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Abstract—The novel coronavirus disease 2019 (COVID-
19) pandemic has led to a worldwide crisis in public health.
It is crucial we understand the epidemiological trends and
impact of non-pharmacological interventions (NPIs), such
as lockdowns for effective management of the disease and
control of its spread. We develop and validate a novel in-
telligent computational model to predict epidemiological
trends of COVID-19, with the model parameters enabling
an evaluation of the impact of NPIs. By representing the
number of daily confirmed cases (NDCC) as a time-series,
we assume that, with or without NPIs, the pattern of the
pandemic satisfies a series of Gaussian distributions ac-
cording to the central limit theorem. The underlying pan-
demic trend is first extracted using a singular spectral anal-
ysis (SSA) technique, which decomposes the NDCC time
series into the sum of a small number of independent and
interpretable components such as a slow varying trend,
oscillatory components and structureless noise. We then
use a mixture of Gaussian fitting (GF) to derive a novel
predictive model for the SSA extracted NDCC incidence
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trend, with the overall model termed SSA-GF. Our proposed
model is shown to accurately predict the NDCC trend, peak
daily cases, the length of the pandemic period, the total
confirmed cases and the associated dates of the turning
points on the cumulated NDCC curve. Further, the three
key model parameters, specifically, the amplitude (alpha),
mean (mu), and standard deviation (sigma) are linked to
the underlying pandemic patterns, and enable a directly
interpretable evaluation of the impact of NPIs, such as strict
lockdowns and travel restrictions. The predictive model is
validated using available data from China and South Korea,
and new predictions are made, partially requiring future
validation, for the cases of Italy, Spain, the UK and the USA.
Comparative results demonstrate that the introduction of
consistent control measures across countries can lead to
development of similar parametric models, reflected in par-
ticular by relative variations in their underlying sigma, alpha
and mu values. The paper concludes with a number of open
questions and outlines future research directions.

Index Terms—COVID-19, pandemic modelling, singular
spectral analysis – Gaussian fitting (SSA-GF), non-
pharmacological interventions (NPIs), impact evaluation.

I. INTRODUCTION

S INCE the emergence of SARS-CoV-2 and the resulting
novel coronavirus disease (COVID-19), reported to the

World Health Organization (WHO) in December 2019 from
Wuhan, China, it has rapidly spread around the world. On
January 30, 2020, the WHO officially declared the epidemic of
COVID-19 as a Public Health Emergency of International Con-
cern [1], which was then upgraded to a pandemic on March 11,
2020. As of July 26, 2020, the total number of confirmed cases
has exceeded 16.1 million, along with approximately 645.7 k
deaths [2]. The USA has the highest number of confirmed cases
with over 4.15 million, in comparison to nearly 86 k in China
[3]. The number of cases in countries such as the UK, Italy,
Spain and Russia have been growing steadily, and at a rapid rate
in countries such as Brazil and India [2]. This has resulted in a
severe health crisis, public panic, governmental challenge and a
potential humanitarian disaster worldwide.

To ensure timely and effective risk management and disaster
relief of COVID-19 in this extremely challenging situation,
accurate pandemic modelling to estimate outbreak size is crucial,
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as it can provide invaluable information to health system leaders,
policymakers and governments, as well as the WHO, stakehold-
ers and citizens, to ensure adequate planning and arrangements
are made [4], [5].

Given the continuously updated data on the number of daily
confirmed cases (NDCC) for any country/region, we posit a
number of questions: When will the turning point occur (i.e., the
NDCC reach the peak and will start to decline, corresponding
to Rt < 1)? What will the value peak in the NDCC? How long
will the pandemic last? And what will be the outbreak size over
the entire pandemic period for a particular country/region? Due
to several factors and uncertainties, such as locally infected and
imported cases, the accuracy and reliability of the collected data
and the number of tested cases, the data and the associated pan-
demic pattern cannot be completely accurate and can be difficult
to understand and analyse [6]. Each country/region may adopt
different ways to estimate the Rt (an average of six different mea-
sures used in the UK), and to detect, diagnose and count cases,
especially in the first few months. These have led to formidable
challenges for modelling the COVID-19 pandemic [7].

In addition, various degrees of non-pharmacological inter-
ventions (NPIs) may be introduced across regions and countries
[7], [8]. The city of Wuhan in China, with a population of over
11 million, has been in a state of almost complete lock down
from January 22, 2020 (though partially lifted from April 8,
2020). Intensive testing and forced self-isolation measures were
introduced to trace cases and suppress the spread of disease.
Similar measures were also introduced in other parts of China,
a country with 1.3 billion people, which remained in a semi-
lockdown state for over two months. The approach has been
effective in suppressing transmission and reducing the incidence
of COVID-19.

In other countries and regions, the impact of the disease has
varied considerably. In East Asia and South-East Asia, NPIs
seem to have worked effectively, especially for South Korea,
Taiwan and Vietnam, due mainly to the early aggressive action
and a rigorous “test, trace and isolate” (TTI) strategy being es-
tablished and enforced [9]. In Europe, Italy, Germany, Spain and
the UK et al. have all adopted similar lockdown measures and
NPIs. However, the UK, Spain and Italy have been more heavily
impacted than Germany and France, which could be in part
due to the adoption of delayed and less rigorous TTI strategies
(TTIs). Here we can ask a further question: how can we assess
the effects of introducing NPIs? To answer this, trend modelling
of COVID-19 is crucial, as it can not only help us understand the
history of the disease but more importantly, can inform future
strategies for public health management and control, including
crisis and risk mitigation. Due to inconsistent results derived
from various models in the literature, it is imperative that new
prediction models are investigated and validated [10].

Since the outbreak of COVID-19 in Dec. 2019, a num-
ber of models have been developed for predicting the spread
of the disease, which has also been termed “SARS-CoV-2”
and “2019-nCoV”. The Susceptible-Infectious-Recovered (SIR)
and Susceptible-Exposed-Infectious-Recovered (SEIR) [5], [7],
[13], [16] models are the most popular, followed by the Bayesian
mechanistic model developed by researchers from Imperial

College London [15], and the IHME model from the Insti-
tute for Health Metrics and Evaluation (IHME) [17]. Other
models include: the exponential moving average model [6]
for influence analysis of meteorological factors on the trans-
mission and spread of COVID-19; an artificial intelligence
(AI)-inspired method [11] for real-time forecasting of the size,
length and end time of COVID-19 across China; symmetrical
modelling [12] for COVID-19 in mainland China, specifically
in the Hubei province; the Auto Regressive Integrated Moving
Average (ARIMA) based time series forecasting model [27]
for analysing the COVID-19 outbreak and its trends in India;
the Gaussian distribution model [28] for a transmission study
which uses both forward prediction and backward inference, and
the Gaussian distribution model for estimation of the death rate
of COVID-19 in real-time [29]. In addition, many researchers
have focussed on the evaluation of non-pharmacological in-
terventions. For example, in [30], the effectiveness of travel
restrictions and transmission control measures during the first
50 days of COVID-19 in China, from 31/12/2019 to 19/02/2020,
was quantitatively analysed and validated, and demonstrated that
the control measures potentially averted hundreds of thousands
of cases. In [31], the potential effects of social distancing in-
terventions in Singapore was assessed. In [32], a parameterized
SEIR model was used to assess the impact of different control
measures and identify key factors. All these conventional models
rely on various assumptions and have quite a few parameters,
which often require different data inputs and focus mainly on one
country or region. The predicted results are of high uncertainty
and their generalisability to different countries and regions is
limited, making it difficult to identify comparisons between
trends, especially when trying to account for the impact of
complicated and varying NPIs. In this study, we develop a novel
model that uses the NDCC only to predict trends in the incidence
of COVID-19. We aim to address the challenges identified above
through our model, and in particular, to link the overall impact
of NPIs, rather than any individual measures, to quantitative
parametric models.

II. THE PROPOSED METHOD

An overview of the proposed model is illustrated in Fig. 1, and
a detailed description of the implementation and design details
of our proposed model is presented as follows.

A. Procedure

For a given country or region, the NDCC over a certain
period is taken as a time series for analysis, without additionally
modelling the reproduction numbers (R0 or Rt), daily death
rate and daily recovery rate, as done in conventional models.
By assuming randomness in the data acquisition, including
inaccuracies and cross-region-variations of the data, the NDCC
time series can be seen as a stochastic process [14], which, in
turn, can help estimate a number of model parameters. Due
to the availability of limited and ambiguous observations, a
high degree of uncertainty is associated with the accuracy of
estimated trends. To simplify the process of data modelling, the
singular spectral analysis (SSA) approach [15] is utilised here
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Fig. 1. The flowchart of SSA-GF.

to extract the overall trend of the signal from this time series.
As a nonparametric spectral estimation method, SSA combines
different elements from classical time series analysis [18], and
applies multivariate statistics to dynamic systems and signal
processing. Thus, it has considerable potential for analysing
complex random observations [15], and is exploited here for
the first time.

The SSA approach can decompose a time series into differ-
ent components via the singular value decomposition (SVD)
[16] of the lag-covariance matrix, rather than frequency do-
main analysis. For a given 1-D time series, NDCC data,
x = [x1, x2, . . . , xN ] ∈ RN , can be embedded in the lagged
columns of the matrix X, namely the trajectory matrix, by an
embedding a window of size L and lagged factor K = N −
L + 1. The matrix X has equal values in the anti-diagonals, and
is a Hankel matrix.

X =

⎛
⎜⎜⎜⎜⎝

x1 x2

x2 x3

· · · xK

· · · xK+1

...
...

xL xL+1

. . .
...

· · · xN

⎞
⎟⎟⎟⎟⎠

(1)

By applying the SVD to the generated trajectory matrix,
various singular components can be extracted in accordance with
the derived eigenvalues (λ1 ≥ λ2 ≥ · · · ≥ λL) and eigenvectors
(U1, U2, . . . , UL). These extracted singular components usually
contain varying trends, oscillations of certain periodic compo-
nents, and noise [15]. Therefore, the trajectory matrix X can be

Fig. 2. An example to show the NDCC of a pandemic following
a Gaussian distribution with alpha = 100, mu = 50, sigma = 10:
NDCC (top) and cumulated NDCC (bottom), where the pandemic starts
from day 20 for 6∗sigma = 60 days until day 80, 30 days before and after
it reaches the peak in the NDCC curve, namely the date of the turning
point day, when the NDCC starts to drop.

reconstructed as the sum of several components Xi|i ∈ [1, d]

X = X1 +X2 + · · ·+Xd (2)

Xi =
√

λi UiV
T
i , Vi =

XTUi√
λi

(3)

After eigen value grouping and diagonal averaging, a subset of
Xi, containing the main trend component, is selected to project
the matrices into a new 1-D signal x′. This signal trend from
the time series x can be regarded as a deterministic signal rather
than a random variable for further analysis. As a result, it can
be applied as a model-free tool for smoothing, noise reduction,
trend extraction, periodicity detection, and seasonal adjustment
[15].

Taking the initial trend signal x′ extracted from the SSA as
input, t is a time series vector with the same size of x, a mixture
of Gaussian fitting is used to characterise sequential components
within x′.

x′ = f (t) = α ∗ e
(
− (t−μ)

σ2

2)
(4)

As there are a number of random variations that may affect
the observed data, such as technical inadequacy, management
inconsistency or political reasons, the reported NDCC is likely
to comprise a stochastic component. According to the central
limit theorem, the sum of these complicated factors is assume
to satisfy a Gaussian distribution, subject to a sufficient number
of observations being collected [20].

Each of the extracted Gaussian components has three key
parameters (Fig. 2), the amplitude alpha (α), the mean value
mu (μ), and the standard deviation sigma (σ). Alpha indicates
the height of the curve’s peak, which refers to the peaked daily
confirmed cases. Mu is the central position of the curve, i.e.,
the date of the turning point when the NDCC starts to drop. The
sigma links the width of the curve in days, i.e., the total number of
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Fig. 3. An example to show the cumulated NDCC of the pandemic
following a mixture of two Gaussian distributions: The pandemic
starts from day 20 and lasts until day 100, and experiences three turning
points on days 50, 70 and 80, corresponding to a decrease, increase
and a further decrease in NDCC trends, as indicated by the NDCC curve
in blue.

days from the start-point to the endpoint of the pandemic, which
can be approximated roughly as six times the sigma value in days
[20]. For a Gaussian curve with a large alpha, its value may still
be significant after three times the sigma value. In this case, we
determine a later day, when the number of daily confirmed new
cases is no more than a specified threshold, say 3.

In contrast to conventional Gaussian mixture models, our
proposed SSA-GF is constrained to use up to two Gaussians
for extracting the Gaussian components within the SSA trend at
any given time. If there is no NPI or with consistent NPIs, only
one Gaussian component is required (Fig. 2). If on a certain day,
the NPIs are changed, either newly introduced or withdrawn,
another new Gaussian component will be activated (Fig. 3),
taking effect together with the previous Gaussian component.
For this reason, we limit the number of Gaussians to one or
two at any given time. On the other hand, for the case of
varying NPIs adopted at different times, the total number of
Gaussian components spanning a long time period can exceed
two, although only up to two are used to overlap with each other.

For a Gaussian component being extracted before the end of
the entire period, its parametric model can be used to estimate
the values until the end of the period. If the estimated value
deviates too far from the extracted SSA trend, a new Gaussian
component is introduced. Eq. (4) can then be extended to Eq.
(5), where t1 and t2 are non-overlapped time series vectors, with
an accumulated length equal to N.

x′ = α1 ∗ e
(
− (t1−μ1)

σ2
1

2
)
+ α2∗ e

(
− (t2−μ2)

σ2
2

2
)

(5)

The entire process continues to cope with any newly fed
observations to update the derived SSA trend and Gaussian com-
ponents, in order to further refine the estimation and prediction
for future dates.

III. COMPARATIVE RESULTS

We validate our predictive model using retrospective data
available from China and South Korea, as the pandemic in these
two countries seems to have been successfully suppressed. Next,
we estimate pandemic models for the UK, the USA, Italy and
Spain in an attempt to predict their future COVID-19 incidence
trends.

A. Data Sources

The data for Italy, Spain, the UK, the USA and South Korea is
collected from the Center for Systems Science and Engineering,
Johns Hopkins University [2]. For cities and provinces in China
(i.e., Beijing, Guangdong, Hubei, Shanghai and Zhejiang), we
extracted our data from statistics published by the Chinese
authorities [3]. The data collection period, which spanned from
January 22, 2020 to March 28, 2020, was used to build and test
our pandemic models, and the data which spanned from March
29, 2020 to April 11, 2020 was used for validation. As the daily
data reported in [2] and [3] represents accumulated confirmed
cases, we differentiate the entire data to obtain the time-series
data of the NDCC.

B. Validated Prediction Results: China

Five cities and provinces were selected from China for analy-
sis, including Beijing, Guangdong, Hubei (Wuhan is the capital
city), Shanghai, and Zhejiang. Beijing was selected for its strong
links with Wuhan, its large population and as the capital of China.
The other three regions were selected as they are geographically
close to and have strong economic links with Wuhan and Hubei.

According to the predicted results, using the data available
up to March 28, 2020 (Fig. 4 and Table I), different numbers of
Gaussian components were extracted for the NDCC time series,
for each of the five places. We selected the Gaussian component
with the highest peak value (alpha) as the major component,
and discarded all those whose peak values were less than 5%
of the major peak. For Beijing, there were three noticeable
Gaussian components. The first component had a mu of January
26, 2020 an alpha of 14.26 and a sigma value of 7.61, i.e., the
corresponding Gaussian component peaked on January 26, 2020
with a height of 14.26. The second component, which was the
major one, had a mu of February 07, 2020, a sigma of 6.96 and
an alpha value of 16.93, followed by the third component, which
had a mu of March 23, 2020, a sigma value of 5.15 and an alpha
of 14.39. For the two Gaussian components of Guangdong, the
mu values of the major one and the following one were February
2 and March 21, 2020, respectively, with sigma values of 6.96
and 4.19, and alpha values of 79.49 and 9.83, respectively. For
Shanghai, the first component was the major one, and had a mu
of February 1, 2020, a sigma of 6.92 and an alpha of 20.13. The
second Gaussian component had a mu of March 25, 2020 and
an alpha of 13.96.

For the Hubei province, there were three major Gaussian
components, the corresponding mu values were February 05,
February 13 and February 26, 2020, respectively, with corre-
sponding sigma values of 5.78, 2.73 and 5.27, and alpha values
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Fig. 4. Time series of daily confirmed cases of COVID-19 from Beijing, Shanghai, Guangdong, Hubei, Zhejiang of China: (A-F) show
results from the five places and all of China, and depict the confirmed cases, the extracted trend from the SSA, and the estimated trend from the
extracted SSA-GF model. Shaded areas in blue and grey indicate the estimation errors of the trend from the SSA and the original observation, with
a confidence level of 95%. (G) shows the results of the SSA-GF model for the five places, where a nonlinear scale was applied to the data from
Hubei to cope with its large data range, when plotting on one graph for comparison.
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TABLE I
ESTIMATED ENDPOINT DATES OF THE PANDEMIC AND THE TOTAL NUMBER OF CASES FOR FIVE PLACES IN CHINA, INCLUDING

IMPORTED CASES USING THE RESULTS IN TABLE I

TABLE II
EXTRACTED MAJOR GAUSSIAN COMPONENTS FROM THE NDCC CURVES OF FIVE PLACES IN CHINA, FROM 22/01/20 TO 28/03/20

TABLE III
EXTRACTED GAUSSIAN COMPONENTS FOR SOUTH KOREA, ITALY, SPAIN, THE USA AND ALL OF CHINA, EXCLUDING HUBEI, BY 28/03/20,

WITH DIFFERENT START DATES. FOR ITALY THE SECOND PEAK WAS IDENTIFIED USING DATA UP TO 12/04/20

of 2681.44, 4462.00 and 404.17, respectively. For the two Gaus-
sian components in Zhejiang, the major one peaked on February
1, and the second on February 20, 2020. The corresponding
sigma values were 5.65 and 2.63, and alpha values of 84.94 and
6.19, respectively.

In addition, using the models determined by the data until
March 28, 2020, the estimated dates for Beijing, Guangdong,
Hubei, Shanghai and Zhejiang to have no new confirmed cases
would be April 6, April 3, March 12, April 7, and February 27,
2020, respectively, with 95% confidence intervals (Table II).
The total confirmed cases were estimated to be 627± 71,
1,418± 329, 67,919± 5,544, 499± 43 and 1,195± 80, as com-
pared to the publicly released cases of 587, 1,514, 67,781, 538

and 1205, respectively. For Hubei, this corresponded to around
0.11% of the population.

C. Validated Prediction Results: South Korea

There were two Gaussian components extracted for South
Korea (Fig. 5, Table III), where the major one peaked on March 1
and the following one on March 20, 2020. The corresponding
sigma values were 5.39 and 7.65 and the peak values (alpha)
were 590.42 and 103.08, respectively.

The predicted date to have no new confirmed cases was April
10, 2020 (Table IV). The total confirmed cases were predicted
to be 9,953± 779, in comparison to the actual number of 10,450
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Fig. 5. Daily confirmed cases of COVID-19 from Italy, Spain, the USA, South Korea, China (excluding Hubei) and all of China: (A-F) show
results from the six places, and depict the confirmed cases, the extracted trend from the SSA, and the estimated trend from the extracted SSA-GF
model. Shaded areas in blue and grey indicate the estimation errors of the trend from the SSA and the original observation with a confidence level
of 95%. (G) shows the results of the SSA-GF model for the five places, where the logarithm scale was applied to cope with the different ranges of
data, for comparison.
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TABLE IV
ESTIMATED ENDPOINT DATES OF THE PANDEMIC AND THE TOTAL NUMBER OF CASES FOR ITALY, SPAIN, THE USA, SOUTH KOREA, AND CHINA,

EXCLUDING HUBEI, USING THE RESULTS FROM TABLE III

TABLE V
ESTIMATED ENDPOINT DATES OF THE PANDEMIC AND THE TOTAL NUMBER OF CASES FOR ITALY, SPAIN, AND THE USA, USING NEW DATA AFTER

INTRODUCING STRONG INTERVENTIONS IN SPAIN AND THE USA, AS REFLECTED BY THE MUCH REDUCED SIGMA VALUES IN COMPARISON
TO THOSE IN TABLE III

cases, by April 10, 2020, which corresponded to ∼0.02% of the
population.

D. Predictions for Italy, Spain and USA

For all these three countries, only one Gaussian component
was estimated when using the data available until March 28,
2020 (Fig. 5). The sigma values were computed as 9.77, 13.17
and 12.75, with alpha values of 5,819.8, 24,228.8, and 132,
559.9, respectively (Table III). The dates to have no more than
three daily confirmed cases for Italy, Spain and USA were
estimated to be May 1, June 9 and June 18, all in 2020, respec-
tively (Table IV). By these dates, the total number of confirmed
cases are estimated to be 142,448±17,374, 800,034±12,843,
4,235,679±22,579, respectively, which corresponds to around
0.23%, 1.71% and 1.29% of the population in each of the
three countries, respectively. The predicted numbers seem to be
under-estimated for Italy yet over-estimated for Spain and the
USA in comparison with the official data available until March
28, 2020. This is attributed to the varying NPIs adopted in these
countries, as discussed below.

For an NPI based intervention, 2-3 weeks (the incubation
period) are normally required to evaluate its impact on infected

individuals [16]. As a result, these NPIs have a lagged influence
on the NDCC curves. Taking the USA, for example, the total
deaths predicted on March 30, 2020 were 100 k-240 k [22],
whereas, by using the data available until April 3, 2020, this
figure was significantly reduced to 40 k-178 k [23]. This is
attributable to the strong NPIs that are known to have been
introduced in late March 2020. Similarly, using the data available
until April 1, 2020, the total number of cases was estimated to
be around 720 k [24] by early May 2020, a significant reduction
from the over four million as previously estimated.

Our model can also effectively determine such changes to
quantitatively assess the effect of such NPIs at an early stage.
By using the most recent data available for modelling, we
present updated results in Table V for comparison. For Italy,
using the data up to April 12, 2020, a second wave of the
infection was identified to peak on April 14, 2020, along with a
smaller alpha and a much smaller sigma. As a result, the total
number of estimated cases was increased from 142.4 k± 17.4 k
to 175.8 k± 39.7 k, in comparison to the actual number of
209,328 cases reported on May 2, 2020. This is attributed to
an over-optimistic judgement of the situation and the release
of other control measures towards the end of March and the
beginning of April. For Spain and the USA, the estimated total
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numbers of cases were significantly reduced. For Spain, the
sigma value was reduced from 13.17 to 9.10, and the new
Gaussian component was estimated to be 12 days earlier, on
April 1, 2020 along with a significantly reduced total number of
cases at 209,440±50,519 (in comparison to the actual reported
cases of 221,447). This contrasts with the 800 k cases previously
predicted on March 28, 2020 (see Table IV). For the USA, the
estimated sigma value was also reduced from 12.75 to 11.04, and
the new Gaussian component was estimated to peak on April 11,
2020 with an estimated alpha of 38,104±273. The total number
of cases was estimated to be 1,051,890±1,144,278 by May 28,
2020, a significant reduction from over 4.23 million previously
predicted (see Table IV).

Finally, using more recent data available until June 4, 2020,
our model has predicted the total number of cases in Italy,
Spain and the USA will increase to 232,874±80,459 by July
10, 252,489±195,285 by July 1, and 2,122,164±295,085 by
July 19, 2020, respectively. These higher figures are attributable
to the recently announced loosening of NPIs.

E. Predictions for the UK

We apply our predictive model using data from three different
dates to predict pandemic trends at a 95% confidence interval.
When using the data available until March 28, 2020, the derived
sigma reached a value of 23.51± 3.77, indicating that without
NPI measures, over 90% of the population could be infected by
the middle of June, 2020. For the prediction using data until April
5, 2020, the sigma was found to be reduced to 11.34± 0.17,
where the peak value was estimated to be 5,912.95± 108.15
on April 12, 2020, with the total estimated number of cases:
168,072.03± 48,053.93. Finally, the third prediction estimate
was obtained using latest data available until May 16, 2020,
where four Gaussian components were identified. The peak val-
ues were quite similar, which were in the range: 4,930± 55 and
5,346± 22, yet the sigma values were found to vary significantly,
in the range: 11.15± 0.11 and 23.22± 17.34. The most recent
Gaussian component was estimated to peak on May 6, 2020 with
a sigma of 8.07± 0.97. Finally, using data available until June
4, 2020, the total number of cases are now predicted to reach
289,246± 164,612 by July 01, 2020, which is 72% more than
the number previously estimated using data available until April
5, 2020.

F. Comparing with other Smoothing Models

In our SSA-GF model, SSA has played a key role in extracting
the trend and removing noise, before fitting the Gaussian models.
To further validate the efficacy of the SSA in our proposed model,
we compare it with three baseline signal smoothing methods,
including moving average, Gaussian smoothing and exponen-
tial smoothing. Again, we used data until March 28, 2020 for
developing and testing our model, and both the modelling and
prediction errors for the one week that followed, until April 4,
2020, are given in Table VI and compared with the real values
for evaluation.

TABLE VI
COMPARING SSA WITH THREE OTHER SIGNAL SMOOTHING METHODS FOR

ITALY, SPAIN, THE USA AND THE UK, USING DATA UNTIL 04/04/20

The reason for selecting one week for comparison, was to
minimize the effect of model drifting, due to the complicated
NPIs adopted in the dynamic process. Note that the window
size used for smoothing is 5. In Table VI, negative and positive
errors indicate an underestimate and overestimate, respectively.
It is evident that SSA gives the lowest modelling error using the
data until March 28, 2020, for Italy, Spain and the UK, which in-
dicates the strong capability of SSA in extracting the trend signal
of the NDCC, for fitting Gaussians. In terms of data prediction,
all other models have underestimated numbers, which indicates
their inferior ability in predicting unknown data in the future. The
SSA method however, successfully predicted the large increase
in the number of cases, subject to no NPIs being introduced.
Whilst the predicted values seem to be over-estimated, these
can be attributed to the strong NPIs adopted, as explained in
detail in the next section.

IV. DISCUSSION

In this section, the impact of the NPIs are analysed, in accor-
dance with the parameters of the Gaussian components derived
from the NDCC curves for China, South Korea, Italy, Spain, the
UK and the USA.

A. Impact of NPIs in China

For Beijing, Guangdong and Shanghai, we can clearly see
that the major Gaussian components for all three places have the
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Fig. 6. Confirmed cases of COVID-19 from Beijing, Shanghai, Zhejiang and Guangdong in comparison to Hubei and surrounding
provinces of China on January 23 (A), February 1 (B), and February 8 (C), 2020. (A) shows the number of confirmed cases on January
23, 2020 when Wuhan was locked-down, where Guangdong, Zhejiang, Shanghai and Beijing had the most confirmed cases after Hubei. This
indicates their closer links to Hubei and also their rapid response to identify cases when compared to the other six provinces neighbouring Hubei.
With strong NPIs, the confirmed cases in (B) in these five places were between 7.64 (Beijing) and 22.19 (Zhejiang) times those in (A), in comparison
to 27.44-84.40 times of growth in the other six neighbouring provinces. Comparing (C) and (B), the growth rates in Guangdong, Beijing, Zhejiang
and Shanghai were 2.05, 1.88, 1.75, and 1.69, respectively, in comparison to 1.73-2.47 in the other six neighbouring provinces. This indicates the
efficacy of similar NPIs, and a higher growth rate of 3.79 in Hubei, due to a poorly uncontrolled situation by February 8, 2020.

same shape, reflected by an almost equal sigma value of 6.92-
6.96 (Table I). This indicates that the same pandemic path was
taken for the major Gaussian component in each place, which
can be attributed to similar intervention measures being adopted
in these regions.

For Hubei and Zhejiang, the derived major Gaussian com-
ponents were seen to have smaller sigma values for the major
components, which can be attributed to early and rigorous NPIs
and TTIs adopted in these two places. Their first components had
similar sigma values, 5.78 and 5.65, which indicated that the
pandemic incidence paths in these two places were identical,
although Zhejiang had a much smaller number of confirmed
cases (Table I). On January 20, 2020, the Health Authority of
Zhejiang Province (HAZJ) declared five confirmed cases, since
January 17, 2020, all of whom had a travel history to Wuhan [3].
Strict measures were then put in place, and the HAZJ initiated
a first-level response to major public health emergencies, on
January 23, 2020, which was also put in place in Guangdong on
the same day. On January 24, 2020, Shanghai, Beijing and many
other cities followed suit, whilst the Hubei Health Authority also
upgraded their measures on the same day, from a second-level
response announced earlier on January 21, 2020.

The smaller sigma values in Hubei and Zhejiang can be
attributed to their early stage NPIs, which could effectively alter
their existing pandemic paths. An example of this was in Hubei,
when diagnosis rules were changed on February 12, 2020, fol-
lowing which the second Gaussian component with an extremely
large alpha value centred on the next day, indicating a strong
NPI. With over 10 k new cases being confirmed, a very large
peak was introduced, which led to a much smaller sigma value of
2.73 for the newly introduced Gaussian component. A similar yet
smaller peak can be found in the pandemic path of Zhejiang on

February 20, 2020 with a sigma value of 2.63. The comparatively
smaller peak can be attributed to an accidental outbreak in a
prison, and reflects the stricter measures in Zhejiang compared
to other places.

The alpha values, i.e., the heights of the Gaussian compo-
nents, especially the major ones in places other than Hubei, were
affected by varying degrees of links to Hubei, which included
economic, political, educational or societal factors (Fig. 6). On
January 23, 2020, whilst Wuhan was in a state of lock-down,
the cities of Guangdong, Zhejiang, Shanghai and Beijing, in
descending order, were found have the highest number of con-
firmed cases, more so than any of the six provinces neighbour-
ing Hubei. This indicates that Hubei had very strong links to
Guangdong and Zhejiang (especially Wenzhou city), followed
by Beijing and Shanghai. This is validated by the corresponding
alpha values of 84.94, 79.49, 20.13 and 14.26. With effective
NPIs and TTIs, the growth rate until February 1, 2020 was
within 7.64 to 22.19 times in these five places, in comparison to
27.44-84.40 in the six neighbouring provinces of Hubei. Even
with a slightly higher alpha value, the pandemic path of Zhejiang
peaked on January 31, 2020, two days before Guangdong, which
can be attributed to the earlier NPIs. In Shanghai, where similar
early action was taken, the first pandemic also peaked on January
31, 2020, whilst in Beijing, the pandemic peaked on February
6, 2020, six days later than Zhejiang and Shanghai.

The extremely high growth rates between January 23 and
February 1, 2020 (Fig. 6) in some neighbouring provinces
of Hubei can be attributed primarily to insufficient responses.
These include the lack of timely monitoring and reporting of
confirmed cases, or TTIs, especially in the rural areas of the
Henan, Hunan and Jiangxi provinces. Therefore, the growth
rates of the confirmed cases in the following week, i.e., from
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February 1 to February 8, 2020, would be more useful for
accurately comparing the effects under the same NPIs and TTIs.
During this week, the growth rates of the six neighbouring
provinces were between 1.73 to 2.47, whilst the four other
places, including Beijing, Guangdong, Shanghai and Zhejiang,
had a very comparable growth rate of between 1.69 and 2.05, due
to a similar degree of strong NPIs being adopted. On the other
hand, a much higher growth rate of 3.79 was evident in Hubei,
which indicates a more poorly controlled situation in Wuhan by
February 8, 2020, compared to all other parts of China.

It is worth noting that the peaks after the major one in these
places can primarily be attributed to imported cases. For Hubei
and Zhejiang, since there were no direct international flights
during this period, there were no such second peaks in their
pandemic paths by March 28, 2020. For Beijing, Guangdong and
Shanghai, the daily imported cases peaked on March 23, March
22 and March 25, 2020 with alpha values of 14.39, 9.83 and
13.96, respectively (Table I). These were strongly and positively
correlated to the flow of international passengers in these three
airports. In addition, the sigma values for the corresponding three
Gaussian components were 5.15, 4.36 and 4.19, smaller than the
main peaks, indicating that the in-situ NPIs and measures had
effectively suppressed the impact of the imported cases.

B. Impact of NPIs in South Korea

By adopting early NPIs, including intensive testing, a local
lockdown, and effective tracing and isolation, i.e., TTIs, the
pandemic path of South Korea was found to be similar to that of
Hubei and Zhejiang, where the major Gaussian component was
centred on March 1, 2020, with a sigma value of 5.39 (Table III),
in comparison to 5.78 in Hubei and 5.65 in Zhejiang (Table I).

South Korea also suffered from a second peak primarily due
to imported cases imported from abroad, which corresponded
to the mu of the Gaussian component on March 21, 2020 (Ta-
ble III). This was similar to the peaked or mu values in Beijing,
Guangdong and Shanghai occurring on March 23, March 22 and
March 25, 2020, respectively (Table I). However, due to less
strict measures and interventions compared to those adopted in
the Chinese airports, the Gaussian component had a larger sigma
value of 7.65, in comparison to 5.15, 4.19 and 4.36 for Beijing,
Guangdong and Shanghai, respectively (Table I). In addition,
the alpha value of 103.1 for South Korea was much higher
than those of the three Chinese cities which were 14.39, 9.83
and 13.96, respectively. This highlights the significant challenge
being posed by imported cases for South Korea.

C. Impact of NPIs in Italy, Spain and USA

Using data available up to March 28, 2020, it is evident that
the less restrictive NPIs in Italy, Spain and the USA, compared
to China and South Korea, led to much larger sigma values of
9.77, 13.17 and 12.75, respectively. These compare with sigma
values of 5.65 and 6.96 for China, and 5.39 for South Korea
(Table I, Table III). The sigma value for Italy was ∼75% less
than that of of Spain and the USA, as it had relatively earlier
and stricter NPIs. Hence, the predicted total confirmed cases
in Italy was ∼142.4 k, far less than than those estimated for

Spain, at ∼800 k and the USA, at 4.26 million, when using
data available until March 28, 2020 (Table IV). As of March 29,
2020, over 678 k individuals were reported to have been infected
worldwide, and more than 31 k people died [2], resulting in an
estimated death rate of around 4.57%. Even at 80% of this death
rate, the potential death toll in the USA could be over 152 k,
which is consistent with the estimated figure of 100 k-240 k
from the White House [22].

Both Spain and the USA have adopted strong NPIs since the
middle of March, 2020. In the USA, these included a travel ban
to European countries, Canada and Mexico, with effect from
March 14, March 17 and March 20, 2020 respectively, and a “do
not travel” advisory taking effect on March 19, 2020. This was
followed by the closure of non-essential businesses in several
key states such as New York and California, taking effect from
March 21, 2020. In Spain, following the closure of bars, pubs
and restaurants et al. in Madrid, on March 13, 2020, a state-alarm
was issued on March 14, 2020, for 15 days, which was further
extended to April 26, 2020. On March 28, 2020, all non-essential
activities were halted, along with the ceasing of non-essential
business on March 30, 2020.

Comparing the predicted results in Tables IV and V, it is
evident that the introduction of strong NPIs has potently reduced
73.8% of cases in Spain and 75.2% of those in the USA. The
ban on international travel alone seems to be inadequate, if it is
not accompanied with effective tracing, self-isolation and large
scale testing, as demonstrated for the cases of China and South
Korea [8]. Ceasing of non-essential business also plays a key
interventional role, since communal travels and gathering are
significantly reduced [7]. Note that our predictions are based on
the assumption that existing measures will be in place, which
implies the results need to be adjusted if measures are loosened
or tightened. The 24% increase in cases from the predicted values
on March 28 and April 12, 2020, for the case of Italy, have
shown the associated risks of terminating lockdowns in their
early stages.

D. Impact of NPIs in the UK

The initial predicted picture of over 90% of the population
being affected, based on the data available until March 28,
2020, is due to the lack of strict measures in the early stages
of the pandemic, as reflected by the extremely large sigma
value. The predicted figure is consistent with the prediction
made in the ninth report by Imperial College London [16],
where the peak day of deaths was estimated to be around
June 15, 2020. Although the UK progressively introduced lock-
down measures since the last week of March, the effects of these
are usually observed after 1-2 weeks. Our model’s predictions,
using data available until April 5, 2020, reflects the impact
of these measures. Unsurprisingly, the sigma is dramatically
reduced to 11.34± 0.17, and the total number of predicted cases
is also significantly reduced to 168,072± 48,054.

The lockdown in the UK has shown promising signs in
successfully suppressing COVID-19. However, certain control
measures have recently been lifted for England, Wales and
Northern Ireland. The effect of loosening such measures has
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been assessed, by developing our predictive model using data
available until May 18, 2020, and comparing the results pre-
dicted earlier using data available until May 11 and April
5, 2020. The new estimate for the total number of cases is
predicted to be 244,615.35± 131,228.85 by July 14, 2020,
which is 45% more than the predicted cases for April 5, 2020
(168,072.03± 48,053.93). This forecast indicates a less than
optimistic situation for the incidence of COVID-19 in the UK,
on account of its recent loosening of control measures.

V. SUMMARY AND OPEN QUESTIONS

Mathematical simulation models have played a major role
in the world’s response to COVID-19 [25]. Preliminary results
from our proposed SSA-GF based intelligent computational
model have clearly demonstrated the efficacy of exploiting SSA
with mixture Gaussian fitting models to further enhance our
understanding of the pandemic paths of COVID-19. The model
has been validated using retrospective data available from China
and South Korea, and partially validated by currently available
data from Italy, Spain, USA and the UK. The three model param-
eters, sigma, mu and alpha, are linked to physical meanings and
interpretations related to the COVID-19 pandemic. The sigma
here is shown to directly determine the pandemic path, where a
smaller sigma value tends to lead to a relatively smaller number
of total confirmed cases. By introducing strict NPIs as early
as possible, such as physical distancing and TTI measures, the
spread of COVID-19 can be suppressed, as reflected by reduced
sigma and alpha values.

There are a number of limitations of our approach. Firstly, as
the pandemic is a dynamic process, its incidence trends may
continue to vary due to changes in adopted NPIs and other
associated factors such as imported cases. To this end, regular
dynamic modelling is essential, where updates can be linked
to relevant NPIs and other factors [16], [17]. Secondly, the
efficacy of the model relies on the accuracy of reported data,
specifically the NDCC, which can be under-estimated due to
two reasons. One is lack of required knowledge of the disease at
the beginning of the pandemic, and the other is lack of sufficient
resources, including facilities, medical staff and funds required
for testing and analysis. Consequently, the model parameters can
be biased by these factors. Thirdly, an accurate model can only
be estimated when the number of observations reach a certain
threshold, usually after a period of two sigma days from the start
date of the pandemic.

Based on lessons learnt from this pilot study, we urge the
adoption of essential and strict NPIs and TTIs to suppress the
spread of COVID-19, especially for high-risk countries and
regions. Meanwhile, we continue to apply our model to assess
the pandemic situation in other countries, with aims to inform
control and risk management policies and practices. Further-
more, we are extending our predictive model to address a number
of outstanding COVID-19 challenges, such as estimating the real
number of infected cases from total number of confirmed cases
and other information, determining optimal values of alpha
and mu of the extracted Gaussian components, and applying

our model to analyse the mortality rate and daily reproduction
number of the disease. Current work is also exploring potentially
complementary insights from social media analytics [33] to en-
hance the predictive and interpretive capability of our proposed
model.

In the future, we plan to further optimize the predictive
decision-making capabilities of our intelligent computational
model, by exploring its contextual integration with deep ma-
chine learning [26], [34], [35], (including generalized zero-shot
learning [36]) and probabilistic linguistic information-based
approaches [37]. Finally, our model needs to be validated with
additional up to date data from a range of countries for more
comprehensive evaluation in relation to other state-of-the-art
models. This could lead to the development of a standardised
predictive model as a potential benchmark tool for decision
makers to guide near real-time COVID-19 control and risk
management.
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