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Abstract Gene regulatory networks (GRNs) provide a systems-level orchestration of an

organism’s genome encoded anatomy. As biological networks are revealed, they continue to answer

many questions including knowledge of how GRNs control morphogenetic movements and how

GRNs evolve. The migration of the small micromeres to the coelomic pouches in the sea urchin

embryo provides an exceptional model for understanding the genomic regulatory control of

morphogenesis. An assay using the robust homing potential of these cells reveals a ‘coherent

feed-forward’ transcriptional subcircuit composed of Pax6, Six3, Six1/2, Eya, and Dach1 that is

responsible for the directed homing mechanism of these multipotent progenitors. The linkages of

that circuit are strikingly similar to a circuit involved in retinal specification in Drosophila suggesting

that systems-level tasks can be highly conserved even though the tasks drive unrelated processes in

different animals.

DOI: 10.7554/eLife.08827.001

Introduction
Much research has been done to understand the cell biology underlying the events of directed cell

migration; however, how the events are encoded in the genome and how gene regulatory networks

(GRNs) control this process are works in progress. Cell migration is the directed movement of a single

cell or a collective group of cells through the early embryo or the adult body. Many different cell types

undergo chemotaxis-dependent directed migration during development, including primordial germ

cells (PGCs), Drosophila border cells, the zebrafish posterior lateral line, Drosophila tracheal cells,

vertebrate neural crest cells, and vertebrate anterior mesoderm (Reig et al., 2014). The ability for cells

to undergo directed migration towards a target location requires the use of different signal

transduction mechanisms to remodel their actin cytoskeleton in a directed fashion such that they

extend filopodia, lamellipodia, and blebs to create a polarized leading edge. In the sea urchin, a near

complete developmental GRN describes the specification of endomesoderm (McClay, 2011; Peter

and Davidson, 2011). Studies of this specification network have made the sea urchin a viable model

for extending the study of how GRNs can explain control of complex cell behaviors (Saunders and

McClay, 2014). The migration of the sea urchin small micromeres serves as a powerful experimental

model for connecting the genomic regulatory control of morphogenesis to an upstream GRN.

Small micromere cells arise from an asymmetric cleavage of the micromeres at the embryonic fifth

cleavage (Figure 1A). These cells divide once within the vegetal plate to produce eight cells (Pehrson

and Cohen, 1986). The eight small micromeres migrate along with the growing archenteron during

gastrulation until they reach the animal pole (Yajima and Wessel, 2012; Campanale et al., 2014).

Post-migration, the small micromeres incorporate into the coelomic pouches, which are found on

either side of the developing esophagus (Hyman, 1955; Pehrson and Cohen, 1986; Luo et al., 2012).

The coelomic pouches, a mesodermal sub-type, appear at the tip of the forming archenteron. Their

specification is initiated early in development by Delta/Notch signaling (Sherwood and McClay, 1999;
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Sweet et al., 2002). During gastrulation, several other mesodermal cell types undergo epithelial-to-

mesenchymal transitions (EMTs) into the blastocoel where they take on different roles in the embryo.

The mesodermal cell sheet remaining at the tip of the archenteron at the end of gastrulation forms the

two coelomic pouches on either side of the foregut (Figure 1A). Only those small micromeres that

reach the left coelomic pouch, which will become the future adult rudiment, will survive until adulthood.

During metamorphosis of the indirect developing sea urchin, the embryonic small micromeres

incorporate into the adult rudiment’s left somatocoel, which will later give rise to the gonads of the

adult animal and possibly other tissues (Hyman, 1955).

Previous research has suggested that the small micromeres contribute to the adult PGCs; however,

it has not been shown directly whether the small micromeres contribute to additional adult tissues or

whether the only source of the adult PGCs are the small micromeres (Pehrson and Cohen, 1986;

Voronina et al., 2008; Juliano et al., 2010a; Juliano et al., 2010b; Yajima and Wessel, 2010; Yajima

and Wessel, 2012; Wessel et al., 2014). The possibility remains that the small micromeres go on to

produce multiple cell types including, but not limited to PGCs (Yajima and Wessel, 2015).

Recent publications tracked small micromeres as they moved from the vegetal pole to the

coelomic pouches (Yajima and Wessel, 2012; Campanale et al., 2014). In Yajima et al., it was

observed that during gut invagination, the small micromeres did not change position relative to the

adjacent mesoderm cells of the advancing archenteron. It was concluded that once they reach the

tip of the archenteron, the small micromeres must actively migrate to the left and right coelomic

pouches (Yajima and Wessel, 2012). Seemingly contradictory evidence from Campanale et al.

described an active migration throughout gastrulation and post-gastrulation as they make their way

to the coelomic pouch (Campanale et al., 2014). While both studies conclude that there is an active

eLife digest Within an animal embryo, groups of cells tend to move, or migrate, between

different areas before they form into tissues and organs. These cell migrations are regulated by

hundreds of genes, which must be expressed at the right time and in the right place. Cells use

proteins called transcription factors to regulate the expression of genes. These proteins work

together in circuit board-like networks called gene regulatory networks in order to drive different

aspects of development, including cell migration.

The sea urchin is a useful model organism to study how animals develop. This is because these

marine animals express many of the same genes as humans, but they can be easily manipulated and

studied in the laboratory. In a developing sea urchin embryo, cells called the small micromeres move

towards one end of animal and get incorporated into a pocket-like structure known as the coelomic

pouch. From this pouch, these cells mature and eventually contribute to the adult germ cells (the

precursors to the sperm and eggs).

Martik and McClay have now analyzed how small micromeres make their way to their final location

in the coelomic pouch. Micromeres were labeled with a dye that fluoresces green so that they could

be tracked under a microscope. This revealed that, like other moving cells, micromeres actively

change their shape as they migrate. Furthermore, when micromeres were experimentally moved to

abnormal locations in the sea urchin embryo, they were still able to actively home in on the coelomic

pouch no matter their starting location.

Martik and McClay then identified five transcription factors expressed in the coelomic pouch in

the sea urchin that are involved in this homing activity. Reducing the expression of any of these

transcription factors was enough to hinder the ability of the micromeres to find their way to the

coelomic pouch. Further experiments and analysis then revealed that these five transcription factors

work together in a sub-circuit, which is in turn embedded in a larger gene regulatory network.

This sub-circuit that drives cell migration is unexpectedly similar to another circuit in the fruit fly

Drosophila. Intriguingly, the sub-circuit in the fly controls eye development, which is unrelated to cell

homing and migration. These observations raise the possibility that this circuit has been conserved as

a unit over millions of years of evolution and redeployed in new networks under completely different

circumstances. The data also suggest the possibility that additional conserved sub-circuits will be

identified as more systems are analyzed in detail.

DOI: 10.7554/eLife.08827.002
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migration post-gastrulation, we clarified whether the small micromeres acquired their active

movement before or after gastrulation. When removed from their endogenous location and placed

ectopically, we find that the small micromeres are autonomous and active while migrating

throughout gastrulation to make it ‘home’ to the coelomic pouch. Their active motility during

gastrulation is essential for the ectopic small micromeres to undergo directed ‘homing’ migration to

the coelomic pouch.

In order to understand this homing ability at a systems level, we took advantage of the robust

homing nature of the small micromeres to determine the GRN at work during their migration. Using a

homing assay to quantitatively score the ability of the coelomic pouch cells to direct movement of the

small micromeres, we constructed a GRN that governs effector genes directly responsible for the

homing mechanism. We find that a specific subcircuit composed of Pax6, Six3, Six1/2, Eya, and Dach1

that is canonically found in retinal development has been deployed for this distinct developmental

process. Here, we describe a GRN for homing behavior and uncover a striking similarity of our

morphogenesis GRN to the retinal determination gene network (RDGN).

Results
Underlying GRNs specify each of the coelomic pouch cell types (oral and aboral mesoderm) and

the small micromeres early in development (Oliveri et al., 2006; Peter and Davidson, 2011;

Materna et al., 2012). We sought to understand the robust nature of the small micromere

migration and how that migratory event is transcriptionally controlled. Given the ability to

experimentally move the small micromeres to ectopic locations, we first learned that the small

micromeres had a remarkable ability to home to the coelomic pouches. Using that observation,

we developed an assay to study how the small micromeres underwent a directed cell migration.

The assay was also used to score for transcriptional regulation of the migration after perturbing

specific transcription factors.

Figure 1. Small micromere movements during gastrulation. (A) The small micromeres arise at the vegetal pole at the

asymmetric fifth cleavage from the micromere lineage (red). During gastrulation, they remain at the tip of the gut.

They migrate through the top of the blastocoel and enter the posterior half of the coelomic pouches by prism stage.

(B) To study small micromere movements and migration at a higher resolution, membrane-GFP-labeled micromeres

were transplanted to a H2b-RFP-labeled host. (C) Small micromeres actively changed shape throughout gastrulation

(extend filopodia and lamellipodia) until they reach the tip of the archenteron. Skeletogenic lineages are labeled as

‘Skel’, and small micromeres are labeled as ‘SM’. See also, Video 1.

DOI: 10.7554/eLife.08827.003
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Small micromeres actively migrate
throughout gastrulation
The mechanisms by which the small micromeres

make their way to the coelomic pouch is a topic

of debate: one paper cites an active migratory

event while another a passive translocation

during gastrulation (Yajima and Wessel, 2012;

Campanale et al., 2014). We followed the

migratory process at a higher cellular resolution

using time-lapse to resolve the seemingly con-

tradictory data on the movement of small

micromeres during gastrulation.

Small micromeres were fluorescently labeled,

so they could be uniquely followed throughout

gastrulation allowing a finer analysis of their

behavior than if those cells were not specifically

identified (Figure 1B and Video 1). Host em-

bryos were labeled by injection of histone2B-RFP

mRNA and micromere-donor embryos with a

membrane-GFP mRNA. At the 16-cell stage, one

donor fluorescent micromere was transplanted to

the vegetal pole where it replaced a surgically

removed micromere (Figure 1B). Each fourth

cleavage micromere gives rise to two lineages:

the small micromere (the proposed primordial

germ cell) and the large micromere (the skeletogenic mesoderm). The transplant surgery was

performed at the 16-cell stage to ensure the survival of the small micromere daughters for two

reasons. First, it assured that the small micromeres (which arise at fifth cleavage by an asymmetric

division of the micromere) were not damaged by separation from the large micromeres during

micromanipulation since they had not yet been born. Second, when the small micromeres appeared,

their only initial connection to the embryo was via the spindle remnant to the large micromere—this

attachment to the large micromere was crucial for the incorporation of the transplant into the host

embryo. Both reasons for surgically transplanting the micromere ensured the re-establishment and

survival of a high percentage of small micromeres in the host embryo (Table 1 shows scoring of

transplant efficacy). At the beginning of gastrulation, this recombinant approach resulted in 8

fluorescent large micromere progeny and 2 fluorescent small micromeres (Figure 1C and Video 1). It

was easy to distinguish the donor small micromere progeny from the large micromere progeny when

the large micromeres fused with non-fluorescent host mesoderm cells to form the skeletal syncytium

thereby greatly diluting their fluorescence (Figure 1C and Video 1).

Chimeric embryos made in this manner were examined over six hours of development to follow cell

behavior. As seen in Figure 1C and Video 1, throughout invagination of the archenteron, the small

micromeres were highly active. They underwent many cell shape changes, blebbing, and pseudopodia

extensions as was also seen by Campanale et al. They extended filopodia and lamellipodia through the

basal lamina surrounding the archenteron. Nevertheless, they retained an adhesion and were not displaced

relative to the adjacent invaginating epithelial cells (Figure 1C and Video 1, 12 hr 00 min–18 hr 00 min).

When gastrulation was completed at 20 hpf (early prism stage), small micromere behavior changed

in tandem with a change in the basal lamina. At a time corresponding to the end of gastrulation,

laminin immunostaining indicated that the basal lamina was undergoing remodeling, as there were

large gaps in the laminin component of the basement membrane at the tip of the archenteron

(Figure 2A). Through those gaps, the small micromeres delaminated (Figure 2A), moved to the

blastocoelar side of the remodeling basal lamina, and then actively migrated to the posterior end of

the left or right coelomic pouch where they were then re-enveloped with a basal lamina layer by 2 dpf

(Figure 2B). The migratory behavior of the small micromeres suggested that they underwent an EMT

at the beginning of their migratory phase over the archenteron and to their coelomic pouch. These

cells de-adhered, breached a basal lamina, changed shape, actively migrated within the blastocoel,

Video 1. Movement of small micromeres throughout

gastrulation. Membrane-GFP labeled micromeres were

transplanted to a H2b-RFP-labeled host. An image was

acquired every 3 min for 6 hr starting at 12 hr post

fertilization. Videos were projected from multiple

z-stacks (every 3 μm, spanning the blastocoel of the

embryo) using SoftWorx for DeltaVision. AVIs were then

rotated and translated (due to swimming embryos) in

FIJI. Frame rate = 5 frames per second.

DOI: 10.7554/eLife.08827.004
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and then rejoined an epithelium, demonstrating a

number of EMT, and perhaps mesenchymal–

epithelial transition (MET), properties.

Small micromeres ‘home’ to the
coelomic pouches from ectopic
positions
In many embryonic systems, cells home, or

migrate in a directed fashion, from their place

of origin to a distant target site. Since that

movement is directed, in each case there must be

a mechanism to provide guidance (Richardson

and Lehmann, 2010; Yajima and Wessel, 2012;

Campanale et al., 2014; Reig et al., 2014).

Knowing that the small micromeres were actively

changing cell shape then moving to a new

location at the end of gastrulation, we tested to

see if small micromeres would undergo a di-

rected migration to the coelomic pouch when

placed in an ectopic location. Normally, small

micromeres start their trajectory at the vegetal

pole, which is the most posterior location in the

embryo and terminate in the coelomic pouches

near the anterior end of the embryo. Accord-

ingly, small micromeres were placed ectopically

at varying locations along the anterior/posterior

axis of 16- to 60-cell staged embryos, and the

frequency of their ability to find their way to the

coelomic pouch at 2 days post fertilization (dpf)

was scored (Figure 3). Micromeres placed at the

vegetal pole served as a control since that is their

endogenous starting location. Donors placed in

the endogenous location homed 86.6% (n = 213)

of the time (Figure 3A). 13.4% of observed cases

that were considered ‘no homing’ were instances

where we could not find fluorescent small

micromeres in the host embryo’s coelomic pouch. Those that did not make it to the coelomic pouch

became lost in the blastocoelar space, which we scored as ‘no homing’. Micromeres were then placed

ectopically between the Veg1 and Veg2 tier and in the animal half between the An1 and An2 tier of

presumptive ectodermal cells (scored together as equator), at the animal pole, or in the blastocoel.

No matter where they were placed, the vast majority of small micromeres transplanted to ectopic

positions anywhere in the embryo made it home (Equator = 93.7% (n = 74), Animal Pole = 78.6% (n = 11),

Blastocoel = 78.6% (n = 11)) (Figure 3B–D). Interestingly, the majority of transplants were scored to

be in the left coelomic pouch after homing suggesting a survival mechanism to ensure the proposed

primordial germ cells make it onto adulthood to contribute to the gamete pool.

Next, we wanted to see how the small micromeres homed. Did they move from the ectopic

position within the plane of the epithelium, or did they ingress from the ectopic location into the

blastocoel and find the coelomic pouch from there? If they did ingress into the blastocoel, were they

first attracted to the endogenous small micromeres before migrating to the coelomic pouch

mesoderm, or did the small micromeres autonomously move to the coelomic pouches? Could it be

that the ectopically placed small micromeres precociously ingressed through the basement

membrane and thus headed directly to their final destination? To see when and where the ectopic

small micromeres found their way home, we transplanted differentially labeled micromeres to two

different locations (one at the animal pole [Figure 3—figure supplement 1A] and one at the equator

[Figure 3—figure supplement 1B]) to host embryos. We then assayed at intervals up to 24 hpf and

Figure 2. Laminin remodeling at the tip of the

archenteron facilitates migration of the small

micromeres to the posterior end of the coelomic pouch.

(A) Once the micromeres reach the tip of the gut, they

undergo an epithelial–mesenchymal transition (EMT). By

immunostaining, we see that laminin (red), at the time, is

reduced as the small micromeres (SM, green) breach the

top of the gut. (B) Once they reach the posterior

coelomic pouch, laminin (red) surrounds the small

micromeres (green) and NSM to encapsulate the

coelomic pouch (yellow dashed circle). (C, D) Ectopically

placed small micromeres underwent an EMT coincident

with the endogenous EMT event of the skeletogenic

cells. Laminin (red) is absent both at the site of

skeletogenic cell ingression (indicated by white arrows

at the site of ingression) and at the site of ectopic small

micromere (SM, green) ingression (indicated by a yellow

arrow).

DOI: 10.7554/eLife.08827.006
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Figure 3. Ectopically placed micromeres are able to find their way to the coelomic pouches via a directed homing

mechanism from any ectopic location. (A) The endogenous, vegetal pole, (B) the equator (p < 0.004), (C) the animal

pole (p < 0.004), or (D) inside of the blastocoel (p < 0.004). Illustrations on the left designate their ectopic placement

(ectopic micromere = green, host embryo = red). Yellow dashed lines indicate the location of the whole coelomic

pouch with the ectopically placed micromeres labeled in green. Graphs depict the percentage of embryos scored

Figure 3. continued on next page
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saw that the ectopically placed micromeres arrived independently of the endogenous micromeres

(Figure 3—figure supplement 1A,B).

The transplanted small micromeres remained at the ectopic site until the primary mesenchyme cells

(PMCs) ingressed. At that time (9–10 hpf), the ectopic small micromeres also ingressed into the

blastocoel (Figure 2C,D). Because the ectopic small micromeres ingressed at the time of skeletogenic

cell ingression, we wondered whether isolated small micromeres could ingress on their own. By

ectopically transplanting just 32-cell stage small micromeres (as opposed to the usual 16-cell stage

micromere, which would result in large and small micromere cells) (Figure 2C), we observed the small

micromeres autonomously invade through the laminin layer independent of large micromeres. The

ectopic small micromeres breached the laminin layer (Figure 2D, yellow arrow) at the same time as

the PMC EMT (Figure 2D, white arrows) suggesting that the small micromeres create the hole

through which they breach and invade, even though the endogenous small micromeres actually

breach the basement membrane about 6–8 hr later when they leave the tip of the archenteron.

Small micromeres home to coelomic pouch precursor cells
Once we learned that the ectopically placed small micromeres home to the coelomic pouch from any

location in the embryo, we next investigated whether the signal to which they were responding was

coming from the coelomic pouch mesoderm. The question was whether the small micromeres home

directly to the coelomic pouch region or indirectly. First, to ask if the mesoderm is the lineage to which

the small micromeres home, we knocked out Delta, a signal necessary for mesodermal specification

(Sherwood and McClay, 1999; Sweet et al., 2002). The lack of mesoderm, indeed, had an effect on

homing. In the experiment, Delta was knocked down in host embryos and control (unperturbed)

micromeres were placed ectopically at the equator of those embryos (Figure 4A). The small

micromeres did not home to any significant location in the embryo (coelomic pouches were non-

existent in the KD) and became lost in the blastocoelar space as is seen in cases we deemed ‘no

homing’ 65% of the time (n = 23, p < 0.0001) (Figure 4C). 35% of the time, there was an incomplete

knockdown of the Delta signal resulting in a coelomic pouch and the small micromeres homed to that

location. Further investigation of the cell types and sub-territories within the coelomic pouch allowed

us to elaborate on the genomic control underpinning the homing mechanism.

Coelomic pouch transcription factors affect small micromeres’ ability to
home
Next, we wanted to know which transcription factors within each territory of the final coelomic pouch

(aboral or oral mesoderm) were upstream of the homing mechanism. We surveyed a list of known

coelomic pouch and small micromere transcription factors, and genes found to maintain expression

levels during homing were included in our list of potential upstream regulators. The genes further

investigated were (1) oral coelomic pouch transcription factors FoxC, FoxF, PitX2; (2) aboral coelomic

pouch transcription factors Dach1, Pax6, SoxE, Six3, Six1/2, and transcriptional co-activator Eya; and

(3) small micromere transcription factors FoxC and Pitx2. Accession numbers are found in Table 2.

The experiment was to transplant a labeled micromere to a differentially labeled host embryo and

assay the small micromeres’ ability to home in either of the two perturbed scenarios: either with a

morpholino-perturbed host embryo or morpholino-perturbed micromere transplant. For each

transcription factor, we transplanted control micromeres to control hosts (a positive control for

homing), perturbed micromeres transplanted to control hosts, and control micromeres transplanted

to perturbed hosts. Transplants were done at the 16-cell stage and scored at two days post-

fertilization. Transplant efficacy was also scored and can be found in Table 1. Only those transplants

Figure 3. Continued

with the given ability to home (Yes vs No), ‘n’ equals the number of embryos scored with the phenotype, and

p-values were calculated using a χ2 test. ‘**’ denotes a statistically significant (p < 0.05) p-value.

DOI: 10.7554/eLife.08827.007

The following figure supplement is available for figure 3:

Figure supplement 1. Ectopic small micromeres arrive at the coelomic pouches independently.

DOI: 10.7554/eLife.08827.008
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containing small micromere were scored for homing or no homing. Failed transplants were cases

where no small micromeres were observed in the embryo.

One transcription factor, Forkhead family member FoxC, was found to affect small micromere

homing when only knocked down in the micromere. FoxC is expressed in both the oral coelomic

pouch mesoderm and the small micromeres; however, only when it was perturbed in the small

micromere did it affect homing, and only 26% (n = 19, p < 0.001) of the time did the small micromeres

successfully make it to the coelomic pouch (Figure 5A).

The first coelomic pouch transcription factor we found to be involved in homing was a Ski/

Sno family member, Dachshund1. When control micromeres were transplanted to a Dachshund1

morpholino perturbed host, the control small micromeres were only able to home in 10%

(n = 10, p < 0.0001) of scored cases (Figure 5B). In contrast, when Dach1 was knocked down in

the small micromeres only, and the host embryo was a control, homing ability was scored as

successful in 77% of cases. We concluded that Dach1 was necessary in the targeted tissue for

homing to occur.

Next, we found the paired box family transcription factor Pax6 was upstream of the small

micromeres’ ability to home. When control micromeres were transplanted to a Pax6 knockdown host,

the small micromeres were only able to home 40% (n = 10, p < 0.004) of the time (Figure 5C). We then

found the six family transcription factor, Six3, to regulate homing. When control micromeres were

transplanted to a Six3 knockdown host, the small micromeres were able to home 11% (n = 9, p <
0.00009) of scored cases (Figure 5D). Next, we saw transcriptional co-activator and tyrosine

phosphatase, Eya, to exhibit an effect on homing. When control micromeres were transplanted to an

Eya knockdown host, small micromeres were able to home 28.5% of the time (n = 7, p < 0.002)

(Figure 5E). Finally, we found another six family transcription factor, Six1/2, to affect homing. Control

micromeres transplanted to a Six1/2 knockdown host were able to home 65% (n = 17, p < 0.02) of

scored cases (Figure 5F). This effect is modest, but statistically significant relative to controls within

that experiment. Transcription factors FoxF, SoxE, FoxC, and Pitx2 did not appear necessary for

homing when perturbed in the coelomic pouch mesoderm (Figure 5—figure supplement 1).

It is important to note that when the same knockdowns are stained for endogenous vasa

expression (labeling the small micromeres), small micromeres are still able to reach the coelomic

pouches (Figure 5—figure supplement 2). We observe that the control endogenous small

micromeres are within the coelomic pouches in tight clusters (Figure 5—figure supplement 2A)

while the knockdowns exhibit various levels of disorganization (Figure 5—figure supplement 2B–H).

Since the endogenous small micromeres normally home over a very short distance, the knockdown

small micromeres, as might be expected, remain close to the coelomic pouches—they do not disperse

from that vicinity, but they do not tightly cluster in the correct location. Also, at this time, there is

Figure 4. Specification of the non-skeletogenic mesoderm (NSM) by Delta signaling is required for homing. Control micromeres labeled with membrane-

GFP were ectopically transplanted to either a control TMR (red) host or a Delta–MO TMR (red) host (A). When control micromeres were transplanted to a

control host, homing of the small micromeres occurs 100% (n = 9) of the time (B). When NSM specification was blocked in a host embryo using a delta

morpholino, homing of transplanted control micromeres was significantly reduced and only homed 53% of the time (n = 23, p < 0.0001) (C, white arrows).

(D) The graph depicts the percentage of embryos (Control Host vs Delta Host) seen with the given ability to home (Black = Homing vs Gray =No Homing),

‘n’ equals the number of embryos scored in each case, and p-values were calculated using a χ2 test. ‘**’ denotes a statistically significant (p < 0.05) p-value.

DOI: 10.7554/eLife.08827.009
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Figure 5. Homing is controlled by upstream transcription factors. By selectively knocking down specific transcription factors in either an ectopically placed

micromere or the host embryo, transcription factors for the homing were identified. (A) FoxC, a transcription factor expressed in the small micromeres and

oral mesoderm was necessary for homing of the small micromere (n = 19, p < 0.001), but had no inhibitory effect on homing when knocked down in just

the mesoderm (n = 13). (B) Dach1, an aboral mesoderm transcription factor, affected homing when knocked down in the mesoderm (n = 10, p < 0.0001)

but did not affect homing when perturbed in the small micromere (n = 13). (C) Pax6, affected homing when knocked down in the mesoderm (n = 10,

Figure 5. continued on next page
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prevalent cell rearrangement at the tip of the archenteron that leads to the fusion of the oral

ectoderm and foregut endoderm (unpublished observations).

Thus of the eleven genes screened for homing behavior, only six were necessary for homing. We

next wanted to better understand how the five coelomic pouch mesodermal transcription factors

scored as necessary for homing might relate in the network circuit that runs in that tissue.

Perturbation analysis unveils a GRN circuit that controls homing
Each of the five transcription factors involved in controlling homing is expressed in the aboral

coelomic pouch. Luo and Su showed that transcription factors Dach1, Eya, Six1/2, and Pax6 are co-

localized in the aboral coelomic pouch (Luo et al., 2012). Six3 was found to be expressed in the aboral

mesoderm early in development, and by double fluorescent in situ hybridization, we see six3 to also

overlap with aboral marker, eya (Figure 6B) (Wei et al., 2011). Six3 was seen to be tightly apposed

with vasa expression but is exclusive from small micromeres. Also, six3 expression is distinct from the

oral, myosin, domain of expression (Figure 6A,C). Expression domains within the coelomic pouch are

illustrated in Figure 6D. Luo and Su also noted that transcription factors Dach1 and FoxC are

expressed in the oral coelomic pouch (Luo et al., 2012). Transcription factor FoxC, however, is

expressed in both the oral coelomic pouch and the small micromeres at the time of small micromere

homing (Luo et al., 2012).

To determine the order of expression of the transcription factors that could potentially act in a

homing subcircuit, we first performed whole mount in situ hybridization on all five homing genes

(dach1, pax6, eya, six1/2, and six3) at eight time points ranging from pre-hatched blastula (before

small micromere migration along the archenteron) to early pluteus (after the small micromeres and

coelomic pouches have coalesced) with a 2- to 4-hr step-time to establish relative timing of expression

(Figure 6—figure supplement 1). By surveying this gene set, we conclude that their co-localization in

the coelomic pouches and temporal expression patterns suggest that these transcription factors may

be interacting (diagram, Figure 6D). To ask how or if these genes interact in a gene network to drive

the morphogenetic cassette, we undertook a perturbation analysis to build a homing GRN upstream

of the morphogenetic movement.

Each transcription factor was perturbed and the effect of that perturbation on the others was

examined. When Dach1 was perturbed using a morpholino specific to the start of translation, we

saw by in situ hybridization an increased expression of dach1 (indicating self repression). Knowing

that dach1 is expressed in the endoderm earlier in development from our time course data, we

concluded that the upregulation seen in the gut was a result of dach1 self-repression not only in

the gut but also later in the coelomic pouch mesoderm expression. A down-regulation of six3 and

a down-regulation of eya transcripts was also seen in the Dach1 perturbation. These data indicate

that Dach1 positively regulates six3 and eya and inhibits the overexpression of itself by repression

(Figure 7).

When Six3 was perturbed using a start site morpholino, we saw a self up-regulation of six3 but only

in the apical expression domain, a down-regulation of eya, and a down-regulation of pax6 transcripts.

Figure 5. Continued

p < 0.004) but had no effect on homing when perturbed in the small micromere (n = 14). (D) Aboral mesoderm transcription factor, Six3 affected homing

when knocked down in the mesoderm (n = 9, p < 0.00009) but had no effect homing when perturbed only in the small micromere (n = 9). (E) Aboral

transcriptional co-activator, Eya, affected homing when knocked down in the mesoderm (n = 7, p < 0.002) but did not affect homing when perturbed in the

small micromeres (n = 8). (F) Aboral transcription factor, Six1/2, affected homing when knocked down in the mesoderm, as well (n = 17, p < 0.02) and did

not affect homing when knocked down in the micromere (n = 11). Yellow circles indicate the location of the coelomic pouch. White arrows indicate ‘lost’

micromeres. The graph depicts the percentage of embryos (Control Host vs MO micromere vs MO Host) seen with the given ability to home

(Black-Homing vs Gray-No Homing), ‘n’ equals the number of embryos scored in each case p-values were calculated using a χ2 test. ‘**’ denotes a

statistically significant (p < 0.05) p-value.

DOI: 10.7554/eLife.08827.011

The following figure supplements are available for figure 5:

Figure supplement 1. Coelomic pouch transcription factors that do not affect homing.

DOI: 10.7554/eLife.08827.012

Figure supplement 2. Whole embryo perturbation of coelomic pouch transcription factors assayed for vasa expression.

DOI: 10.7554/eLife.08827.013
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Figure 6. Expression domains within the coelomic pouch. Double fluorescent in situ hybridization of six3 with vasa shows a tight apposition of their

expression domains but a lack of co-localization (A–A′′′′). Z projection of six3 and vasa is seen in (A), and individual Z sections are seen from aboral to oral

most locations in the embryo in (A′–A′′′′). Insets on panels A–A′′′′ show a zoomed perspective of just the left coelomic pouch apposed expression of six3

and vasa. six3 and eya were seen to overlap in the aboral coelomic pouch in both the Z projection (B) and Z sections (B′′ and B′′′) but not in Z sections

(B′ or B′′′′). myosin expression was seen to be in the most oral expression domain of the coelomic pouch, distinct of six3 (C–C′′′′). An illustration

demonstrating the expression domains observed in the coelomic pouch from our data and the data of Luo and Su, 2012 is displayed in (D) from both the

lateral and oral views.

DOI: 10.7554/eLife.08827.014

Figure 6. continued on next page
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We conclude from these data that Six3 positively regulates eya and pax6 in the coelomic pouch

mesoderm. Perturbing Eya in the same way showed a down-regulation of six3, six1/2, and a self-

down-regulation of eya. Knowing that Eya is a transcriptional co-activator of Six1/2, Eya must

positively regulate itself, six3, and six1/2 by co-acting with Six1/2. Next, Six1/2 was perturbed, and, as

expected, regulatory interactions found reflected those found in the Eya knockdowns indicating that

Eya and Six1/2 do, in fact, act synergistically as has been seen before (Heanue et al., 1999; Materna

et al., 2013). Finally, Pax6 perturbation caused down-regulation of six3, eya, and itself. Pax6,

therefore, positively regulates six3, eya, and itself (Figure 7).

When the network was laid out in a Biotapestry model, the subcircuit controlling the homing

mechanism was readily discerned as a coherent feed-forward loop composed of multiple feedback

loops that sustain its robust nature (Figure 8A) (Longabaugh et al., 2005). It also displayed a striking

resemblance to another circuit well known in development: the RDGN. The Pax-Six-Eya-Dach RDGN is

necessary for specification of retinal cell types in many systems (Purcell et al., 2005; Kozmik et al.,

2007; Kumar, 2009; Salzer et al., 2010;Weasner and Kumar, 2012). The same five factors contribute

to a coherent feed-forward circuit for Drosophila eye specification (Kumar, 2009) (Figure 8B). Few

linkages between the eye and small micromere homing circuits are different (Figure 8).

Discussion
Our chimera experiments show that small micromeres home with high fidelity to the coelomic

pouches no matter where they initially are placed in the embryo. That homing utilizes an autonomous

EMT and a directed movement to the target site in the coelomic pouch. Results detail some of the

complex morphogenetic movements of the small micromeres in their migratory trajectory.

Perturbation analysis identified the transcriptional inputs upstream of the putative homing signal.

Network analysis of the transcription factors necessary for homing signal production unveiled a

stereotypical coherent feed-forward subcircuit that controls the attractive signal. That circuitry shows

a striking similarity to the RDGN or Pax-Six-Eya-Dach Network.

That the same subcircuit is present and used for another purpose in Drosophila was an unexpected

outcome. While it is possible that the similarity is due to convergent evolution, deployment of the

same subcircuit in the two organisms for two very different purposes also suggests another possibility.

Ancient subcircuit functions necessary for systems-level operations in networks may be employed as a

unit as new networks evolve rather than build new systems level operations gene by gene. It isn’t yet

known whether evolution favors subcircuits of similar topology moving as a unit to perform similar

functions in diverse cell types, but advances in systems-level studies should reveal the frequency of

this phenomenon.

Small micromere homing is a complex directed cell migration mechanism
The data from the chimera experiments show that normally small micromeres retain an adhesion to

adjacent cells during archenteron extension. When they arrive at the tip of the archenteron, they

then leave the epithelium using an EMT through a laminin-containing basement membrane, migrate

to the posterior end of the coelomic pouch, and transition back to an epithelium as they coalesce

with the coelomic pouch. Ectopically placed small micromeres behave differently from the

endogenous small micromeres in that they fail to retain epithelial adhesions through gastrulation

and instead go through an EMT at the time PMCs ingress. The fact that the ectopically placed small

micromeres lose adhesion and go through EMT independent of the timing of archenteron tip

formation implies that there must be a non-autonomous cue to keep the endogenous small

micromeres in place during gastrulation. Without that local cue, the small micromeres actively home

from the beginning of gastrulation as seen with the behavior of ectopically placed small

micromeres. Further, there must be a non-autonomous signal that is recognized by small

micromeres when they reach the tip of the forming archenteron that cues them to initiate the

Figure 6. Continued

The following figure supplement is available for figure 6:

Figure supplement 1. Spatial and temporal expression of homing genes by whole mount in situ hybridization.

DOI: 10.7554/eLife.08827.015
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EMT and migration. The behavior of the ectopic cells suggest that the migratory capacity can be

activated at the beginning of gastrulation, but since they normally do not move from the epithelium

until at the tip of the archenteron, another event may stimulate them to complete their journey to

the coelomic pouches.

Figure 7. Perturbation analysis unveils regulatory linkages in a homing GRN. Perturbations using a Dach1 morpholino (MO) showed Dach1 to be upstream

of dach1, six3, and eya. A Six3-MO caused a downregulation of eya and pax6. Pertubations with an Eya-MO showed Eya to be upstream of six3, six1/2,

and eya. Six1/2 is seen to be upstream of six3, eya, and six1/2. Finally, a Pax6-MO caused a downregulation of six3, eya, and pax6. Arrows represent up or

downregulation seen for each panel. ‘n’ equals the total number of embryos scored, and the adjacent percentage designates the percent of embryos

scored with the shown effect. Morpholino morphology phenotypes at 24 hpf and 48 hpf are presented in Figure 7—figure supplement 1. Unpublished

morpholino data has been validated using a second, distinct morpholino (see Figure 7—figure supplement 2).

DOI: 10.7554/eLife.08827.016

The following figure supplements are available for figure 7:

Figure supplement 1. Morpholino phenotypes.

DOI: 10.7554/eLife.08827.017

Figure supplement 2. Morpholino effects seen in this paper that have not previously been validated were confirmed using a second morpholino

designed in a location distinct to the site of the first morpholino.

DOI: 10.7554/eLife.08827.018
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Observations of ectopically placed small micromeres also reveal that the cells undergo directed cell

migration to get to the coelomic pouch mesoderm. The cells find their way to the coelomic pouch no

matter their starting location. In other systems cells become polarized in response to a

chemoattractant signal at the leading edge of the cell while the remainder of the cell is cued to

receive inhibitory or repulsion signals responsible for increasing its sensitivity to its target location (as

reviewed by Richardson and Lehmann, 2010; Reig et al., 2014). Small micromeres appear to take a

fairly direct route to their eventual target no matter where they are initially placed. Since the normal

route involves movement through part of the blastocoel, and since ectopic small micromeres also use

the blastocoelar route, the putative homing signal likely is produced earlier than the end of

gastrulation since the ectopic small micromeres move through the blastocoel to the correct target

well before gastrulation is completed.

At present, it is only speculation that there is a chemoattraction mechanism at play. If it were

chemoattraction, the cue must work at the individual cell level since single small micromeres respond

to the cue when ectopically placed. The transcriptional regulation upstream of that putative signal

offers approaches for its identification. Potentially, as an alternative hypothesis, the coelomic pouch

NSM could be drawing the small micromeres to their final site by filopodia, since it is known that these

cells as well as the small micromeres extend filopodia (Hardin, 1988; Campanale et al., 2014). These

hypotheses will need to be explored further.

Control of morphogenetic movements at a systems level involves a
series of subcircuits to drive complex cell behavior
The goal of determining upstream transcriptional regulation of the homing process requires

connection of the aforementioned network (Figure 8A) to chemoattraction mechanisms (both

attractant and repulsion) directly responsible for the directing migration. In addition, other

subcircuits are necessary to drive the EMT, for reception of the putative signal, and for directed

movement in response. Transcriptional control of directed cell migration is not well studied at a

systems level. There are a few examples, however, that suggest the way these systems work.

Findings in the tunicate, Ciona intestinalis, describe the distinct transcriptional regulation of a

cellular module that drives migration of heart precursors. The heart GRN drives membrane

protrusions and RhoGTPase signaling, tail retraction, adhesion, and polarity (Christiaen et al.,

2008). One important feature of that study was that the cells constitutively expressed many of the

factors required for these cell behaviors. It only took one or two factors to be under direct control of

the developmental GRN to regulate the timing, directionality, onset, and termination of the heart

cell precursors’ journey. In the sea urchin, five different GRN subcircuits were shown to drive five

different cellular components of an EMT (Saunders and McClay, 2014). It is highly likely, like Ciona

heart cells, that the sea urchin developmental GRN will control directly expression of only a fraction

of the proteins used for de-adhesion, motility, invasion of the basement membrane, altered cell

Figure 8. Homing GRN subcircuit shows striking resemblance to Drosophila RDGN. (A) The perturbation analysis

was mapped as a Biotapestry network model. (B) A retinal gene network subcircuit extracted from Drosophila

(Kumar, 2009) shows a very similar circuit with few regulatory linkage changes in comparison.

DOI: 10.7554/eLife.08827.019

The following figure supplement is available for figure 8:

Figure supplement 1. The RDGN subcircuit is conserved throughout evolution.

DOI: 10.7554/eLife.08827.020
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polarity, and cell shape changes, all components of an EMT, while many other proteins in those

processes will be constitutively expressed. Using small micromere homing as an assay, we were able

to begin to unravel the intricacy of GRN subcircuits that control cell migration to a target site. This

work thus demonstrates how morphogenesis can be controlled by conserved specification GRN

subcircuits.

The small micromere homing example reveals something else in morphogenetic movement

control. We tend to think of the result of the movement: the small micromeres become associated

with the aboral coelomic pouch through homing. Yet, to accomplish that feat, both the cells that

home and the target cells must enact a series of coordinated, but independent processes. Here, we

found a set of genes that control the production of the putative homing signal. Being that the

subcircuit is of coherent feed-forward topology, we suspect it will be found at the most distal part

of a larger GRN; therefore, it will act downstream of the specification circuitry of the signal-

producing cell type. Connecting that upstream subcircuit to the downstream signal(s) will provide a

tool for explaining one component of the homing mechanism that we know to be transcriptionally

controlled.

Deployment of a whole subcircuit controls distinct developmental
processes
Recognizable RDGN components are deployed in a variety of developmental processes in

different organisms. After pooling published data from three different fields of study

(demosponge canal systems, vertebrate skeletal muscle, and mouse otic placodes), we were

able to construct putative GRN models (Figure 8—figure supplement 1). Although each

respective subcircuit is embedded in a larger specification GRN, when extracted as a subcircuit,

it appears that the RDGN feed-forward topology has been deeply conserved (Torres et al.,

1996; Heanue et al., 1999; Relaix and Buckingham, 1999; Xu et al., 1999; Ridgeway and

Skerjanc, 2001; Kardon et al., 2002; Laclef et al., 2003; Riley and Phillips, 2003; Zheng,

2003; Ozaki, 2004; Silver, 2004; Relaix et al., 2013; Rivera et al., 2013). Only now that we

have been able to make a complete RDGN subcircuit in the sea urchin, can we hypothesize

about what evolutionary mechanism may be at play. With the same transcription factors

involved in a similar feed-forward process in such a variety of tissues, we hypothesize that the

RDGN subcircuit is ancient and has been repeatedly deployed as a unit to provide feed-forward

control.

If this subcircuit is redeployed throughout evolution as a unit, as seems to be the case given the

frequency of its presence, the mechanism that keeps it intact is unknown. Evolving as a modular unit

must mean that the subcircuit serves as an indispensible or important component in a network full of

modular components. The assembly of the coherent feed-forward circuit, once established, appears

to remain intact in separate lineages for the same reason: that circuit must be critical for the GRNs in

which it is embedded. Its presence raises the question of whether there are other ancient or more

recent subcircuits that have evolved as modules. Since analysis of developmental GRNs is a

relatively young field, it is possible that a number of ancient modular subcircuits evolve as units to

assist in the diversification of cell types and morphogenesis. One obvious outcome of this mode of

inheritance would be a contribution to robustness in developmental mechanisms. And perhaps once

a subcircuit is particularly well integrated and suited for a given type of regulatory function, each of

its members (in our case, transcription factors) might act as a constraint on the others because any

reduction in integration would be less adaptive.

What is intriguing is how ancient the RDGN must be. It is a circuit that is used because it efficiently

provides an excellent feed-forward circuit that stabilizes the process to which it is attached. It is best

studied in retinal determination but its ancestral role is unknown and could equally well be directed

cell migration.

Materials and methods

Adult animals and embryo culture
Adult Lytechinus variegatus were obtained from Reeftopia (Key West, FL, United States) or the Duke

University Marine Lab (Beaufort, NC, United States). Gametes were obtained by injection of 0.5 M KCl

into the adult coelom. Embryos were cultured at 23˚C in artificial seawater (ASW).
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Cloning of RDGN genes
The full-length coding sequences for NSM transcription factors, Delta, and RDGN genes were

obtained by designing primers against a transcriptome data set. Nucleotide sequences were

annotated and deposited on GenBank (Accession Numbers: Table 2).

Morpholino and mRNA microinjections
Morpholino antisense oligonucleotides were designed against the start site of translation by

GeneTools. Morpholino sequences and concentrations are as listed in Table 3. Morpholinos were

diluted in molecular-grade H20 and either FITC or TMR injectable dyes. Morpholino experiments were

carried out on three biological triplicates, cultured at 23˚C, and assayed by in situ hybridization.

Phenotypes of morpholinos at 24 hpf and 48 hpf were imaged to show the overall health and

morphology of knockdowns (Figure 7—figure supplement 1). Published morpholinos listed in

Table 3 were verified using appropriate controls explained in the citation referenced. Two

morpholinos were assayed to test the specificity of Six3, FoxF, and FoxC. Appropriate efficacy

controls were also carried out previously for Six3, FoxF, FoxC, Delta, Six1/2, and Dach1 as is cited in

Table 3. Previously unpublished morpholinos were validated by ordering a second, distinct

morpholino to the start of translation or 5′ UTR and were verified using in situ hybridization

(Figure 7—figure supplement 2). mRNA for injection was transcribed in vivo using Ambion

mMessage mMachine. Concentrations for mRNA injections: 300 ng/μl Histone2B-GFP, 500 ng/μl
Histone2B-RFP, 500 ng/μl membrane-RFP, and 300 ng/μl membrane-GFP. For injection, mRNAs were

diluted in 20% glycerol in diethylpyrocarbonate-treated H2O.

Microsurgeries
At 2.5 hpf, one micromere from an injected donor embryo was transplanted onto a differentially

injected 16-cell host embryo in the place of one discarded host micromere or at an ectopic location.

Microsurgery was performed with fine glass needles and Narishige micromanipulators. Detailed

methods of injections and transplants were followed as previously described (Logan et al., 1999).

Transplant efficacy was scored in Table 1.

Live image acquisition
At 11 hpf, embryos were de-ciliated in 2×
hypertonic artificial seawater, mounted in 1×
artificial seawater containing 10 μM p-methoxy-

phenyl isoxazoline (Semenova et al., 2011) on a

slide coated in 1% protamine sulfate and sealed

with a combination of Vasoline, lanolin, and

paraffinwax (also known as V.A.L.A.P.). Images

were acquired using Coolsnap high-resolution

CCD camera on the DeltaVision Elite with 40×/
0.65–1.35 Oil UAPO40X0I3/340 DIC objective.

Images were collected at 3-min intervals begin-

ning at 12 hpf and ending at 18 hpf or later

and projected as videos using SoftWorx for

DeltaVision.

Table 1. Transplant efficacy for microsurgeries

Microsurgery Successful transplants (%) Failed transplants (%)

Ctrl host/Ctrl micromeres (Figure 5) 51 ± 9 49 ± 9

Ctrl host/MO micromeres (Figure 5) 40 ± 20 60 ± 20

MO host/Ctrl micromeres (Figure 5) 48 ± 17 52 ± 17

DOI: 10.7554/eLife.08827.005

Table 2. Plasmids used in this study

Plasmid Fragment Accession number

Dach1 Full CDS KR181947

Delta Full CDS KR181946

Eya Full CDS KR181945

FoxC Full CDS KR181944

FoxF Full CDS KR181943

Pax6 Full CDS KR181942

PitX2 Full CDS KR181941

Six3 Full CDS KR181940

SoxE Full CDS KR181939

DOI: 10.7554/eLife.08827.010
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Immunostaining and fixed imaging
Embryos were fixed in 4% paraformaldehyde for 10 min, washed in PBST, blocked in 4% normal goat

serum (in PBST) for 45 min, and incubated in polyclonal anti-Laminin antibody (1:250) (ab11575; Abcam

[Cambridge, MA, United States]) and anti-GFP (1:2000) (ab13970; Abcam) overnight at 4˚C. Embryos

were then washed in PBST, incubated in a 1:200 dilution of either Cy2- or Cy3-conjugated secondary

antibody, and finally, stained with Hoechst’s (1:1000) (Molecular Probes [Eugene, OR, United States]) to

label all nuclei. Images were acquired using Zeiss LSM 510 upright confocal with a 40×/1.4 Oil Plan-

Apochromat objective. Z-slices were spaced 1.0 μm apart spanning the diameter of the embryo.

Whole mount in situ hybridization
RNA in situ hybridization was performed using Digoxigenin-11-UTP-labeled probes as previously

described (McIntyre et al., 2013). Briefly, embryos were fixed in 4% paraformaldehyde overnight at

4˚C, washed with ASW, and stored in methanol at −20˚C. RNA probes were synthesized in vitro and

used at 1 ng/μl. Hybridization took place at 60–65˚C. Probes were visualized using alkaline

phosphatase-conjugated anti-DIG antibody (1:1500, Roche [Indianapolis, IN, United States]). Finally,

color was developed using NBT/BCIP (Roche). For double fluorescent in situ hybridization, a second

probe (labeled with Fluorescein-12-UTP) was hybridized. Expression was visualized using the

Tyramide Signal Amplification system (TSA-plus kit, Perkin Elmer [Waltham, MA, United States]).

Embryos were visualized with a Zeiss Axioplan2 upright microscope.

Statistical analysis
GraphPad software was used to analyze a 2 × 2 contingency table with rows corresponding to the

condition (controls and knockdown micromeres or controls and knockdown hosts) and columns

corresponding to outcomes (‘homing’ or ‘no homing’). Chi-squared was then calculated, and a p-value

was declared significant at a value of less than 0.05.
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Table 3. Morpholino anti-sense oligonucleotide sequences used in this study

MASO MASO sequence Morpholino type

Working

concentration

LvPax6-MO1 GTTGACCTGGCATAGCAGCATTTAC Translation blocking 1.2 mM

LvPax6-MO2 CATGTCCCCGTGACCCATAGTTTTC Translation blocking 0.3 mM

LvEya-MO1 GCGCTGAAGCTATTTGACATGCTGT Translation blocking 0.75 mM

LvEya-MO2 GTTGAAACCTGTTTGACTGTAGGCC Translation blocking 1 mM

LvSix3-MO ATGTTTCCGACTCCGTCCAAACCAT Translation blocking (Wei et al., 2009) 0.75 mM

LvSix1/2-MO CCCAAGTCCGTGGCAAGGATAAGAT Translation blocking (Ransick and Davidson,
2012)

0.5 mM

LvDach1-MO AGTAGGCGGTGGACTTCCCATTTTC Translation blocking (Peter and Davidson, 2011) 0.5 mM

LvFoxC-MO TGAAGCGTACATTGGCATGGATGTT Translation blocking (Andrikou et al., 2015) 0.75 mM

LvDelta-MO GTGCAGCCGATTCGTTATTCCTTT Translation blocking (Sweet et al., 2002) 0.4 mM

LvFoxF-MO TCTAATTGAGTCATCTGGAGAGTGT Translation blocking (Andrikou et al., 2015) 0.75 mM

LvSoxE-MO GCTCTAAACTCTCAGGGCTACTCAT Translation blocking 0.75 mM

LvPitX2-MO ACTGGTTCATCGCTGCTGATTAATT Translation blocking 0.6 mM

Control-MO CCTCTTACCTCAGTTACAATTTATA Translation blocking ExptDependent

DOI: 10.7554/eLife.08827.021
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