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22q11.2 deletion syndrome (22q11DS) is a neurogenetic disorder that causes a high

risk of developing schizophrenia, thus representing a unique model for the investigation

of biomarkers of psychosis. Cognitive and clinical risk factors have been identified as

reliable predictors of schizophrenia in patients with 22q11DS and are currently used in

the clinical practice. However, biomarkers based on neuroimaging are still lacking, mainly

because of the analytic approaches adopted so far, which are almost uniquely based on

the comparison of 22q11DS patients with healthy controls. Such comparisons do not

take into account the heterogeneity within patients with 22q11DS, who indeed show

various clinical manifestations. More recently, a number of studies compared measures

of brain morphology and connectivity between patients with 22q11DS with different

symptomatic profiles. The aim of this short review is to highlight the brain alterations

found in patients with 22q11DS fulfilling ultra-high risk (UHR) criteria. Findings point to

alterations in brain morphology and connectivity in frontal brain regions, and in particular

in the anterior cingulate cortex, in patients with 22q11DS presenting UHR symptoms.

These alterations may represent valuable biomarkers of psychosis in 22q11DS.
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INTRODUCTION

22q11.2 deletion syndrome (22q11DS) is considered the third most important risk factor for the
development of schizophrenia after having amonozygotic twin (50%) or two affected parents (42%)
(1, 2) Indeed, 30–40% of patients with 22q11DS develop psychosis by adulthood (2, 3). In addition,
phenotypic characteristics of patients with 22q11DS affected by schizophrenia are similar to those
of schizophrenic patients without the deletion (4, 5). Efforts are ongoing to identify predictive
biomarkers, which could help us preventing the development of schizophrenia in patients with
22q11DS and that could be generalizable to idiopathic schizophrenia. A biomarker is defined as
“a characteristic that is objectively measured and evaluated as an indicator of normal biological
processes, pathogenic processes, or pharmacological response” (6). Therefore, alterations in cognitive
processes or changes at the level of the brain could represent valuable biomarkers to predict the
development of schizophrenia.
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A number of investigations identified behavioral and clinical
predictors of psychosis in 22q11DS (7–11). In a study pulling
together data from two cohorts of patients with 22q11DS
(Geneva and Tel Aviv) (7) we found that the presence of anxiety
disorders and a lower baseline IQ predicted the development
of schizophrenia. Another cross-site study conducted by the
International Consortium on Brain and Behavior in 22q11
Deletion Syndrome (IBBC) included 829 22q11DS patients and
showed that individuals with 22q11DS that develop psychosis
have a steeper decline in verbal IQ (VIQ) from childhood
to adulthood than controls and non-psychotic patients (11).
Therefore, the cognitive decline represents another predictor
of the development of psychosis in 22q11DS, in addition to
the presence of anxiety disorders and a low IQ. We further
showed that the Ultra High Risk (UHR) status and a decline in
global functioning can also predict the conversion to psychosis
in patients with 22q11DS (9). Our results showed that 27.5%
of 22q11DS patients that meet the criteria for a UHR status
convert to psychosis after 2.7 years, against the 4.5% conversion
rate for non-UHR patients with the syndrome. Environmental
factors also play a role in increasing the risk of psychosis in
patients with 22q11DS. For instance, two recent investigations
showed that preterm birth can be a risk factor of schizophrenia
in 22q11DS (8, 10). In addition, it has been reported that the
DNA methylation status differs in the patients with 22q11DS
that develop mental disorders (12), thus suggesting a role of the
environment and epigenetic factors in the risk of psychosis.

Despite the great number of studies showing alterations in
brain morphology and connectivity in patients with 22q11DS
compared to controls, there are still no valid biomarkers of
psychosis based on neuroimaging. The findings concerning
differences in brain morphology and connectivity in patients
with 22q11DS are indeed very heterogeneous, thus preventing
us to use them as biomarkers (13). Some studies investigated
brain alterations associated to psychotic symptoms in 22q11DS
in post-hoc analyses. For instance, in a recent review article,
we concluded that higher symptoms severity is associated
with altered long-range frontal connections (13). Fewer studies
specifically investigated brain morphology and connectivity in
22q11DS patients with high psychotic symptoms compared to
less symptomatic patients (14–21). The aim of this manuscript
is to review evidence of specific alterations at the level of brain
morphology and connectivity in patients with 22q11DS with
a higher clinical risk to develop psychosis. In particular, we
reviewed manuscripts that specifically investigated differences in
subgroups of patients with 22q11DS that fulfill or not the criteria
for UHR symptoms. We also propose that one specific region
of the brain, the anterior cingulate cortex (ACC), is specifically
impaired in the patients at high risk.

Several indicators confirm the involvement of the ACC in the
risk of psychosis. This region of the brain is characterized by
a great complexity from a structural and functional standpoint.
Structurally, the ACC can be subdivided into into a rostral-
ventral affective division and a dorsal cognitive division on the
bases of its cytoarchitectonic and connectivity patterns (22, 24).
Functionally, the ACC is part of different brain networks and
is important for emotion regulation and cognitive processes. In

particular, two main functions may relate the ACC to a greater
risk of psychosis: its involvement in self-monitoring and its
role in salience processing, which have both been associated
with the psychopathology of schizophrenia. Self-monitoring
is defined as the ability to correctly attribute the origin of
internally generated stimuli. Alterations in self-monitoring have
been reported in patients with schizophrenia (23). For instance,
impaired attribution of self-generated thoughts can cause the
manifestation of hallucinations, and the ACC has been involved
in this misattribution of internal speech (24, 25). As part of
the salience network, the ACC is also important in saliency
attribution to internal and external stimuli. Impaired salience
attribution may in turn be responsible for the manifestation of
hallucinations and delusions (26).

BRAIN MORPHOLOGY IN PATIENTS WITH
22Q11DS AT HIGH RISK OF PSYCHOSIS

To the best of our knowledge, only four studies to date compared
measures of brain morphology between patients with 22q11DS
without UHR symptoms or psychosis and patients with 22q11DS
with a diagnosis of UHR or psychosis [(16, 27–29), Table 1]. In
Dufour et al. (27), we compared the volume of the ACC between
controls and patients with 22q11DS, as well as between psychotic
and non-psychotic patients with the syndrome (27). Reduced
ACC volume was evident in patients with 22q1DS with higher
psychotic symptoms. Further studies from ours and other cohorts
investigating the developmental trajectories of cortical thickness,
consistently found accelerated cortical thinning of frontal brain
regions in 22q11DS patients with higher symptoms compared
to less symptomatic patients with the syndrome (28, 29). This
was confirmed by our recent investigation (16) in which we
observed accelerated cortical thinning of frontal cortex and ACC
in patients with 22q11DS that meet the criteria for a UHR status
compared to non-UHR patients.

STRUCTURAL CONNECTIVITY IN
PATIENTS WITH 22Q11DS AT HIGH RISK
OF PSYCHOSIS

Few studies investigated white matter connectivity in patients
with 22q11DS with and without UHR symptoms [(14, 17, 18),
Table 1]. Initial investigations used measures of white matter
microstructural integrity, namely fractional anisotropy (FA),
axial (AD), and radial diffusivity (RD) extracted from specific
white matter pathways (14, 18). In a cohort of 22q11DS patients
recruited from the University of Pennsylvania and the children
hospital of Philadelphia Roalf and colleagues showed that
individuals with 22q11DS with higher prodromal symptoms have
a lower mean FA in the cingulate gyrus (CG), thus suggesting
altered white matter integrity of this white matter bundle in
association to a greater risk of psychosis. This was confirmed by

our recent investigation (17) in which we showed that reduced FA

and increased RD in the CG significantly discriminated patients
with 22q11DS with higher and lower symptoms severities.

In addition to diffusion measures, we investigated structural
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TABLE 1 | Brain morphology and connectivity in patients with 22q11DS at high risk of psychosis.

References Cohort Sample size Measure Results

BRAIN MORPHOLOGY

Padula et al. (16) Geneva 22 psy+, 22 psy– Cortical thickness Bilateral superior frontal cortex,

right prefrontal cortex, left

anterior cingulate cortex*, left

inferior parietal cortex.

Dufour et al. (27) Geneva 24 psy+, 18 psy– Gray matter volume Cingulate gyrus * (right dorsal

anterior cingulate cortex and

cingulate body).

Ramanathan et al. (28) SUNY Upstate Medical

University

18 psy+, 57 psy– Cortical thickness Frontal lobe, superior frontal

cortex.

Schaer et al. (29) Geneva 6 psy+, 13 psy– Cortical thickness Right fusiform/lingual region, left

superior frontal gyrus.

STRUCTURAL CONNECTIVITY

Kikinis et al. (14) SUNY Upstate Medical

University

9 psy+, 41 psy– Fractional anisotropy, axial

diffusivity, radial diffusivity, mean

diffusivity

Right superior longitudinal

fasciculus, corpus callosum,

right superior corona radiata,

right internal capsule.

Padula et al. (17) Geneva 31 psy+, 31 psy– Fractional anisotropy, axial

diffusivity, radial diffusivity,

tractography, graph theory

Right amygdala, left posterior

cingulate cortex, left

parahippocampal cortex, right

anterior cingulate cortex*, inferior

longitudinal fasciculus, cingulate

gyrus*.

Roalf et al. (18) University of Pennsylvania

and Children’s Hospital of

Philadelphia

27 psy+, 12 psy– Fractional anisotropy, axial

diffusivity, radial diffusivity, mean

diffusivity

Cingulate bundle*, uncinate

fasciculus.

Sandini et al. (19) Geneva 31 psy+, 31 psy– Covariance of cortical thickness Superior frontal gyrus, anterior

and middle cingulate gyri*.

FUNCTIONAL CONNECTIVITY

Schreiner et al. (20) University of California, Los

Angeles, SUNY Upstate

Medical University

18 psy+, 38 psy– Functional connectivity Anterior cingulate

cortex/precuneus*, default mode

network*, left executive network,

salience network*.

Zöller et al. (21) Geneva 28 psy+, 29 psy– Variability of resting-state blood

oxygenated level- dependent

signal

Dorsal anterior cingulate cortex*,

prefrontal cortex, orbitofrontal

cortex, V2.

Scariati et al. (30) Geneva 13 psy+, 17 psy– Functional connectivity Anterior cingulate cortex*, inferior

frontal gyrus (pars triangularis),

precentral gyrus, rectus gyrus,

superior parietal gyrus.

*Indicates findings involving the anterior cingulate cortex. Note that the study cohorts recruited in the same geographic location or by the same research group are not independent.

For instance, the patients and controls recruited in Geneva (16, 17, 19, 21, 27, 29, 30) overlap across the different studies. The same holds true for the other cohorts being recruited in

the other different geographic areas. The data collected across the different locations are instead independent. Psy+, patients with moderate to severe ultra-high risk symptoms; Psy–,

patients with low ultra-high risk symptoms.

network integrity using tractography and measures of graph

theory (17). We found that a pattern of disconnectivity of the
ACC discriminated 22q11DS patients with UHR symptoms.

Structural covariance of cortical thickness represents another

method to investigate structural connectivity between brain
regions. Here, structural connectivity is measured as the

correlation between thickness values extracted from regions of

interest. Indeed, it is assumed that morphology is correlated
between regions that are structurally connected, due to the

mutually trophic effect of axonal connections. We found that
patients with 22q11DS with high psychotic symptoms are
characterized by altered structural covariance of the anterior

cingulate and medial prefrontal cortices, which supports the
findings based on white matter connectivity (19).

FUNCTIONAL CONNECTIVITY IN
PATIENTS WITH 22Q11DS AT HIGH RISK
OF PSYCHOSIS

Findings in functional connectivity measured with resting-
state fMRI further support the involvement of the ACC in
the risk of psychosis in patients with 22q11DS (Table 1). A
large multicentric investigation including 22q11DS individuals
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assessed at the University of California Los Angeles (UCLA) and
at the SUNY Upstate Medical University in Syracuse (20) used
a multivariate approach to identify a pattern of brain alterations
that discriminated patients with 22q11DS according to different
symptomatic profiles. More specifically, a classifier was trained
using network connectivity data from patients with 22q11DS
collected at the UCLA. The classifier was then tested in the
SUNY cohort in order to provide a generalizable classification.
When discriminating patients with 22q11DS with high and low
symptoms severities, the combination of four networks gave a
prediction accuracy of 78%: the ACC/precuneus network, the
default mode network (DMN), the central executive network
(CEN), and the saliency network (SN). Three out of these
networks include the ACC, thus confirming how alterations
in this functionally complex brain region can compromise
networks integrity and result in the manifestation of psychotic
symptoms. These findings are further supported by our recent
investigations, in which we showed disconnectivity of the ACC
(30) and altered BOLD (Blood Oxygenated Level Dependent)
signal variability (21) in patients with 22q11DS with higher UHR
symptoms.

DISCUSSION

The results of the studies reviewed in this manuscript point
to specific brain alterations characteristic for a higher risk
of psychosis in patients with 22q11DS. Even though some
limitations can be identified (lack of independency between study
cohorts, moderate sample sizes, and sometimes heterogenous
findings) few brain regions and connections emerge as being
associated to a greater risk to develop psychosis. In particular,
one consistent finding across studies is an involvement of
the ACC. These results are in line with findings reported in
individuals at high risk without the 22q11.2 deletion (31–38).
Altered morphology of the ACC has indeed been reported
in patients at ultra-high risk (UHR) without 22q11DS (31,
32). In addition, alterations in the ACC are present and
worsen in at risk individuals that convert to psychosis (32–
36) and are found in non-deleted patients with schizophrenia
(37, 38). These findings therefore confirm the role of the
ACC in the development of psychosis. Of note, other regions
recurrently reported to be altered in individuals at risk without
22q11DS are the frontal cortex and the insula (33, 34), in line
with the findings in individuals with 22q11DS fulfilling UHR
criteria.

Several neuropathological mechanisms may explain the
altered activity and connectivity of the ACC. A widely accepted
hypothesis suggests the impairment of parvalbuminergic (PV)
interneurons. These fast-spiking cells significantly influence
the activity of pyramidal neurons and are involved in
gamma and theta oscillations necessary for the short- and
long-range communication between brain regions. Therefore,
impairments in PV interneurons may explain the alterations
in ACC connectivity found in patients with schizophrenia
and 22q11DS. Reduced density of PV interneurons has been

found in postmortem brains of patients with schizophrenia (39),
mainly in the frontal cortex, as well as in mouse models of
schizophrenia (40), thus confirming this hypothesis. Another
complementary theory proposed a reduced activation of the
Glutamate NMDR receptor, which has been associated to
increased oxidative stress (41). The altered redox balance may
in turn be responsible for the reduction in PV interneurons
(34).

A more recent hypothesis put forward the involvement of
a particular type of neurones, the so called “Von Economo
neurons,” which are specifically located in the ACC and fronto-
insular cortex. Von Economo neurons have been shown to be
involved in long-range transmission and develop during the first
years of age, thus suggesting their role in high order functional
domains such as emotion regulation, motor control, decision
making and social cognition (42). Furthermore, they contain
receptors for neurotransmitters, such as vasopressin, dopamine,
and serotonin, involved in complex behaviors. Interestingly, it
has been shown that the density of Von Economo neurons in
the ACC is associated with the age at onset and the duration of
illness in patients with schizophrenia (40, 42) thus suggesting
that the pathology of these neurons may explain the ACC
structural and functional impairments observed in patients at
risk of psychosis.

The fact that one specific brain region, the ACC, may be
involved in the risk of schizophrenia in patients with 22q11DS
opens the important perspective of targeting this region for
treatment. Indeed, non-invasive brain stimulation approaches
such as neurofeedback, transcranial magnetic stimulation, and
transcranial electrical stimulation may be used to modulate
the activity of the ACC and restore the function of networks
where the ACC takes part. However, the realization of such
non-invasive brain stimulation approaches is still challenging,
especially because the ACC is a deep region in the brain and
thus difficult to target. In the future, further investigations are
needed with larger samples and cross-site cohorts in order
to confirm the role of the ACC in the risk of psychosis
in these patients. However, the findings obtained so far give
interesting directions for future research in the field, thus
allowing to narrow down the search for biomarkers of psychosis
in 22q11DS.
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