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Abstract. The process of outer approximating a coherent lower prob-
ability by a more tractable model with additional properties, such as
2- or completely monotone capacities, may not have a unique solution.
In this paper, we investigate whether a number of approaches may help
in eliciting a unique outer approximation: minimising a number of dis-
tances with respect to the initial model, or maximising the specificity of
the outer approximation. We apply these to 2- and completely monotone
approximating lower probabilities, and also to possibility measures.
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1 Introduction

The theory of imprecise probabilities [13] encompasses the different models that
may be used as an alternative to probability theory in situations of imprecise or
ambiguous information. Among them, we can find credal sets [7], coherent lower
probabilities [13], belief functions [11] or possibility measures [15].

Within imprecise probabilities, one of the most general models are coherent
lower and upper probabilities. However, this generality is at times harmed by
the difficulties that arise when using them in practice. For example, there is
no simple procedure for computing the extreme points of its associated credal
set, and there is no unique coherent extension to gambles. These problems are
solved when the coherent lower probability satisfies the additional property of
2-monotonicity [4,12], or that of complete monotonicity.

For this reason, in previous papers [9,10] we investigated the problem of
transforming a coherent lower probability into a 2-monotone one that does not
add information to the model while being as close as possible to it. This led us
to the notion of undominated outer approximations, formerly introduced in [2].
In [9] we analysed the properties of the 2-monotone outer approximations, while
in [10] we studied the completely monotone ones, considering in particular the
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outer approximations in terms of necessity measures. In both cases, we found out
that there may be an infinity of undominated outer approximations, and that
their computation may be quite involved. Nevertheless, in the case of necessity
measures, we proved that there are a finite number of undominated ones and we
introduced a procedure for determining them.

Since in any case there is not a unique undominated outer approximation
in terms of 2- or completely monotone lower probabilities or even in terms of
necessity measures, in this paper we explore a number of possibilities that may
help single out a unique undominated outer approximation. After introducing
some preliminary notions in Sect. 2, formalising the idea of outer approximation
and summarising the main properties from [9,10] in Sect. 3, in Sects. 4 and 5 we
introduce and compare a number of different procedures to elicit an undominated
outer approximation. We conclude the paper in Sect. 6 summarising the main
contributions of the paper. Due to space limitations, proofs have been omitted.

2 Imprecise Probability Models

Consider an experiment taking values in a finite possibility space X =
{x1, . . . , xn}. A lower probability on P(X ) is a monotone function P : P(X ) →
[0, 1] satisfying P (∅) = 0, P (X ) = 1. For every A ⊆ X , P (A) is interpreted
as a lower bound for the true (but unknown) probability of A. Any lower
probability determines the credal set of probability measures that are compat-
ible with it, given by M(P ) = {P | P (A) ≥ P (A) ∀A ⊆ X}. We say that
P avoids sure loss when M(P ) is non-empty, and that it is coherent when
P (A) = min{P (A) | P ∈ M(P )} for every A ⊆ X .

Associated with P , we can consider its conjugate upper probability, given by
P (A) = 1 − P (Ac) for every A ⊆ X . The value P (A) may be interpreted as an
upper bound for the unknown probability of A, and it follows that P ≥ P if and
only if P ≤ P . This means that the probabilistic information given by a lower
probability and its conjugate upper probability are equivalent, and so it suffices
to work with one of them.

A coherent lower probability P is k-monotone if for every 1 ≤ p ≤ k and
A1, . . . , Ap ⊆ X it satisfies P

(∪p
i=1 Ai

) ≥ ∑
∅�=I⊆{1,...,p}(−1)|I|+1P

(∩i∈I Ai

)
. Of

particular interest are the cases of 2-monotonicity and complete monotonicity;
the latter refers to those lower probabilities that are k-monotone for every k.

Any lower probability P can be represented in terms of a function called
Möbius inverse, denoted by mP : P(X ) → R, and defined by:

mP (A) =
∑

B⊆A

(−1)|A\B|P (B), ∀A ⊆ X .

Conversely, mP allows to retrieve P using the expression P (A) =
∑

B⊆A mP (B).
Moreover, mP is the Möbius inverse associated with a 2-monotone lower proba-
bility P if and only if [3] mP satisfies:

∑

A⊆X
mP (A) = 1, mP (∅) = 0, mP ({xi}) ≥ 0 ∀xi ∈ X , (2monot.1)



On the Elicitation of an Optimal Outer Approximation 69

∑

{xi,xj}⊆B⊆A

mP (B) ≥ 0, ∀A ⊆ X , ∀xi, xj ∈ A, xi �= xj , (2monot.2)

while it is associated with a completely monotone lower probability if and only
if [11] mP satisfies:

∑

A⊆X
mP (A) = 1, mP (∅) = 0, mP (A) ≥ 0 ∀A ⊆ X . (Cmonot.1)

Completely monotone lower probabilities are also connected to Dempster-Shafer
Theory of Evidence [11], where they are called belief functions. In that case, the
events with strictly positive mass are called focal events.

Another usual imprecise model is that of necessity and possibility measures.
A possibility measure [6,15], denoted by Π, is a supremum-preserving function:

Π(∪i∈IAi) = sup
i∈I

Π(Ai), ∀Ai ⊆ X , i ∈ I.

In our finite framework, the above condition is equivalent to Π(A ∪ B) =
max{Π(A),Π(B)} for every A,B ⊆ X . Every possibility measure is a coher-
ent upper probability. Its conjugate lower probability, denoted by N and called
necessity measure, is a completely monotone lower probability and its focal events
are nested.

3 Outer Approximations of Coherent Lower Probabilities

Even if coherent lower probabilities are more general than 2-monotone ones, the
latter have some practical advantages. For example, they can be easily extended
to gambles [4] and the structure of their credal set can be easily determined [12].
Motivated by this, in [9] we proposed to replace a given coherent lower proba-
bility by a 2-monotone one that does not add information to the model while
being as close as possible to the initial model. The first condition gives rise to the
notion of outer approximation, and the second leads to the notion of undominated
approximations. These concepts were formalised by Bronevich and Augustin [2]:

Definition 1. Given a coherent lower probability P and a family C of coherent
lower probabilities, Q is an outer approximation (OA, for short) of P if Q ≤ P .
Moreover, Q is undominated in C if there is no Q′ ∈ C such that Q � Q′ ≤ P .

Similarly, given a coherent upper probability P and a family C of coherent upper
probabilities, Q ∈ C is an outer approximation of P if Q(A) ≥ P (A) for every
A ⊆ X , and it is called non-dominating in C if there is no Q

′ ∈ C such that
Q � Q

′ ≥ P . It follows that Q is an outer approximation of P if and only if its
conjugate Q is an outer approximation of the lower probability P conjugate of
P .

Let us consider now the families C2, C∞ and CΠ of 2- and completely mono-
tone lower probabilities and possibility measures. In [9,10] we investigated several
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properties of the undominated (non-dominating for CΠ) outer approximations
in these families. We showed that determining the set of undominated OA in
C2 and C∞ is not immediate, and that these sets are infinite in general. The
problem is somewhat simpler for the outer approximations in CΠ , even if in this
case there is not a unique non-dominating OA either. In this paper, we discuss
different procedures to elicit a unique OA.

Before we proceed, let us remark that we may assume without loss of gener-
ality that all singletons have strictly positive upper probability.

Proposition 1. Let P ,Q : P(X ) → [0, 1] be two coherent upper probabilities
such that P ≤ Q. Assume that P ({x}) = 0 < Q({x}) for a given x ∈ X , and let
us define Q

′
: P(X ) → [0, 1] by Q

′
(A) = Q(A \ {x}) for every A ⊆ X . Then:

1. P ≤ Q
′
� Q.

2. If Q is k-alternating, so is Q
′
.

3. If Q is a possibility measure, so is Q
′
.

The proposition above allows us to deduce the following:

Corollary 1. Let P : P(X ) → [0, 1] be a coherent upper probability and let Q
be a non-dominating outer approximation of P in C2, C∞ or CΠ . If P ({x}) = 0,
then also Q({x}) = 0.

As a consequence, we may assume without loss of generality that P ({x}) > 0
for every x ∈ X . This is relevant for the proofs of the results in Sect. 5.

4 Elicitation of an Outer Approximation in C2 and C∞

From [9,10], the number of undominated OAs in C2 and C∞ is not finite in
general. In [9,10] we focused on those undominated OAs in C2 and C∞ that
minimise the BV-distance proposed in [1] with respect to the original coherent
lower probability P , given by dBV (P ,Q) =

∑
A⊆X |P (A) − Q(A)|. It measures

the amount of imprecision added to the model when replacing P by its OA Q.
Hence, its seems reasonable to minimise the imprecision added to the model.

Let CBV
2 (P ) and CBV

∞ (P ) denote the set of undominated OAs in C2 and C∞,
respectively, that minimise the BV-distance with respect to P . One advantage
of focusing our elicitation to CBV

2 (P ) and CBV
∞ (P ) is that these sets can be easily

determined. Indeed, both CBV
2 (P ) and CBV

∞ (P ) can be computed as the set of
optimal solutions of a linear programming problem ([9, Prop. 1], [10, Prop. 3]).
Hence, both sets are convex, and have an infinite number of elements in general.
In the rest of the section we discuss different approaches to elicit an undominated
OA within CBV

2 (P ) and CBV
∞ (P ).

4.1 Approach Based on a Quadratic Distance

One possibility for obtaining a unique solution to our problem could be to use
the quadratic distance, i.e., to consider the OA in CBV

2 or CBV
∞ minimising

dp

(
P ,Q

)
=

∑

A⊆X

(
P (A) − Q(A)

)2
. (1)
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Given δBV
2 = minQ∈C2 dBV (P ,Q) and δBV

∞ = minQ∈C∞ dBV (P ,Q), in CBV
2 we

may set up the quadratic problem of minimising Eq. (1) subject to the constraints
(2monot.1)−(2monot.2), and also to

∑

B⊆A

mQ(B) ≤ P (A) ∀A �= ∅,X . (OA)

∑

A⊆X

⎛

⎝P (A) −
∑

B⊆A

mQ(B)

⎞

⎠ = δBV
2 . (2monot-δ)

Analogously, in CBV
∞ we can minimise Eq. (1) subject to (Cmonot.1), (OA) and:

∑

A⊆X

⎛

⎝P (A) −
∑

B⊆A

mQ(B)

⎞

⎠ = δBV
∞ . (Cmonot-δ)

Proposition 2. Let P be a coherent lower probability. Then:

1. The problem of minimising Eq. (1) subject to (2monot.1) ÷ (2monot.2), (OA)
and (2monot-δ) has a unique solution, which is an undominated OA of P in
CBV
2 (P ).

2. Similarly, the problem of minimising Eq. (1) subject to (Cmonot.1), (OA)
and (Cmonot-δ) has a unique solution, which is an undominated OA of P in
CBV

∞ (P ).

The following example illustrates this result.

Example 1. Consider the coherent P given on X = {x1, x2, x3, x4} by [9, Ex.1]:

P (A) =

⎧
⎪⎨

⎪⎩

0 if |A| = 1 or A = {x1, x2}, {x3, x4}.

1 if A = X .

0.5 otherwise.

For this coherent lower probability, δBV
2 = δBV

∞ = 1, the sets CBV
2 (P ) and

CBV
∞ (P ) coincide and they are given by

{
Q

α
| α ∈ [0, 0.5]

}
, where:

Q
α
(A) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 if |A| = 1 or A = {x1, x2}, {x3, x4}.

α if A = {x1, x4}, {x2, x3}.

0.5 − α if A = {x1, x3}, {x2, x4}.

0.5 if |A| = 3.

1 if A = X .

Therefore, if among these Q
α

we minimise the quadratic distance with respect
to P , the optimal solution is Q

0.25
, in both C2 and C∞. �
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Note that the solution we obtain in Proposition 2 is not the OA that minimises
the quadratic distance in C2 (or C∞), but the one that minimises it in CBV

2 (or
CBV

∞ ).
While the quadratic distance is in our view the most promising approach in

order to elicit a unique undominated OA of P in C2 and C∞, it is not the only
possibility. In the rest of the section we explore other approaches.

4.2 Approach Based on the Total Variation Distance

Instead of considering the quadratic distance, we may consider some extensions
of the total variation distance [8, Ch.4.1] defined between lower probabilities:

d1(P 1, P 2) = max
A⊆X

|P 1(A) − P 2(A)|, (2)

d2(P 1, P 2) =
1
2

∑

x∈X
|P 1({x}) − P 2({x})| , (3)

d3(P 1, P 2) = sup
P1≥P 1,P2≥P 2

(
max
A⊆X

|P1(A) − P2(A)|
)
. (4)

Thus, instead of minimising Eq. (1) we may consider the OA in CBV
2 (P ) or

CBV
∞ (P ) that minimises one of di(P ,Q). However, none of d1, d2, d3 determines

a unique OA in CBV
2 (P ) or CBV

∞ (P ), as we next show.

Example 2. Consider the coherent P in a four-element space given by:

A P (A) Q
0
(A) Q

1
(A)

{x1} 0.1 0.1 0.1
{x2} 0 0 0
{x3} 0 0 0
{x4} 0.3 0.3 0.3

{x1, x2} 0.1 0.1 0.1
{x1, x3} 0.3 0.2 0.3
{x1, x4} 0.6 0.6 0.5

A P (A) Q
0
(A) Q

1
(A)

{x2, x3} 0.3 0.3 0.2
{x2, x4} 0.4 0.3 0.4
{x3, x4} 0.4 0.3 0.3

{x1, x2, x3} 0.5 0.5 0.5
{x1, x2, x4} 0.6 0.6 0.6
{x1, x3, x4} 0.7 0.7 0.7
{x2, x3, x4} 0.6 0.6 0.6

X 1 1 1

In [10, Ex.1] we showed that CBV
∞ (P ) is given by

{
Q

0
, Q

1
, Q

α
| α ∈ (0, 1)

}
, where

Q
α

= αQ
0

+ (1 − α)Q
1
. In all the cases it holds that:

d1
(
P ,Q

0

)
= d1

(
P ,Q

1

)
= d1

(
P ,Q

α

)
= 0.1 ∀α ∈ (0, 1).

d2
(
P ,Q

0

)
= d2

(
P ,Q

1

)
= d2

(
P ,Q

α

)
= 0 ∀α ∈ (0, 1).

d3
(
P ,Q

0

)
= d3

(
P ,Q

1

)
= d3

(
P ,Q

α

)
= 0.6 = max

A⊆X
|P (A) − Q

α
(A)| ∀α ∈ (0, 1).

This means that none of d1, d2 and d3 allows to elicit a unique OA from CBV
∞ .�

Consider now the undominated OAs in C2. First of all, note we may disregard
d2, because from [9, Prop.2] every undominated OA Q in C2 satisfies Q({x}) =
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P ({x}) for every x ∈ X , and therefore d2(P ,Q) = 0. The following example
shows that d1 and d3 do not allow to elicit a unique undominated OA from
CBV
2 (P ), either.

Example 3. Consider now the coherent lower probability P given by:

A P (A) Q
0
(A) Q

1
(A)

{x1} 0 0 0
{x2} 0 0 0
{x3} 0.1 0.1 0.1
{x4} 0 0 0

{x1, x2} 0.3 0.2 0.2
{x1, x3} 0.3 0.3 0.3
{x1, x4} 0.2 0.2 0.2

A P (A) Q
0
(A) Q

1
(A)

{x2, x3} 0.3 0.3 0.3
{x2, x4} 0.3 0.2 0.3
{x3, x4} 0.4 0.4 0.3

{x1, x2, x3} 0.5 0.5 0.5
{x1, x2, x4} 0.6 0.6 0.6
{x1, x3, x4} 0.6 0.6 0.6
{x2, x3, x4} 0.6 0.6 0.6

X 1 1 1

It holds that CBV
2 (P ) = CBV

∞ (P ) =
{

Q
0
, Q

1
, Q

α
| α ∈ (0, 1)

}
, where Q

α
=

αQ
0

+ (1 − α)Q
1
. However:

d1
(
P ,Q

0

)
= d1

(
P ,Q

1

)
= d1

(
P ,Q

α

)
= 0.1 ∀α ∈ (0, 1), and

d3
(
P ,Q

0

)
= d3

(
P ,Q

1

)
= d3

(
P ,Q

α

)
= 0.5 = max

A⊆X
∣
∣P (A) − Q

α
(A)

∣
∣, ∀α ∈ (0, 1).

Thus, neither d1 nor d3 determines a unique undominated OA in CBV
2 (P ). �

4.3 Approach Based on Measuring Specificity

When we consider the OAs of P in C∞, we may compare them by measuring
their specificity. We consider here the specificity measure defined by Yager [14],
that splits the mass of the focal events among its elements.
Definition 2. Let Q be a completely monotone lower probability on P(X ) with
Möbius inverse mQ. Its specificity is given by

S(Q) =
∑

∅�=A⊆X

mQ(A)

|A| =
n∑

i=1

1
i

∑

A:|A|=i

mQ(A).

Hence, we can choose an undominated OA in CBV
∞ (P ) with the greatest speci-

ficity. The next example shows that this criterion does not give rise to a unique
undominated OA.
Example 4. Consider again Example 1, where CBV

∞ =
{
Q

α
| α ∈ [0, 0.5]

}
. The

Möbius inverse of Q
α

is given by

mQ
α
({x1, x4}) = mQ

α
({x2, x3}) = α, mQ

α
({x1, x3}) = mQ

α
({x2, x4}) = 0.5−α

and zero elsewhere. Hence, the specificity of Q
α

is

S(Q
α
) =

1
2

(α + α + 0.5 − α + 0.5 − α) = 0.5,

regardless of the value of α ∈ [0, 0.5]. We conclude that all the undominated
OAs in CBV

∞ (P ) have the same specificity. �
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5 Elicitation of an Outer Approximation in CΠ

In [10, Sec.6] we showed that the set of non-dominating OAs in CΠ is finite
and that we have a simple procedure for determining them. Given the conjugate
upper probability P of P , each permutation σ in the set Sn of all permutations
of {1, 2, . . . , n} defines a possibility measure by:

Πσ({xσ(1)}) = P ({xσ(1)}), and (5)

Πσ({xσ(i)}) = max
A∈Aσ(i)

P (A ∪ {xσ(i)}), where for every i > 1 : (6)

Aσ(i) =
{

A ⊆ {xσ(1), . . . , xσ(i−1)} | P (A ∪ {xσ(i)}) > max
x∈A

Πσ({x})
}

, (7)

and Πσ(A) = maxx∈A Πσ({x}) for every A ⊆ X . Then, the set of non-
dominating OAs of P is {Πσ | σ ∈ Sn} (see [10, Prop.11, Cor.13]).

Next we propose a number of approaches to elicit a unique OA of P among
the Πσ determined by Eqs. (5) ÷ (7). Note that the procedure above may deter-
mine the same possibility measure using different permutations. The next result
is concerned with such cases, and will be helpful for reducing the candidate
possibility measures.

Proposition 3. Let {Πσ | σ ∈ Sn} be the set of non-dominating OAs of P in
CΠ . Consider σ ∈ Sn and its associated Πσ. Assume that ∃i ∈ {2, . . . , n} such
that Πσ({xσ(i)}) �= P ({xσ(1), . . . , xσ(i)}). Then, there exists σ′ ∈ Sn such that

Πσ(A) = Πσ′(A) ∀A ⊆ X and

Πσ′({xσ′(j)}) = P ({xσ′(1), . . . , xσ′(j)}) ∀j = 1, . . . , n. (8)

5.1 Approach Based on the BV-Distance

Our first approach consists in looking for a possibility measure, among {Πσ |
σ ∈ Sn}, that minimises the BV-distance with respect to the original model. If
we denote by Nσ the conjugate necessity measure of Πσ, the BV-distance can
be expressed by:

dBV (P ,Nσ) =
∑

A⊆X
(Πσ(A) − P (A)) =

∑

A⊆X
Πσ(A) −

∑

A⊆X
P (A).

To ease the notation, for each σ ∈ Sn we denote by �βσ the ordered vector
determined by the values Πσ({xσ(i)}), i = 1, . . . , n, so that βσ,1 ≤ . . . ≤ βσ,n.
Using this notation:

∑

A⊆X
Πσ(A) = βσ,1 + 2βσ,2 + . . . + 2n−1βσ,n =

n∑

i=1

2i−1βσ,i. (9)

This means that, in order to minimise dBV (P ,Nσ), we must minimise Eq. (9).
Our next result shows that if a dominance relation exists between �βσ and �βσ′ ,
this induces an order between the values in Eq. (9).
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Lemma 1. Let �βσ and �βσ′ be two vectors associated with two possibility mea-
sures Πσ and Πσ′ . Then �βσ ≤ �βσ′ implies that dBV (P ,Nσ) ≤ dBV (P ,Nσ′), and
�βσ � �βσ′ implies that dBV (P ,Nσ) < dBV (P ,Nσ′).

This result may contribute to rule out some possibilities in Sn, as illustrated in
the next example.

Example 5. Consider the following coherent conjugate lower and upper proba-
bilities, as well as their associated possibility measures Πσ and vectors βσ:

A P (A) P (A)

{x1} 0.25 0.4
{x2} 0.2 0.5
{x3} 0.2 0.5

{x1, x2} 0.5 0.8
{x1, x3} 0.5 0.8
{x2, x3} 0.6 0.75

X 1 1

σ Πσ({x1}) Πσ({x2}) Πσ({x3}) �βσ

σ1 = (1, 2, 3) 0.4 0.8 1 (0.4, 0.8, 1)
σ2 = (1, 3, 2) 0.4 1 0.8 (0.4, 0.8, 1)
σ3 = (2, 1, 3) 0.8 0.5 1 (0.5, 0.8, 1)
σ4 = (2, 3, 1) 1 0.5 0.75 (0.5, 0.75, 1)
σ5 = (3, 1, 2) 0.8 1 0.5 (0.5, 0.8, 1)
σ6 = (3, 2, 1) 1 0.75 0.5 (0.5, 0.75, 1)

Taking σ1 and σ3, it holds that �βσ1 � �βσ3 , so from Lemma 1 dBV (P ,Nσ1) <

dBV (P ,Nσ3). Hence, we can discard Πσ3 . The same applies to �βσ1 and �βσ5 ,
whence dBV (P ,Nσ1) < dBV (P ,Nσ5). �
In the general case, the set of all vectors �βσ is not totally ordered. Then, the
problem of minimising the BV-distance is solved by casting it into a shortest
path problem, as we shall now illustrate.

As we said before, the possibility measure(s) in {Πσ : σ ∈ Sn} that minimise
the BV-distance to P are the ones minimising

∑
A⊆X Πσ(A). In turn, this sum

can be computed by means of Eq. (9), once we order the values Πσ({xσ(i)}), for
i = 1, . . . , n. Our next result will be useful for this aim:

Proposition 4. Let {Πσ | σ ∈ Sn} be the set of non-dominating OAs of P in

CΠ . Then
∑

A⊆X Πσ(A) ≤
n∑

i=1

2i−1P ({xσ(1), . . . , xσ(i)}), and the equality holds

if and only if Πσ satisfies Eq. (8).

From Proposition 3, if Πσ does not satisfy Eq. (8) then there exists another
permutation σ′ that does so and such that Πσ = Πσ′ . This means that we can
find Πσ minimising the BV-distance by solving a shortest path problem. For this
aim, we consider the Hasse diagram of P(X ), and if xi /∈ A, we assign the weight
2|A|P (A ∪ {xi}) to the edge A → A ∪ {xi}. Since these weights are positive, we
can find the optimal solution using Dijkstra’s algorithm [5]. In this diagram,
there are two types of paths:

(a) Paths whose associated Πσ satisfies Eq. (8); then
∑

A⊆X Πσ(A) coincides
with the value of the path.

(b) Paths whose associated Πσ does not satisfy Eq. (8); then
∑

A⊆X Πσ(A) shall
be strictly smaller than the value of the path, and shall moreover coincide
with the value of the path determined by another permutation σ′, as estab-
lished in Proposition 3. Then the shortest path can never be found among
these ones.
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As a consequence, the shortest path determines a permutation σ whose asso-
ciated Πσ satisfies Eq. (8). Moreover, this Πσ minimises the BV-distance with
respect to P among all the non-dominating OAs in C∞. And in this manner we
shall obtain all such possibility measures.

Example 6. Consider the coherent conjugate lower and upper probability P and
P from Example 5. The following figure pictures the Hasse diagram with weights
of the edges we discussed before:

∅

{x1} {x2} {x3}

{x1, x2} {x1, x3} {x2, x3}

X

0.4 0.5 0.5

1.6

1.6 1.6 1.5 1.6

1.5

4 4 4

Solving the shortest path problem from ∅ to X using Dijkstra’s algorithm, we
obtain an optimal value of 6 that is attained with the following paths:

∅ → {x1} → {x1, x2} → X , ∅ → {x1} → {x1, x3} → X .

∅ → {x2} → {x2, x3} → X , ∅ → {x3} → {x2, x3} → X .

These four paths correspond to the permutations σ1 = (1, 2, 3), σ2 = (1, 3, 2),
σ4 = (2, 3, 1) and σ6 = (3, 2, 1). Even if they induce four different possibility
measures, all of them are at the same BV-distance to P . Note also that the
other two possibility measures are those that were discarded in Example 5. �

This example shows that with this approach we obtain the Πσ at minimum BV-
distance. It also shows that the solution is not unique, and that the vectors �βσ

and �βσ′ that are not pointwisely ordered may be associated with two different
possibility measures Πσ and Πσ′ minimising the BV-distance (such as σ1 and
σ6 in the example). Nevertheless, we can determine situations in which the BV-
distance elicits one single Πσ, using the following result:

Proposition 5. Let P and P be coherent conjugate lower and upper probabili-
ties. If there is a permutation σ ∈ Sn satisfying

P
({

xσ(1), . . . , xσ(j)

})
= min

|A|=j
P (A) ∀j = 1, . . . , n, (10)

then Πσ minimises the BV-distance.
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As a consequence of this result, if there is only one permutation satisfying
Eq. (10), this approach allows to elicit a unique undominated OA.

Example 7. Consider again P and P from Example 2. We can see that:

P ({x2}) = 0.3 = min
|A|=1

P (A), P ({x2, x3}) = 0.4 = min
|A|=2

P (A),

P ({x1, x2, x3}) = 0.7 = min
|A|=3

P (A).

There is a (unique) chain of events satisfying Eq. (10), namely {x2} ⊆ {x2, x3} ⊆
{x1, x2, x3} ⊆ X , that is associated with the permutation σ = (2, 3, 1, 4). From
Proposition 5, Πσ is the unique undominated OA in CΠ minimising the BV-
distance. �

5.2 Approach Based on Measuring Specificity

Since any possibility measure is in particular the conjugate of a belief function,
it is possible to compare them by means of specificity measures. In this section,
we investigate which possibility measure(s) among {Πσ | σ ∈ Sn} are the most
specific.

With each Πσ in {Πσ | σ ∈ Sn}, we consider its associated vector �βσ. For
possibility measures, the focal events Ai are nested: Ai := {xσ(n−i+1), . . . , xσ(n)},
with m(Ai) = βσ,n−i+1 − βσ,n−i. Hence specificity simplifies to:

S(Πσ) = 1 − βσ,n−1

2
− βσ,n−2

2 · 3
− . . . − βσ,1

n(n − 1)
.

Thus, a most specific possibility measure will minimise

βσ,1

n(n − 1)
+

βσ,2

(n − 1)(n − 2)
+ . . . +

βσ,n−1

2
. (11)

Our first result is similar to Lemma 1, and allows to discard some of the possi-
bility measures Πσ.

Lemma 2. Let �βσ and �βσ′ be the vectors associated with the possibility measures
Πσ and Πσ′ . Then �βσ ≤ �βσ′ implies that S(Πσ) ≥ S(Πσ′) and βσ � βσ′ implies
that S(Πσ) > S(Πσ′).

Example 8. Let us continue with Examples 5 and 6. In Example 5 we showed
the possibility measures {Πσ | σ ∈ Sn} and their associated vectors �βσ. As we
argued in Example 5, �βσ1 � �βσ3 , where σ1 = (1, 2, 3) and σ3 = (2, 1, 3). Hence
from Lemma 2, S(Πσ1) > S(Πσ3), meaning that we can discard Πσ3 . A similar
reasoning allows us to discard Πσ5 . �

In order to find those possibility measures maximising the specificity, we have
to minimise Eq. (11). Here we can make the same considerations as in Sect. 5.1.
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Proposition 6. Let {Πσ | σ ∈ Sn} be the set of non-dominating OAs of P in

CΠ . Then S(Πσ) ≥ 1 −
n−1∑

i=1

P ({xσ(1), . . . , xσ(i)})
(n − i)(n − i + 1)

, and the equality holds if and

only if Πσ satisfies Eq. (8).

Moreover, from Proposition 3 we know that if Πσ does not satisfy Eq. (8) then it
is possible to find another permutation σ′ that does so and such that Πσ = Πσ′ .

This means that we can find the Πσ maximising the specificity by solving a
shortest path problem, similarly to what we did for the BV-distance. For this
aim, we consider the Hasse diagram of P(X ); if xi /∈ A, we assign the weight

P ({A ∪ {xi}})
(n − |A|)(n − |A| − 1)

(12)

to the edge A → A ∪ {xi}, and we give the fictitious weight 0 to X \ {xi} → X .
In this diagram, there are two types of paths:

(a) Paths whose associated possibility measure Πσ satisfies Eq. (8); then the
value of Eq. (11) for Πσ coincides with the value of the path.

(b) Paths whose associated possibility measure Πσ does not satisfy Eq. (8); then
the value of Eq. (11) for Πσ is strictly smaller than the value of the path, and
shall moreover coincide with the value of the path determined by another
permutation σ′, as established in Proposition 3. Then the shortest path can
never be found among these ones.

As a consequence, if we find the shortest path we shall determine a permuta-
tion σ whose associated Πσ satisfies Eq. (8), and therefore that maximises the
specificity; and in this manner we shall obtain all such possibility measures.

Example 9. Consider again the running Examples 5, 6 and 8. In the next figure
we can see the Hasse diagram of P(X ) with the weights from Eq. (12).

∅

{x1} {x2} {x3}

{x1, x2} {x1, x3} {x2, x3}

X

0.06̄ 0.083̄ 0.083̄

0.4

0.4 0.4
0.375

0.4

0.375

0 0 0

The optimal solutions of the shortest path problem are ∅ → {x2} → {x2, x3} →
X and ∅ → {x3} → {x2, x3} → X , which correspond to the permutations
σ4 = (2, 3, 1) and σ6 = (3, 2, 1). �
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These examples also show that the approach based on minimising the BV-
distance and that based on maximising the specificity are not equivalent: in
Example 5 we have seen that the possibility measures minimising the BV-
distance are the ones associated with the permutations (3, 1, 2) and (3, 2, 1),
while those maximising the specificity are the ones associated with (2, 3, 1) and
(3, 2, 1).

To conclude this subsection, we establish a result analogous to Proposition 5.

Proposition 7. Let P and P be coherent conjugate lower and upper probabil-
ities. If there is a permutation σ satisfying Eq. (10), then Πσ maximises the
specificity.

We arrive at the same conclusion of Proposition 5: if there is a unique permuta-
tion satisfying Eq. (10), then there is a unique possibility measure maximising
the specificity; and in that case the chosen possibility measure maximises the
specificity and at the same time minimises the BV-distance.

5.3 Approach Based on the Total Variation Distance

As we did in Sect. 4.2, we could elicit a possibility measure among {Πσ | σ ∈ Sn}
by minimising one of the extensions of the TV-distance. When we focus on upper
probabilities, the distances given in Eqs. (2) ÷ (4) can be expressed by:

d1(P 1, P 2) = max
A⊆X

|P 1(A) − P 2(A)|, d2(P 1, P 2) =
1
2

∑

x∈X
|P 1({x}) − P 2({x})|,

d3(P 1, P 2) = sup
P1≤P 1,P2≤P 2

(
max
A⊆X

|P1(A) − P2(A)|
)

.

As in the case of C2 and C∞, this approach is not fruitful:

Example 10. Consider our running Example 5. The values di(P ,Πj) are given
by:

Πσ1 Πσ2 Πσ3 Πσ4 Πσ5 Πσ6

d1(P ,Πσi
) 0.5 0.5 0.5 0.6 0.5 0.6

d2(P ,Πσi
) 0.4 0.4 0.45 0.425 0.45 0.425

d3(P ,Πσi
) 0.8 0.8 0.8 0.75 0.8 0.75

Thus, none of d1, d2 or d3 allow to elicit a single possibility measure. �

6 Conclusions

In this paper, we have explored a number of approaches to elicit a unique undom-
inated OA of a given coherent lower probability. When the OA belongs to the
families C2 and C∞, we first focus on the ones minimising the BV-distance.
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Among the approaches we have then considered, it seems that the best one is to
consider the OA in C2 and C∞ that minimises the quadratic distance: it singles
out a unique undominated OA, while this is not the case when we minimise the
TV-distance or maximise the specificity.

In the case of CΠ , we know from [10] that there are at most n! non-dominating
OA of a coherent upper probability, and these are determined by Eqs. (5) ÷ (7).
In order to elicit a unique possibility measure we have considered the approaches
based on minimising the BV-distance, maximising the specificity and minimising
the TV-distance. While none of them elicits a unique OA in general, we have
given a sufficient condition for the uniqueness in Propositions 5 and 7. Moreover,
we have seen that we can find the optimal OA according to the BV-distance and
the specificity approaches by solving a shortest path problem.

In a future work, we intend to make a thorough comparison between the
main approaches and to report on additional results that we have not included
in this paper due to space limitations, such as the comparison between the OA
in terms of the preservation of the preferences encompassed by the initial model,
and the analysis of other particular cases of imprecise probability models, such
as probability boxes.
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