations in relation to precipi-
tation of the driest month (PDM) (populations from HRI and BOO) 
were significantly different for all traits except for NDVI. Three traits 
(δ13C, PRI, and NCONC) showed a significant linear response with at 
least one climate variable (Table S1).

Narrow-sense heritability ranged between 0.08 and 0.21 for 
the seven traits. While heritability for SLA (ĥ2 = 0.08 ± 0.08 SE; 
p = NA) and PRI (0.11 ± 0.08; p =  .07) was not significant under 
the log-likelihood ratio test, the other five traits showed heritable 
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patterns that were significant. The estimates of heritability were 
on a continuum with NCONC (0.22 ± 0.09; p = .001), LS (0.18 ± 0.1; 
p  =  .007), and δ13C (0.17  ±  0.08; p  =  .003) the greatest, NDVI 
(0.15 ± 0.08; p = .007) and WD (0.12 ± 0.08; p = .02) intermediate, 
and SLA and PRI the lowest.

3.2 | Trait correlation

The principal components analysis shows clustering of families 
within populations and associations between traits. The first two 

F I G U R E  2   Trait means for 12 populations distributed along a gradient of PDM from the population's climate-of-origin. Data set 1 has 
colored symbols for the four populations (BOO = cool–wet; CRI = cool–dry; HRI = warm–dry; SER = warm–wet) with SE of the mean 
based on 10 families with 12 replicates. Data set 2 is shown with gray dots for the means of 12 populations. Letters indicate significant 
differences between populations from a post hoc Tukey's test (a = 0.05) on a mixed-effects linear model with family as the random variable. 
NCONC, concentration of nitrogen (%); NDVI, normalized difference vegetation index; PDM, precipitation of the driest month (mm); PRI, 
photochemical reflectance index; SLA, specific leaf area; WD, wood density; δ13C, ratio of 13C versus 12C
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axes of the PCA explained 59.8% of the variation among the seven 
functional traits (Figure 3a). The PCA shows partially overlapping 
population clusters that are separating along the PC2 axis, ex-
plaining 22.9% of the variation with the three traits SLA, δ13C, and 
NCONC being the most likely traits differentiating the populations. 
The HRI (warm, dry climate) population was clearly differentiated 
from the cool, dry climate (CRI) population, while BOO and SER 
were intermediate. Along the PC1 axis, the traits NDVI (axis 1 load-
ings = −0.52), NCONC (−0.46), PRI (−0.42), and LS (−0.40) displayed 
a greater loading than the others, indicating that these traits were 
found to be more indicative of within population differentiation. 
Along the PC2 axis, the traits SLA (axis 2 loadings = −0.56), δ13C 
(0.53), and PRI (0.43) displayed the greatest loadings, indicative of 
stronger among populations differentiation. The WD trait has the 
third lowest loading (0.27) on the PC1 axis and the lowest loading 
(0.14) on the PC2 axis.

All three trait correlations and the trait coordination were sig-
nificantly correlated (Figure 4). There was weak but significant cor-
relation between δ13C and PRI (Figure 4a), LS and NDVI (Figure 4b), 
WD and NCONC (Figure 4c), and SLA and NCONC (Figure 4d). Three 
of the correlations showed a positive relationship between the two 
traits. The only relationship that showed a negative correlation was 
between the WD and NCONC traits.

3.3 | Adaptation to climate

When the PCA included trait and climate variables, the separation 
of populations became more apparent (Figure 3b). The warm, dry cli-
mate (HRI) population was the most divergent from the other three 
populations. The PC1 best differentiates the populations with 32.4% 
of the variance explained by a combination of trait and climate vari-
ables. We find that SLA is correlated with TMAX, δ13C is correlated 
with PDM, PRI is correlated with PMA, and no trait is correlated with 1

AI

. PDM had the greatest loading for PC1 closely followed by TMAX and 
1

AI
 (PDM = −0.48, TMAX = 0.43, 1

AI
 = 0.40) then PMA (loading = −0.31), 

which had similar loading to δ13C (loading = −0.31) and NCONC (load-
ing = −0.29) traits. NDVI was the variable with the greatest loading 
on the PC2 (loading = −0.51) followed by PRI (loading = −0.42), and 
these variables show more variation within populations than among 
populations, as exhibited by the long population ellipses that follow 
the PC2 axis.

The GAM analysis revealed different patterns of trait change 
through the landscape among all traits (Figure 5), and different 
trait responses to individual climate variables (Figure S1). At least 
one temperature and one precipitation variable were presented 
for all traits except for δ13C (only precipitation variables) and PRI 
(only temperature variables). The most common climate variable 
incorporated into the final GAM for each trait was PMA, and the 
least common was 1

AI
 (Table 2). The deviance explained by the 

GAM analysis was high (R2 > 0.6) for all traits. The GAM analysis 
explained greater than ca. 85% of the deviance for SLA, δ13C, N, 
NDVI, and LS.

All traits showed altered distributions between current and fu-
ture climates (Figure 5). The traits PRI, NDVI, and NCONC mostly had 
a reduction in their trait values throughout the distribution, while 
SLA was the only trait that consistently increased in the future. The 
δ13C, LA, and WD traits had reduced trait values in some geographic 
regions but increased values in other regions. The magnitude of trait 
change was greatest for PRI, LS, and NCONC, which are predicted 
to change by 25%–30%. In contrast, δ13C and NDVI had the low-
est magnitude of predicted trait change with 1.5% and 10% change, 
respectively. There are portions of the range that are predicted to 
be outside of current climate conditions (shown with a gray line 
in Figure 5); therefore, our predictions in these regions should be 
treated with caution.

All four of the tested trait correlations were highly significant 
when evaluating the spatial relationships (both current and fu-
ture) between predicted trait distributions (Figure 6; p = 2.2e−16). 
However, the SLA/NCONC slopes explained only 6%–7% of the 
variation, indicating high levels of variability among the data. In 
contrast, the δ13C/PRI slopes explained 45%–60% of the vari-
ation for future and current predictions, respectively (Figure 6). 
The spatially predicted slopes of the trait correlations compared 
to the sampled populations only differed for the δ13C/PRI correla-
tion (Figure 6a). Trait correlations are predicted to differ between 
current and future conditions for all trait pairs except LS/NDVI 
(Figure 6b). These differences are not uniform across correlations, 
as the WD/NCONC slope changes from a negative slope to a posi-
tive slope, and the δ13C/PRI slope appears to shift along the PRI 
axis. The traits associated with the LES also change from a nega-
tive to a positive slope, but this might be attributable to the large 
amount of variation in SLA.

4  | DISCUSSION

We found evidence to support adaptation of functional traits in 
C. calophylla across populations in southwest Western Australia. 
These patterns of adaptation are consistent with previous stud-
ies of genetics, growth, and physiology of C.  calophylla (Ahrens, 
Byrne, et al., 2019; Ahrens, Mazanec, et al., 2019; Aspinwall et 
al., 2017; Blackman et al., 2017). This study builds upon previous 
research by focusing on the genetic determination of functional 
traits, elucidating the relationship between functional traits, de-
termining the relationship between functional traits and climate, 
and predicting genetically determined trait distributions under 
current and future climates. By evaluating trait variation in a com-
mon experimental site, we were able to evaluate trait heritability 
and genotypic differences among populations, with minimal in-
terference from environmental factors. Therefore, the trait val-
ues measured are accurate for the climate-of-plantation and are 
representative of genotypic signatures of local adaptation. There 
were significant differences among populations for all traits, and 
all traits exhibited associations with climate-of-origin but some 
traits were related to climate-of-origin in unexpected ways. We 
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found five of the seven traits had significant heritability indicating 
an ability to respond to selection and adapt to climate. However, 
traits differed in their heritability and trajectory along climate 
space. We predict trait coordination and trait correlation decou-
pling in the future, where traits may change at different rates to 
adjust to future climates.

4.1 | Trait differentiation and heritability

Three of the traits measured (NDVI, PRI, and LS) exhibit tenden-
cies that follow with previous studies exploring the adaptation of 
functional traits adapted to hot, dry environments. For example, the 
lower NDVI from a hot, dry climate compared to a hot, wet climate 

suggests an adaptive strategy among populations. This finding 
agrees with Ahrens, Mazanec, et al. (2019), which shows a strong 
pattern of slow-growth strategies among northern populations, 
which is characteristic of hot and arid environments (King, 1990; 
Moles, 2018; Reich, 2014). The population differences found in PRI 
are best explained by TMAX (see the GAM analysis) and clearly show 
a lower value in the population from a hot, dry climate (HRI), indi-
cating a lower photosynthetic rate due to reduced radiation-use ef-
ficiency (Garbulsky et al., 2011). This is in agreement with Aspinwall 
et al. (2017), who found higher photosynthetic rates in the cool, wet 
population compared to the hot, dry population. Lastly, LS has re-
ceived significant attention recently, as worldwide LS patterns show 
significant relationships with temperature and latitude (Wright et al., 
2017). In C. calophylla, LS is correlated with temperature of origin 

F I G U R E  4   Correlation between traits among 114 families from 12 populations. Each point represents a family mean value from four 
trees. The line of best fit, R2, and p-value are calculated from a linear model
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F I G U R E  5   Current, future, and 
predicted % change in 2070 trait values 
for the seven traits across Corymbia 
calophylla's distribution using GAM 
and the relative change of those traits 
predicted from current to future climate. 
Gray lines denote climate space that 
exceeds current species distribution 
limits. Population and trait abbreviations 
are defined in Table 1 and Figure 2, 
respectively
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and is similar to Eucalyptus loxophleba where LS decreased with tem-
perature (Steane et al., 2017). Greater leaf size may confer advan-
tages with greater gas exchange (Zwieniecki, 2004) and protection 
against herbivory (Moles & Westoby, 2000), while smaller leaf size 
could lead to overheating avoidance (Okajima, Taneda, Noguchi, & 
Terashima, 2012), and leaf size is known to be coordinated with es-
sential plant architecture such as canopy size and plant hydraulics 
(Jensen & Zwieniecki, 2013; Sack et al., 2012). However, the contrast 
with the broad findings in Wright et al. (2017) was not surprising 
because the broader, across species patterns for complex variable 
traits may not be present within species (Moles, 2018). In fact, 
many studies exploring how traits change with environment have 

been performed on unrelated species (e.g., Atkin et al., 2015; Díaz 
et al., 2016; Wright et al., 2017), while intraspecific trait variation is 
“largely ignored” in trait-based plant ecology (Shipley et al., 2016), 
providing limited information on evolutionary responses to climate 
(Moran et al., 2016).

Some functional traits showed a different pattern in relation-
ship to climate-of-origin than expected. Four traits (δ13C, SLA, 
NCONC, WD) showed values for the hot, dry climate (HRI) indic-
ative of higher rainfall areas. However, this is likely due to pop-
ulations of C.  calophylla from the hot, dry climate (HRI) having 
different adaptive mechanisms than anticipated. Carbon isotope 
composition (δ13C) is tightly correlated with WUE, particularly in 

TA B L E  2   Variable significance and model performance for each general additive model (GAM) among seven traits

Trait TMA TMAX TRANGE PMA PDM PRANGE
1

AI
R2 dev

δ13C – – – 9.542* 2.719 5.472* – 0.929 96.5

PRI – 15.466** 8.191* – – – – 0.604 67.6

NDVI 14.404** – – 7.123* 15.346** – – 0.874 94.8

LS 12.178* – 7.016* – 5.234 – – 0.846 94.5

WD – 7.2* – 9.408* – – – 0.682 79.5

NCONC 17.087** – 8.138* 12.264** – – – 0.896 94.6

SLA – 19.64** 14.49* 16.37** – – – 0.951 97.9

Note: F-values are provided for each climate variable used in the model with their significance level (*<0.05; **<0.01).
Abbreviations: dev, deviance explained; LS, leaf size; NCONC, nitrogen concentration (%); NDVI, normalized difference vegetation index; PRI, 
photochemical reflectance index; SLA, specific leaf area; WD, wood density; δ13C, ratio of 13C versus 12C.
The climate factors are as follows: TMA, mean annual temperature; TMAX, maximum temperature of the warmest month; TRANGE, temperature 
variation; PMA, mean annual precipitation; PDM, precipitation of the driest month; PRANGE, precipitation variation

F I G U R E  6   Predicted trait values 
across the spatial distribution of Corymbia 
calophylla using current climate data (blue) 
and future climate data from 2070 (red) 
estimated by GAM analysis. Each blue and 
red dot represents a single pixel from the 
current and future maps, respectively, in 
Figure 5. Black dots are population-level 
trait values. Only significant (p < .05) lines 
of best fit are shown for each of the three 
data sets
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field studies (Rundel & Sharifi, 1993), and our findings suggest 
that HRI has the lowest WUE, when we expected it to have the 
highest WUE. Likewise, the LES traits (SLA and NCONC) within the 
HRI population were different than expected; the high values for 
SLA and NCONC measurements are indicative of a population that is 
more susceptible to drought conditions (Greenwood et al., 2017). 
While we do find differentiation between populations for SLA, 
this differentiation does not seem to be heritable and confirms 
findings that SLA is highly plastic (Shipley, 2000). In addition, WD 
exhibited the opposite pattern than was expected, as the wood 
was less dense in the population from the hotter, drier climate. 
We expected northern C. calophylla populations that occur in hot-
ter, drier conditions to exhibit denser wood to increase cavitation 
resistance (Hacke et al., 2001) and increase survival in harsh cli-
mates (Cornwell & Ackerly, 2009; Hacke et al., 2001). Even though 
we found differences between populations for the WD trait with 
some evidence of heritability, the WD differences (c. 0.40–0.65) 
are small and may result in similar P50 estimates (c. −2 to −2.5; P50 
is the point at which plants lose 50% of their conductance (Hacke 
et al., 2001)), suggesting that the biological difference between 
the WD measurements may be negligible. Overall, these patterns 
were unexpected and our finding that the HRI population from the 
hotter, drier climate was at the end of the trait spectrum where we 
expected cool, wet populations may be attributed to one or several 
possible explanations: (a) patterns of isolation might have affected 
current trait distributions, and genetic drift might overcome selec-
tion in some small, isolated populations (Lanfear, Kokko, & Eyre-
Walker, 2014); (b) other traits may be involved in the adaptation 
to hotter, drier climates for this species; (c) these traits might be 
plastic; or (d) a whole-plant leaf-area process in which the north-
ern populations grow structurally inexpensive (thin) leaves with 
low leaf longevity provides ways in which populations can adapt to 
hot, dry climates, as found in other trees (Wolfe, Sperry, & Kursar, 
2016).

All but two traits (SLA and PRI) had a narrow-sense heritabil-
ity greater than zero, indicating that evolutionary change can occur 
through processes of natural selection. In particular, the heritabil-
ity of WUE, as indicated by δ13C, is an important finding that has 
ramifications for the species as the climate changes, particularly in 
a Mediterranean-type climate, where rainfall is seasonal and climate 
shifts are predicted (Klausmeyer & Shaw, 2009). However, herita-
bility was not found to be consistent among traits, indicating that 
our hypothesis of different levels of variability among traits is ac-
cepted. In general, these heritabilities are similar to the heritability of 
height (0.14 ± 0.03 SE), diameter (0.12 ± 0.03), and blight resistance 
(0.08 ± 0.03) based on a greater sampling effort (24 seedlings per 
family; 3,960 trees) at the same experimental plantation (Ahrens, 
Mazanec, et al., 2019). Overall, the heritability continuum measured 
here suggests that selection pressure due to climate will affect each 
trait differently, leading to novel patterns of local adaptation and 
trait combinations.

The presence of variation in trait means and heritability de-
scribes a system in which the species is able to adapt to a future 

climate. However, no two traits shared the same explanatory 
climate variables or modeled associations, resulting in different 
predicted distributions. We found that some traits would need to 
evolve at a greater rate than others in order to maintain current 
trait–climate associations under future conditions (see the change 
factor in Figure 5). Some traits may lag behind the climate change 
front, while others may be able to adapt to future climates, de-
pending on the level of individual trait heritability, strength of cli-
mate selection pressure on the trait, and the amount of standing 
genetic variation present within the genes that control the trait. 
For example, the SLA trait would need to change as much as 12% 
to keep up with the changing climate, but SLA is effectively not 
heritable, so the change needed is unlikely to happen via selection 
pressure. On the other hand, NCONC would need to change its trait 
value by −25% and has one of the higher estimates of heritability 
in the study, indicating that this trait might track with environment 
if the selection pressure is strong. Overall, our observations are 
consistent with the concept that some traits will be more limiting 
than others in relation to a species’ adaptive capacity to respond 
to climate change.

4.2 | Trait correlation

Our estimates of trait correlations are consistent with other stud-
ies and are in-line with our expectations. However, the traits 
measured differentially respond to climate and our predictions 
that climate change may affect each trait independently were 
supported. Our data suggest that traits will need to adapt to new 
climates at different rates and in different patterns. This is a con-
cern for traits that are known to be dependent on one another, 
such as those in the LES. However, the other correlations may be 
able to independently adapt to new conditions. This is particularly 
concerning for traits that are mechanistically dependent on one 
another because the coordinated traits will either need to decou-
ple or be limited by one another. We were able to establish the 
presence of a relationship between PRI (RUE) and δ13C (WUE). 
This correlation is indicative of populations having different pho-
tosynthetic inhibition under different light conditions (Grace et al., 
2007). In the future, we anticipate that this correlation between 
PRI and δ13C will decouple, as a greater shift in PRI is predicted 
compared to δ13C, but this correlation may not change under new 
climate conditions because of the effective nonheritability of PRI 
and the very small change for δ13C.

Current patterns of coordination between SLA and NCONC are 
consistent with the overall patterns within the LES paradigm (Reich, 
2014; Reich et al., 1997), in that high N is associated with high SLA 
however the pattern's association with climate is the opposite as ex-
pected. The combination of SLA and Nmass has been shown to be 
a good predictor of net photosynthesis (Amax) on a per mass basis 
(Reich & Walters, 1994; Reich et al., 1997), and lower SLA is due to 
many anatomical features (e.g., larger cell sizes, greater major vein 
allocation, greater numbers of mesophyll cell layers, and higher cell 
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mass densities (John et al., 2017)), although we found that SLA is not 
heritable and highly variable. Our findings suggest that the adaptive 
potential of these two LES traits could be limited by one another, or 
SLA (not heritable) could dynamically match N (heritable) concentra-
tions through plasticity.

We also expected to find significant correlation between LS 
and NDVI. As such, we revealed the BOO population (cool–wet cli-
mate-of-origin and the fastest growing population; Ahrens, Mazanec, 
et al., 2019) as having larger leaves and higher NDVI, which is indic-
ative of higher biomass. This is the only trait correlation that we pre-
dict to remain intact in the future.

The pattern between WD and NCONC was also as expected, in 
that wood density decreased with increasing NCONC. However, the 
predicted correlation between WD and NCONC shows a nearly per-
pendicular change, indicating that the two traits will be required to 
evolve in opposite directions. This confirms that WD is a difficult 
trait to predict due to its association with many ecological signals 
(Brodersen, 2016; Gleason et al., 2016) and that other mechanisms, 
aside from climate, are likely important for selection of the WD trait.

All of the current trait correlations were highly significant but 
with low explanatory power, indicating that the variation between 
correlated traits is high, and that the correlation has some leeway for 
traits to change without affecting patterns of adaptation. Overall, 
predicted trait correlations exhibit contrasting prediction scenarios, 
which could force some traits to change disproportionately com-
pared to their counterparts. These findings suggest that if these trait 
correlations are dependent on one another that they might be a hin-
drance to adapting to novel climate conditions. On the other hand, 
if the correlated traits can evolve independently, the different trait 
heritability levels suggest that some traits are more genetically de-
termined than others, resulting in different trait combinations within 
populations than what has been measured.

5  | CONCLUSION

Understanding mechanistic patterns of plant traits that undergo 
processes of natural selection can broadly enhance our under-
standing of species distributional predictions to inform mainte-
nance of forest ecosystem function under future climate scenarios. 
Our results suggest that functional traits have contrasting geno-
typic patterns and will be subjected to different climate selection 
pressures, which may negatively affect current forest structure and 
function due to lower working optimum for functional traits. Even 
though we were able to identify significant adaptive variation and 
differential trait responses correlated with patterns of precipita-
tion and temperature, demonstrating adaptive capacity to climate 
change, we reveal that traits are independently associated with dif-
ferent climate factors. Therefore, some trait correlations and their 
idiosyncratic relationships may be disrupted under future climate 
scenarios, suggesting that genetic constraints, selection pressure, 
and trait correlation limitations will affect trait evolution and pat-
terns of adaptation in the future.
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