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Abstract

Background

The fleece of cashmere goats contains two distinct populations of fibers, a short and fine

non-medullated insulating cashmere fiber and a long and coarse medullated guard hair.

The former is produced by secondary follicles (SFs) and the later by primary follicles (PFs).

Evidence suggests that the induction of PFs and SFs may require different signaling path-

ways. The regulation of BMP2/4 signaling by noggin and Edar signaling via Downless

genes are essential for the induction of SFs and PFs, respectively. However, these differ-

ently expressed genes of the signaling pathway cannot directly distinguish between the

PFs and SFs.

Results

In this study, we selected RNA samples from 11 PFs and 7 SFs that included 145,525

exons. The pathway analysis of 4512 differentially expressed exons revealed that the most

statistically significant metabolic pathway was related to the ubiquitin–mediated proteolysis

pathway (UMPP) (P<3.32x 10−7). In addition, the 51 exons of the UMPP that were differen-

tially expressed between the different types of hair follicle (HFs) were compared by cluster

analysis. This resulted in the PFs and SFs being divided into two classes. The expression
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level of two selected exons was analyzed by qRT-PCR, and the results indicated that the

expression patterns were consistent with the deep sequencing results obtained by RNA-

Seq.

Conclusions

Based on the comparative transcriptome analysis of 18 HFs from cashmere goats, a large

number of differentially expressed exons were identified using a high-throughput sequencing

approach. This study suggests that UMPP activation is a prominent signaling pathway for dis-

tinguishing the PFs and SFs of cashmere goats. It is also a meaningful contribution to the the-

oretical basis of the biological study of the HFs of cashmere goats and other mammals.

Background
Cashmere goats have a double coat consisting of the over hairs, or guard hairs, produced by
primary hair follicles (PFs) and the under hairs, or down hairs, produced by the secondary hair
follicles (SFs)[1,2]. PFs and SFs are formed during the fetal stages of growth. From 55–60 days
of age, PFs form in two steps (central PFs form first and then lateral PFs form to create a trio
group). SFs form from 90–100 days of age. Thereafter, derived SFs are formed from branches
of the PFs and from epidermal SFs as the keratinized epidermis (from 115–120 days of gesta-
tion) is not able to produce new epidermal the hair follicles (HFs, the PFs and SFs collectively
referred to as HFs)[3]. The growth cycle of SFs is similar to that of PFs, both of them pass
through three stages of growth in its complete growth cycle[4]. These stages areactive growth
(anagen), regression (catagen) and quiescence (telogen). But at the end of telogen, when molt-
ing occurs and both the PFs and SFs shed their fibers, a sparse coat of mainly guard hairs is
maintained while the cashmere fibers are almost completely detached [1,5]. These characteris-
tics make the cashmere goat an ideal model system for studies of the morphology and develop-
ment of HFs.

However, how differentially expressed genes can be used to distinguish the PFs and SFs is
poorly understood. There is only minimal information in the scientific literature on gene
expression in goat HFs, and efforts need to be made to define the gene expression patterns
associated with fiber growth. Meanwhile, the mammalian HF may provide valuable informa-
tion for understanding processes of genetic and molecular regulation. Several studies suggest
that different signal regulation mechanisms may affect the development of different types of
HFs. BMP signaling by noggin is required for the induction of SFs, but the induction of the PFs
has been shown to not be affected by BMP, which is consistent with the previous report that
showed that the tumor necrosis factor receptor homologue Edar was required for the induction
of this HF subtype[6–8]. In recent years, additional research has further demonstrated that ubi-
quitination is associated with the development of HFs. Ubiquitination causes myriad func-
tional changes because of post-translational modifications to proteins, such as phosphorylation
[9]. This suggests that regulation of protein-protein interactions can be facilitated by polyubi-
quitination, which ultimately causes changes in the activity of transcription factors and the
subcellular localization of transcriptional cofactors[10–12]. Meanwhile, new data point to pro-
tein polyubiquitination as a mechanism for regulating the stability and interaction of the key
signaling components that control HF development and regeneration[12].

In the current study, because of the “noise” of the transcriptome, we have compared the dif-
ferential expression of genes analysis by RNA-Seq, but the genes were not significantly
enriched in any signaling pathway could distinguish PFs from SFs. Finally, by taking advantage
of an exon-based transcriptome analysis, we found that characteristics of the UMPP can
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directly distinguish PFs and SFs. Exon-based transcriptome analysis suggests that significantly
different exons are produced from the large number of total expressed exons. The exon-tran-
scriptome analysis indicated that a functional mammalian transcriptome could be detected
and characterized by examination of the exon expression across normal tissues because most
known genes consist of exons and are expressed at different levels across different tissues and
developmental states. In addition, exon analysis offers improved sensitivity and may allow for
more accurate quantitative measurements of the level of gene expression[13].

Transcriptome sequencing of HFs was carried out to identify various types of HFs at the
transcription level. Exons and exon-networks that were thought to be involved in the diver-
gence of HFs were examined. Moreover, functional divergence of the genes and enriched
expressions were examined to determine the genes involved in the development of HF types.

Results

Transcriptome profiling of primary hair follicles and secondary hair
follicles
In the quantification of the exon expression patterns, large variations (ranging from 7.0% and
8.4%) existed between individual HFs (PFs and SFs collectively referred to as HFs) in the percent-
age of coexpressed exons. To identify exon expression differences between primary hair follicles
(PFs) and secondary hair follicles (SFs), we selected RNA samples from 11 PFs and 7SFs encom-
passing 145,525 exons. We analyzed the differential exon expression profiles and identified 4512
exons with significantly different expression between the two types of HFs(P<0.01).

Functional classification of exon-significant differences
To determine the functions of the exons differentially expressed between the PFs and SFs, we
identified 3972 genes from the 4512 exons with significantly different expression patterns and
performed aBlast2GO analysis via a search of the NR database. The genes by Gene Ontology
(GO) terms according to group across categories of biological processes, cellular compart-
ments, and molecular functions[14].

Using the GO analysis, the differentially expressed genes were determined to be enriched
globally, regardless of species affiliation. For example, the development of different types of
HFs was shown to involve genes in the enriched categories described below based on the data-
set comparison (Fig 1). The products of most genes were distributed broadly throughout the
nucleus, cytoplasm, and organelles. Among the functional group of biological processes, the
PF- and SF-related genes that Mediate Function were significantly enriched in categories
related to primary metabolic process, regulation of translation, RNA metabolic process, protein
catabolic process.

To examine the signaling pathways of the genes involved in the different interactomes iden-
tified between the PFs and SFs, we analyzed our data using the KEGG pathway database and
the DAVID bioinformatics tool [14], and a total of 3972 genes with differential expression pat-
terns were placed into the following KEGG pathway categories (Fig 2A): Notch signaling path-
way, TGF-beta signaling pathway and cell cycle processes. This suggests that there are
considerable differences between the physiological processes in different types of HFs in cash-
mere goats. Meanwhile, the SKP1 gene of the UMPP was related to the functions of the TGF-
beta pathway. Fig 2B shows, in the line graph, the statistically significant differences (p<0.05
and–log10 (fold change)) between 26 KEGG pathways. Notably, the KEGG pathway analysis
of the genes with the greatest difference in expression showed that they were significantly
enriched with regard to the UMPP (P<3.32x 10−7).
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Cluster correlation analysis of the UMPP exons
To measure the correlations between the differential expression patterns of exons in the sam-
ples, we identified 51 exons in the UMPP showing significantly different expression patterns
between the 11 PFs and 7 SFs (S1 Table). The cluster analysis included 44 exons that were pres-
ent at higher levels and 7 exons that were present at lower levels in PFs. The cluster correlation
analysis of PF- and SF-divergent exons is shown in Fig 3, which indicates that they are clearly
separated based on the UMPP-related exons and are clustered into two classes. This indicates
that the UMPP might be valuable as a discriminator between the PFs and SFs. On the other
hand, we found only 7 exons that were expressed in all 18 samples, which were also related to
the UBE2O gene. This indicates that exon expression changes are steady in HFs, which will be
the focus of further analyses.

Exon co-expression network analysis in UMPP exons
Here, we used a UMPP exon co-expression network analysis in a first attempt to identify the
PF- and SF-associated co-expression modules and their key constituents. As the SF sample was
limited, it could not be used to determine the exon expression correlations based on the SF co-
expression network, we therefore estimated the exon correlations in the SFs based on the HF

Fig 1. Histogram of the GO classifications of gene-significant differences. Results of significantly different genesare summarized for three main GO
categories: biological process, cellular component and molecular function.

doi:10.1371/journal.pone.0156124.g001
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and PF networks. We used the correlation coefficients of the expression of 51 non-redundant
exons to calculate the pairwise correlations between exons. To avoid the effect of confounding
factors on the computed correlations, we used only the correlation coefficients that showed sig-
nificant changes based on t-tests (P<0.05) and found three genes with large differences in their
range of node degree variation, which were further analyzed for co-expression. We examined
the associations between the 9 exons of these 3 genes (UBE2O, BIRC3, BIRC6) in relation to
their node degrees, which showed substantial differences between the two exon networks (Fig
4) and the functional associations of the nine points predicted to be involved in the develop-
ment of HFs. Combined with the correlation coefficients for exon expression, we found that
UBE2Owas negatively correlated with BIRC6 and that BIRC3 and BIRC6 had a positive correla-
tion. The exons in UBE2O compared with those of BIRC6 showed significantly different corre-
lations in both HFs and PFs. The comparison showed differences in the relationships between
the 9 exons, which indicated markedly different degrees of exon co-expression and different
patterns in HFs and PFs. Then, the co-expression networks were used to screen the core genes
that may be involved in distinguishing the PFs and SFs.

Validation of the differences in expression of the selected genes
identified by RNA-Seq in the RNA samples isolated from the PFs and
SFs using qRT-PCR
As another approach to determine RNA-Seq expression patterns and levels of expression, we
performed quantitative RT-PCR for the different types of HFs from cashmere goats using spe-
cific primers (Fig 5). In this experiment, we eventually selected two exons of the UBE2O gene
using the scarce samples of SFs for comparison with the results of the analysis above. The
qRT-PCR result demonstrate that there are significant differences in the expression patterns
between the PFs and SFs. The C-1 exon and C-2 exon of UBE2O (P<0.05) showed higher levels
of expression in SFs than in PFs. The comparative analysis of the qRT-PCR and RNA sequenc-
ing results of these two exons shows that the qRT-PCR results were consistent with the exons

Fig 2. Summary of gene-significant differences in KEGG pathways. (A)Distribution of the KEGG pathways of gene-significant differences is
shown as a bar chart. The number of gene hits is shown along the Y-axis while the different KEGG pathways are shown along the X-axis. P<0.05 was
used as the thresholds in selecting significant KEGG pathways.The 26 significantly different KEGG terms are shown. (B) P-value for KEGG
pathways.

doi:10.1371/journal.pone.0156124.g002
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analysis results. This indicates that the observed differences in exon expression between PFs
and SFs based on transcript abundance were well supported.

Discussion
The Illumina high throughput sequencing platform is widely used for transcriptome analysis
based on the sequencing-by-synthesis (SBS) technique [15]. This is because of the high
throughput, accuracy, repeatability and low signal-to-noise ratio of this sequencing platform
[16–18]. Here, we provided a comprehensive insight on the PF and SF transcriptomes of cash-
mere goat fibers using Illumina deep sequencing. Recently some cases have been reported that
Zhu et al. showed the differentially expressed genes between primary and secondary hair folli-
cle-derived dermal papilla cells cultured in vitro involved in vascularization, ECM-receptor
interaction andWnt/β-catenin/Lef1 signaling pathways[19]. However, based on the different
exon expression patterns of 18 RNA-Seq libraries between primary and secondary hair follicles
which plucked from the vivo environment, we identified the ubiquitin–mediated proteolysis
pathway (UMPP).The main function of the UMPP is to degrade proteins. This degradation is

Fig 3. Pairwise correlation between all samples. Based on the differential exon expression, the heatmap
exhibits a clustering of 18 transcriptome samples (HF type*exon). It represents differentially expressed
exons between distinct types of HFs. Color map is used to visualize the differences in expression, ranging
from blue (normalized expression of −2) to red (normalized expression value of 4).

doi:10.1371/journal.pone.0156124.g003
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performed in two main steps. The first step involves a large number of ubiquitin molecules
being attached to the substrate. The second step involves the 26S proteasome and the recycling
of ubiquitin, which degrades the tagged protein through the activity of ubiquitin C-terminal
hydrolases[20–22]. Our studies demonstrates that the UMPP could be useful for the further

Fig 4. The co-expression network of differentially expressed exons. (A) Nodes represent the exons, the edges between them represent the
exon-exon interaction, and the thick and thin lines indicate positive and negative correlations, respectively. The exons considered for the network
assembly are highlighted with red, yellow and blue boxes. Red nodes representUBE2O; yellow nodes indicate BIRC3 and the blue nodes represent
BIRC6. The positions of exons have been indicated in annotations.The figures represent the starting position above the line and the ending position
below. (B)The exonexpression of BIRC3, BIRC6 andUBE2O in PFs and SFs.The BIRC3, BIRC6 andUBE2O are labeled in yellow, blue and red,
respectively. The expression of exons is shown along the Y-axis while the different positionson the chromosome are shown along the X-axis.

doi:10.1371/journal.pone.0156124.g004

Fig 5. qRT-PCR validation of exon expression among the different types of HF samples.

doi:10.1371/journal.pone.0156124.g005
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characterization of novel molecules associated with the regulation of HFs. It has long been rec-
ognized that HF formation and maintenance depend on reciprocal interactions between spe-
cialized dermal cells and epidermal stem cells[23,24]. The fleece consists of a number of
different types of HFs characterized by differences in their morphology and the time-course of
their induction during embryogenesis[25–27]. The interaction of numerous growth stimulat-
ing and inhibiting factors controls the growth of HFs. Some of the signaling pathways that
facilitate the growth of the HFs are the Wnt, Shh, Notch, TGF-β, Edar and Bmp pathways
[24,28,29]. Studies have indicated that the Wnt, Shh and NF-kB/EDAR pathways are crucial
for the growth and maintenance of HFs[30–33]. Increasing evidence suggests that the induc-
tion of PFs and SFs may require different signaling pathways. Headon and Overbeek (1999)
stated that the induction of PFs depends on signaling through the Tnf receptor homologue
Edar. The regulation of BMP signaling by noggin is essential for the induction of SFs, as well as
for the advanced stages of development in PFs[7,8].

It has previously been shown that the ubiquitination of proteinsis crucial in regulating the
timing, duration, and location of pathway signaling. In the Wnt signaling pathway, the best-
known example of polyubiquitination acting as a signaling mechanism is in the control of β-
catenin protein levels. Polyubiquitination also plays a central role in the regulation of the Shh/
Gli and NF-KB/TRAF signaling pathways during hair morphogenesis. The polyubiquitination
signaling pathway regulates NF-κB activity at almost all steps of the signal transduction pro-
cess. These results suggest that it may also play an important role in the signaling pathways
involved with different types of HFs in cashmere goats. Recent data suggest that ubiquitination
plays a much broader role in regulating protein function, such as the ubiquitination of the hair
differentiation regulator Notch and the degradation of the Notch intracellular domain[34].
Similarly, ubiquitin-dependent degradation plays critical roles in the regulation of TGF-β
[35,36] and the E3 ubiquitin ligases also regulate the TGF-β family signaling[37].

Although the function of the UMPP in the different types of HFs remains to be fully
defined, we provide evidence in the present study that UBE2O plays an important role in the
control of development-associated exon expression in the PFs and SFs. An analysis of the co-
expression networks indicates that the fifteenth exon (C-2 exon) belongs to the gene UBE2O.
Based on the large differences in node degree, our data suggest that this exon is closely associ-
ated with the regulation SF development. In addition, the qRT-PCR results demonstrated that
UBE2O was over-expressed in SFs compared to the expression in PFs, which is consistent with
the sequencing analysis results. One intriguing possibility is that the UBE2O gene may partici-
pate in the different signaling pathways of HF development and may play a different role in the
regulation of each type of HF. We suggest that UBE2O functions as a positive regulator in
BMP7 signaling and that BMP signaling promotes the induction of SFs[7,38]. Moreover,
UBE2O acts as a novel negative regulator of TRAF6-dependent NF-KB signaling in multiple
cell types and additional biochemical studies have confirmed that interactions with EDAR
result in NF-KB activation[6,39–41]. Interestingly, Eda and Edar in combination with Down-
less or Tabby mutants result in defects in HF induction, leading to a lack of development of
PFs. These genes in the UMPP may lead to the different patterns of signal regulations that sub-
sequently affect the development and morphogenesis of PFs and SFs. However, this hypothesis
requires further research.

The accuracy of the identification of the genes corresponding to most enriched pathway
and GO terms were confirmed by the Cluster exon-expression network and qRT-PCR analysis,
and51 of the selected exons showed significant differences. Consequently, these results strongly
support the use of our RNA-Seq data as a reliable resource for further analysis of the differen-
tial patterns of gene expressions. Taken together, our data demonstrate a previously unrecog-
nized role of the UMPP in the complex regulation of the differential exon expression that
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distinguishes the PFs and SFs. Although many aspects of the UMPP-dependent-effects on HFs
remain to be clarified, these data may help in further exploring the role of the UMPP in the
development of distinct types of HFs.

Conclusions
The comparative transcriptome analysis of 18 HFs from cashmere goats revealed 4512 exons
that are differentially expressed between PFs and SFs. An integrated analysis of differential
gene expression, functional classification and cluster correlation, and co-expression networks
suggest that UMPP activation is a prominent signaling pathway for distinguishing the PFs and
SFs of cashmere goats. This study also provides a meaningful contribution to the theoretical
basis of the biological study of the HFs of cashmere goats and other mammals.

Methods

Experimental animals and sample collection
The experimental procedure was approved by the Animal Care and Use Committee of Inner
Mongolia Agricultural University, China and was performed in accordance with the animal
welfare and ethics guidelines. Experimental cashmere goats were obtained from Nei Mongol.
All cashmere goats were raised using feeding practices based on standard practices for the care
of cashmere goats. Protocols used in this experiment were consistent with those approved by
the Institutional Animal Care and Use Committee of Inner Mongolia Agricultural University.

As there is no obvious cycle in the primary hair follicles (PFs), we collected according to the
growth cycle of the secondary hair follicles (SFs). HFs (PFs and SFs collectively referred to as
HFs) were collected from anagen to telogen of the cashmere goat hair cycle. The PFs and SFs
were collected and selected from 4 cashmere goats in each period, respectively. In total we col-
lected 12 PFs and 12 SFs over entire year. After iodine disinfection and alcohol deiodination,
we carefully separated the primary hair follicle and secondary hair follicle, then the primary
and secondary follicles were identified through the associated structures. The hair follicles were
quickly plucked from the dermis by hand[42]. The PFs and SFs plucked from the side of the
torso of female Nei Mongol cashmere goats were immediately frozen without any chemical
solutions in liquid nitrogen for storage and transport until used for RNA isolation[2].

We collected and selected the 11 PFs and 7 SFs from 4 cashmere goats due to the scarcity of
the samples and mRNA extraction difficulties. The PFs samples were collected at three hair fol-
licle developmental stages (anagen, catagen and telogen) and the SFs samples were collected
specifically at anagen and catagen. Both the PFs and SFs were mixed respectively and then
compared within groups, and cannot be compared correspondingly.

RNA extraction, sequence library construction, and illumina sequencing
RNA from each PF or SF sample group was extracted with TRIzol reagent (TaKaRa, Dalian
city, China) according to the manufacturer's instructions, and purity and degradation were
checked on 1% agarose gels. DNA was removed from the RNA extracts by incubation with
RNase-free DNase for 30 min at 37°C.

A cDNA library was constructed and oligo (dT) magnetic beads (Illumina) were employed
to isolate Illumina sequencing poly(A) mRNA isolated from total RNA. The purified mRNA
was broken into short fragments using a fragmentation buffer. Random hexamer primers and
reverse transcriptase (Illumina) were used to perform first-strand cDNA synthesis using the
short fragments as templates. Second-strand cDNA was synthesized using RNase H (Illumina),
DNA polymerase I (Illumina), dNTPs and buffer. These cDNA fragments were subjected to an
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end-repair process and ligation to adapters. These products were purified and enriched with
PCR to create the final cDNA library.

Sequence preprocessing and functional annotation
To obtain clean data, all sequenced raw data were processed, which included removing the
adapter and filtering out the low quality reads and the proportion with N more than 10% using
in-house perl script. Then, all clean data were mapped to the goat genome using TopHat2[43]
with no discordant and mixed parameters. Unique mapped reads were retained to estimate the
exon abundances in a downstream analysis. Reference-guided transcriptome assembly, which
compensates for incompletely assembled transcripts, was performed by Cufflinks[43] with a
bias correction for each sample, and then, the data were merged into a single unified transcript
catalog using Cuffmerge. Isoforms with an abundance below 0.1 were discarded to remove the
low-quality transcripts. Differentially expressed exons were estimated by Cuffdiff2[43] (exon
center) using RPKM (reads per kilobase per million mapped reads) based on P-value<0.01
and FDR<0.05.

Enrichment analysis
To explore the functional annotation and pathway enrichment of the significantly different
genes in the interactomes and compare them between the PFs and SFs, we used the online anal-
ysis tool DAVID (the Database for Annotation, Visualization and Integrated Discovery, Ver-
sion6.7)[44] to determine the enriched Gene Ontology (GO) terms (P-value<0.0001) and the
Kyoto Encyclopedia of Genes and Genomes (KEGG) (P-value<0.05), in which we focused on
the KEGG feature.

Differentially expressed exon analysis
A rigorous algorithm was used to identify exons that were shown by a t-test to be significantly
differentially expressed[45]. We used a P-value corresponding to a differential exon expression
test at statistically significant levels. A P-value<0.01 was used as the threshold to identify dif-
ferently expressed exons.

Cluster correlation analysis was used to demonstrate differentially expressed exons between
the different types of HFs. The procedure was as follows: Fold changes (log 10 Ratio) were esti-
mated according to the normalized exon expression level in each sample. The exon co-expres-
sion correlation was calculated and identified for differentially expressed exons using Pearson's
correlation with a cutoff P-value (P<0.01) and custom R scripts were written to identify the
degree of exon nodes for further analysis. A pairwise t-test[45] was employed to compare dif-
ferences in the degrees of the exons expressed in PFs and SFs.

Quantitative real-time PCR (RT-PCR) validation
We selected another 23 PFs and 9 SFs from the RNA-Seq analysis of 4 cashmere goats, they
were collected over the entire year, snap frozen in liquid nitrogen, and stored at −80°C for the
subsequent qRT-PCR analysis. Total RNA was extracted from PFs and SFs using TRIzol
(TaKaRa) following the manufacturer's protocols (Thermo Scientific NanoDrop 2000).
Approximately 0.5 μg of total RNA was used as a template to synthesize the first-strand cDNA
with a Primer Script RT reagent Kit (TaKaRa) following the manufacturer's protocols (S2
Table). The resultant cDNA was diluted to 0.1 μg/μl for further analysis via qRT-PCR (Bio-
Rad) using SYBR Green Realtime PCRMaster Mix (TaKaRa). GAPDH[46] was chosen as
internal reference gene to eliminate sample-to-sample variations. The relative quantitative
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method 2−ΔΔCt was to compare the expression differences in processed and untreated sam-
ples. As this study did not involved in the untreated samples, we just used the application of 2
−ΔCt method add standard curve to estimate the exon expression. Where ΔCt = (Ct1-Ct2) and
in presented for both the exon of UBE2O and GAPDH. The presence of significant differences
in expression between PFs and SFs were determined by GLM analysis using SAS software 9.0
[45].

Supporting Information
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(XLS)
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