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Abstract

Population structure (also called genetic structure and population stratification) is the presence of a systematic difference in allele frequen-
cies between subpopulations in a population as a result of nonrandom mating between individuals. It can be informative of genetic ances-
try, and in the context of medical genetics, it is an important confounding variable in genome-wide association studies. Recently, many
nonlinear dimensionality reduction techniques have been proposed for the population structure visualization task. However, an objective
comparison of these techniques has so far been missing from the literature. In this article, we discuss the previously proposed nonlinear
techniques and some of their potential weaknesses. We then propose a novel quantitative evaluation methodology for comparing these
nonlinear techniques, based on populations for which pedigree is known a priori either through artificial selection or simulation. Based on
this evaluation metric, we find graph-based algorithms such as t-SNE and UMAP to be superior to principal component analysis, while neu-

ral network-based methods fall behind.
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Introduction

Population structure—the patterns of ancestral similarities and
dissimilarities with arbitrarily defined populations—is a topic of
primary concern in population, quantitative, and evolutionary
genetics in humans, plants, microbes, and animals. The basic
cause of population structure in sexually reproducing species is
nonrandom mating between groups: if all individuals within a
population mate randomly, then the allele frequencies should be
similar between groups. Population structure commonly arises
from physical or reproductive separation and isolation by dis-
tance, barriers, like mountains and rivers, followed by genetic
drift (Holsinger and Weir 2009; Petkova et al. 2016). Other causes
include gene flow from migrations, population bottlenecks and
expansions, founder effects, evolutionary pressure, random
chance, and (in humans) cultural factors. As such, it should be
expected that clusters, such as families, tribes, and clades should
appear naturally in the data (Holsinger and Weir 2009; Battey
etal 2021).

Estimates of population structure are usually derived from lin-
ear factor models such as principal component analysis (PCA),
but nonlinear dimensionality reduction techniques have
attracted interest in recent literature. Estimation of population
structure is also critical for our ability to accurately link genetic
variation to phenotypic variation, because population structure
can be a major confounding factor in genome-wide association
studies (GWAS) (Lander and Schork 1994; Pritchard and Donnelly

2001; Freedman et al. 2004; Marchini et al. 2004; Yu et al. 2006).
Dimensionality reduction has been an important tool for geneti-
cists and has been widely used both to control for the effects of
population structure in GWAS (Patterson et al. 2006; Price et al.
2006; Yu et al. 2006) and visualization and inference of genetic
variation, i.e. population structure (Steinig et al. 2016; Francis
2017; Marnetto and Huerta-Sanchez 2017; Battey et al. 2021).

One existing challenge with estimating population structure is
that there is no ground truth with which to compare. Sometimes,
geographic distances are used as correlates of Euclidean distance
in principal component space to measure population reconstruc-
tion and representation (Battey et al. 2021). Given patterns of lim-
ited dispersal, on average, in many natural species, it would
make sense that the genetic distance would be correlated with
measures of geographic distance (Van Heerwaarden et al. 2011;
Battey et al. 2021). However, for many locally restricted species
and populations, e.g. breeding programs, geography is not a cor-
rect ground truth metric by which to judge tools for population
structure visualization and inference.

Here, using pedigreed populations as well as simulations, we
deploy a ground-truthing method for comparing and contrasting
dimensionality reduction (embedding) techniques for population
structure visualization and inference. We simulate populations
with or without assortative mating (selection) and with or with-
out migration (population structure) and keep track of the pedi-
gree, subpopulation membership, and individual level genotypes
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over multiple generations. We track the length of the shortest
path between individuals in the pedigree network as the ground
truth metric for ancestral distance. Pairs of individuals across
more distantly related subpopulations will have a greater num-
ber of edges between them, compared to pairs of individuals
within subpopulations, because they share a more distant most
recent common ancestor. We use this ground truth to compare
PCA, t-SNE, UMAP, an autoencoder (AE), a variational autoen-
coder (VAE), contrastive embedding learning, and random projec-
tions. In these experiments, UMAP and t-SNE significantly
outperform all other methods regardless of mating, selection, or
structure.

Review of existing methods

There are several nonlinear models for population structure visu-
alization and inference, which have been demonstrated in the lit-
erature. These methods can generally be divided into 3
categories: graph-based algorithms, AEs, and VAEs. Here, we
briefly discuss these algorithms and their applications.

In addition to the methods we review below, there are many
application-specific algorithms, which have been proposed in the
literature, including AWClust, SHIPS, NETVIEW, iNJclust, and
others (Alhusain and Hafez 2018). These methods mostly involve
performing PCA followed by a secondary clustering step.
Although these could also be useful techniques, in the present
work, we focus our analyses on the major classes of general-
purpose nonlinear dimensionality reduction methods, which
have been applied to population genetics in recent literature.

Principal component analysis

While nonlinear methods have seen increasing interest in recent
years, population structure is still most often analyzed using a
linear method called PCA. PCA uses eigenanalysis to produce a
number of vectors, called principal components, where each
component captures the axis of maximum variance in the data
while being orthogonal to the previous components. Using these
vectors, one can calculate a linear transformation of the data,
which casts the samples into a lower-dimensional space while
representing the maximum amount of linear variance. Although
it is not capable of representing nonlinear relationships, PCA has
the advantage of being more interpretable than nonlinear meth-
ods as the axes of the visualization can be interpreted in this
way.

Multidimensional scaling

Multidimensional scaling (MDS) is a foundational method in dis-
tance-based dimensionality reduction which takes a direct ap-
proach to compacting high-dimensional data into a low-
dimensional space. First, the pairwise distances between each
pair of samples in the original space are calculated. Next, a pro-
jection to the low-dimensional space is learned by minimizing
the differences between the pairwise distances in the low-
dimensional space and the calculated distances in the original
space. MDS has largely been superseded by other distance-based
methods such as t-SNE and UMAP, which aim to represent struc-
tures of local connectedness in the data.

Graph-based algorithms

Two of the most popular techniques used for visualizing high-
dimensional data, which have both seen application in popula-
tion genetic data, are t-SNE (Platzer 2013; Li et al. 2017) and UMAP
(Diaz-Papkovich et al. 2019). These methods are part of a family of
techniques, which are concerned with representing the data as a

graph with various edge lengths. These techniques aim to recon-
struct the graph in a lower-dimensional space, while maintaining
the topological structure from the original high-dimensional
space. This means that samples that are neighbors in the input
space will tend to form neighborhoods in the output space.

Autoencoders

An AE is a type of neural network that is commonly used for
learning a set of features from data in an unsupervised fashion.
Recently, AEs have been applied to population genetic data
(Lépez-Cortés et al. 2020; Ausmees and Nettelblad 2022). AEs are
comprised of 2 components, an encoder neural network and a de-
coder neural network, which jointly reconstruct an input:

X =fdecoder Ocencoder(x))' (1>

The encoder network fencoder compresses the high-
dimensional input x into a lower-dimensional space, while the
decoder network fqecoder OUtpPULS an approximation x of the origi-
nal input using only the low-dimensional embedding provided by
the encoder. Since the embedding space acts as a bottleneck, it
must efficiently represent as much of the relevant information as
possible from the original signal. For this reason, AEs have often
been used as a means of extracting informative and discrimina-
tive features for downstream tasks, where the embedding repre-
sentation can be re-used for another purpose. Specialized AEs
can also be used for tasks such as denoising input data, like
images (Vincent et al. 2008).

Variational autoencoders

The VAE is a latent variable model that defines a generative
model over data (Kingma and Welling 2014). VAEs have been
used for population data using both the standard Gaussian prior
(Battey et al. 2021), as well as a Gaussian mixture prior (GMM-
VAE) (Meisner and Albrechtsen 2020). When learning a latent var-
iable model such as a VAE, one would like to maximize the proba-
bility of the data under the model:

p(x) = jm(x\z)p(z)dz o)

where z is the latent variable and 0 are the model parameters. In
this case, performing exact inference is analytically intractable
due to the integral in Equation (2). However, we are able to mini-
mize the evidence lower bound (ELBO) directly, given by

0g (po(x,2)) = log ( [ po(x|2)p(z)dz)
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where q is the tractable prior. VAEs are trained using stochastic
sampling, which we will skip here for brevity, and are described
in more detail in Kingma and Welling (2014). VAEs and their
many variants are useful models because the posterior density of
the model approximates the tractable prior. This means that
sampling new data from the complex, multi-modal data distribu-
tion is as simple as sampling from the known prior. It also means
that, unlike with the AE, the density of the posterior is
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approximately continuous in the latent space and so it is often
possible to smoothly interpolate between points in this space.

Challenges with existing nonlinear methods
Nonlinear methods distort distances

AEs, VAEs, and variants use decoders, which are parameterized
by neural networks. It is well-established that, when the decoder
is a nonlinear function, the Euclidean distance between points in
the embedding space is meaningless, as these distances are dis-
torted by the decoder (Arvanitidis et al. 2018). The amount of in-
stantaneous distortion is given by the Jacobian of the decoder
evaluated with respect to z. This is straightforward to intuit:
imagine moving through the embedding space while monitoring
the output of the decoder. There are areas of the space where
moving a short distance in a straight line elicits large changes in
the output of decoder, and other areas where moving even a large
distance does not change the output of the decoder at all. This
poses a problem when using these methods for visualization and
inference, as it is natural to interpret distance between points in
the visualization in terms of Euclidean distance, without knowing
that the data actually lie on some nonlinear submanifold embed-
ded in the space.

While neural methods distort distances arbitrarily (Arvanitidis
et al. 2018), it is important to note that just because a nonlinear
decoder is absent does not mean that Euclidean distance is al-
ways respected. All nonlinear methods will distort the local and
global structure of the data, meaning that distances between and
within clusters are inconsistent and can change with different
hyperparameters (Kobak and Berens 2019). In addition, some
methods, such as t-SNE, prefer nonlinear (e.g. t-distributed) dis-
tance for a specific visualization purpose, for example to empha-
size local differences and avoid the over-crowding of points in a
local area. Although nonlinear methods attempt to preserve cer-
tain esthetic characteristics of the data, practitioners should be
aware that different methods will distort distance in different
ways, and this limits interpretability.

VAEs are sensitive to the choice of prior

The VAE is a powerful generative model. However, the inference
model go(z|x) learned by the VAE is generally meaningless with
respect to the true data generating distribution. The ELBO is only
a lower bound on the model evidence, and the difference between
the lower bound and the true model evidence is given by

log (p(x)) — ELBO = Dx1(q(2)|p(2[%))- (4)

Therefore, the model is an unboundedly bad approximation of
the true data distribution, where the quality of that approxima-
tion is given by the Kullback-Leibler divergence between q and
the true distribution. Simply put, the samples will be approxi-
mately distributed according to whatever prior is chosen, regard-
less of what the actual underlying data generating distribution is.
Using an implicit prior, one could even make the samples take on
arbitrary distributions (Huszdr 2017). For this reason, if the model
will be used for making inferences about population structure,
then the user must ensure that the chosen prior accurately repre-
sents the true underlying distribution, making the lower bound
tight.

Nonlinear methods may result in spurious clustering

Population stratification naturally results in uneven distribution of
alleles, but not necessarily completely discrete, compact clusters.
For example, gradual migration over time may result in more of a

gradient of allele frequency than in K completely distinct group-
ings. Nonlinear methods may exaggerate the presence of clusters,
when the actual distribution of alleles is less discrete. This is true
of methods that explicitly assign samples to clusters, such as
GMM-VAE, as well as distance-based methods, such as t-SNE and
UMAP, which may imply structure and continuous relationships in
the data that do not exist (Kobak and Berens 2019).

Materials and methods

Evaluation using pedigreed populations

The objective evaluation of visualization methods is challenging.
Given several options, practitioners may disagree on which visu-
alization is subjectively the best for a given dataset. Battey et al.
(2021) proposed to quantify the accuracy of a visualization by
comparing the Euclidean distance between samples with their
corresponding geographic distance. This is a good solution under
the assumption that a correlation exists between geographic dis-
tance and distance in ancestry, which is generally true for any
population where migration occurs. We extend this line of think-
ing by using pedigreed populations where ancestry can be calcu-
lated exactly, using the number of generations between
ancestors and descendants. If ancestry is being represented well
in the visualizations, then this distance should correlate with the
Euclidean distance between the individuals in the embeddings.
When the distance between ancestors and descendants is accu-
rately modeled, the distance between, for example, siblings, is
also enforced as they are anchored by their respective parents. In
total, we use 4 publicly available datasets of genotyped individu-
als that include pedigree information.

Strawberry (Fragaria sp.)

We analyzed the global pedigree of wild and cultivated straw-
berry (Fragaria sp.) reported by Pincot et al. (2021). These pedigree
records were assembled for 8,851 individuals, including 2,656 cul-
tivars developed since 1775. SNP marker genotypes for 1,495 indi-
viduals were available, including 1,235 UCD and 260 USDA
accessions (asexually propagated individuals) previously geno-
typed by Hardigan et al. (2018) with the iStraw35 SNP array (Bassil
et al. 2015; Verma et al. 2016). This pedigree extends 23 genera-
tions for 2 ascendant-descendent pairs and has a median depth
of 7 generations. The strawberry dataset included both natural
accessions and Californian breeding material; the majority of
samples are from the latter and the former includes diverse sam-
ples from Asia, Europe, North America, and South America.
Despite this, Pincot et al. (2021) suggested a high level of admix-
ture and allele sharing among the individuals in the metropolitan
population.

Pig (Sus scrofa)

We analyzed a pig dataset that PIC (a Genus company) made
available for comparing genomic prediction methods by
Cleveland et al. (2012). The dataset contains 3,534 individuals
with 52,842 SNP genotypes from the Illumina PorcineSNP60 chip
(Ramos et al. 2009) and a pedigree including parents and grand-
parents of the genotyped animals (Cleveland et al. 2012). This
pedigree extends 14 generations for 417 ascendant-descendant
pairs and has a median depth of 7 generations. The PIC Pig popu-
lation is strictly a breeding population and we expect it to be
without substantial population structure or well defined subpo-
pulations.
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Soay sheep (Ovis aries)

We analyzed the wild Soay sheep population reported by Stoffel
et al. (2021). This dataset includes genetypes from the Illumina
Ovine SNP50 BeadChip containing 51,135 SNP markers for 5,952
wild Soay sheep with both genotypes and pedigree. There are
8,172 entries in the pedigree records. This pedigree extends 13
generations for 1 ascendant-descendant pair and has a median
depth of 5 generations. The Soay sheep is a natural population in
which ascendants and descendants are genotypes and pedigreed
and we expect there to be limited population structure or well de-
fined subpopulations.

Florida Scrub-Jay (Aphelocoma coerulescens)

We analyzed a natural Florida Scrub-Jay population from Chen
et al. (2019). Our final pedigree consists of 6,936 individuals with
truncated birth years post-1990 with SNP genotypes of 10,731 au-
tosomal SNPs from 3,404 individuals (Chen et al. 2019). This pedi-
gree extends 8 generations for 54 ascendant-descendent pairs
and has a median depth of 2 generations. The Florida Scrub-Jay
population is a wild population including genotypes for ascend-
ants and descendants and we expect there to be limited popula-
tion structure or well-defined subpopulations. Chen et al. (2019)
noted that the genetic contribution of immigrants to be 75% in
the final population, which suggests a high degree of admixture.

Evaluation using simulation

To provide a complete ground truth for evaluation, which
includes known pairwise ancestral distances between both dis-
tantly and immediately related individuals, we use a variety of
population-level simulations. These simulations are based on the
SeqgBreed software package (Pérez-Enciso et al. 2020), which was
modified to begin from a hypothetical founder population with a
uniformly random distribution of alleles. This ensures that all of
the population structure present in the data is from the simula-
tion. An example of one such simulated population is shown in
Fig. 1.

Each simulation started from a diploid founding population of
100 individuals and proceeded for 10 generations. A constant re-
combination rate of 1 cM/Mbp is assumed, and no sex chromo-
somes were simulated. In total, 24,000 biallelic SNPs were
simulated in each population and were used to genotype the ter-
minal nodes (extant individuals).

We performed simulations with migration and without migra-
tion. For the simulations with migration, half of the current gen-
eration emigrates to found a separate subpopulation with some
probability (P =0.3). For each of the simulations with and without
migration, we performed versions with random and assortative
mating.

For the simulations with random mating, every individual
within the current generation pairs with a random other individ-
ual. A random number of offspring, between 1 and 4, are pro-
duced. This resulted in an average Fsr = 0.083, 0.24 < MAF < 0.5,
which is concordant with low genetic differentiation between the
known subpopulations, expected in a stable, random mating pop-
ulation. For simulations with assortative mating, we defined a hy-
pothetical quantitative trait with 10 randomly selected QTN
(h? = 0.5). For each generation, the top 50% of the individuals are
selected based on their phenotype, and each pairing produces be-
tween 2 and 8 offspring. This resulted in an average Fsr = 0.155,
0 < MAF < 0.5, which is concordant with moderate genetic

differentiation between the known subpopulations. The popula-
tions are twice as differentiated.

Simulations were run 100 times each to obtain error esti-
mates. Population genetic parameters are estimated using pop-
gen() from snpReady v0.9.6 (Granato and Fritsche-Neto 2018) in R
v4.2.0 (R Core Team 2021). The allele frequency spectrum as a
function of heterozysosity for each site is shown in Fig. 2 (Ferretti
et al. 2018). Expected identity by descent (IBD) matrices were cal-
culated from the known pedigree in each simulated population
using Amatrix() from AGHmatrix v2.0.4 (Amadeu et al. 2016) in R.

Models evaluated

For all evaluations, we compare PCA, t-SNE, UMAP, MDS, an AE, a
VAE, and a learned embedding obtained via an unsupervised con-
trastive technique (Ye et al. 2019). We also use a random nonlin-
ear projection from a randomly initialized 2-layer neural network
as a comparison baseline. We use the umap-learn implementa-
tion for UMAP (McInnes et al. 2018) and the scikit-learn imple-
mentation for t-SNE and MDS (Pedregosa et al. 2011). In each
case, the marker data were used as the input directly. Simulation
output from SeqBreed represents alleles as 0 or 1. The biallelic
sites were used directly for input without centering. In the case of
the VAE, the SNP data were normalized to [0, 1] due to the cross-
entropy term in the loss function. When using techniques such
as t-SNE and UMAP, it is common to preprocess the data using
PCA and use the first n principal components as the input.
However, we found that for the pedigree distance metric, not pre-
processing the data in this way provider better performance.

Since, in practice, the ancestral relationships are unknown, it
is not realistic to tune each method specifically to maximize per-
formance on the pedigree distance task. This means that there is
no principled way to select hyperparameters or architectures for
each method, as in real-world use cases there will be no good cri-
teria for which resulting visualizations are better than others. For
this reason, we use the default hyperparameters for UMAP and
t-SNE. For the neural network-based methods, we select hyper-
parameters that allow the loss to decrease to a plateau, indicat-
ing that, at the very least, the model has fit the data to some
extent without catastrophic problems in training.

For the AE and contrastive methods, we use fully connected
encoders and decoders with 2 hidden layers (256 and 128 units)
and a learning rate of 10~*. For the AE, we used categorical cross-
entropy as the reconstruction loss. We use the Adam optimizer
(Kingma and Ba 2015) in all cases and train to 100 epochs because
this was a single number which allowed the loss for all of the
neural methods to plateau for all of the datasets.

For the VAE, we use the architecture described in Battey et al.
(2021), with the exception of batch normalization used in the en-
coder and decoder. While Battey et al. (2021) observed worse per-
formance with batch normalization, it improved the
performance of the VAE in our tests and stabilized training,
allowing the VAE to avoid posterior collapse in some cases
(Bowman et al. 2016). We used a learning rate of 102 and (follow-
ing Battey et al. 2021) binary cross-entropy for the log likelihood
term.

In Battey et al. (2021), the authors described an issue that they
refer to as overfitting. The authors proposed to remedy this prob-
lem by using early stopping based on held-out samples. We
found early stopping to be less important for the VAE; however,
with some datasets, the performance did show small fluctuations
over the number of training epochs. We decided to not include
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Fig. 1. Using true genealogy (pedigree) as the truth to compare projection methods. In each plot, colors correspond to different subpopulations resulting
from simulated migrations. Points are plotted in a random order. a) An example of a simulated population with migration and random mating showing
ascendants (black nodes), genotyped descendants (colored nodes), and relationships (gray edges). b) The “ground-truth” pairwise distances for the
individuals of the last generation in all subpopulations, as calculated from the family tree, were used as the difference matrix in MDS. This provides an
example of what a visualization might look like if the distances between points represented differences in ancestry as accurately as possible. c)

Candidate visualizations of the simulated population.

early stopping in our experiments, as holding out data for early
stopping means that it is impossible to compare the method to
others as it does not take into account all of the data.
Unsupervised embedding learning is a commonly used tech-
nique for performing tasks such as information retrieval in unla-
beled datasets. These techniques attempt to learn an embedding
space where similar samples lie close together in the space and
dissimilar samples are farther apart. For our purposes, we chose
to use a contrastive embedding learning technique with
instance-wise supervision (Ye et al. 2019). Training samples x are
augmented to create positive samples %. This is done by ran-
domly changing homozygous sites to heterozygous with some
probability (P =0.1). We then minimize the loss function:

1 o0(x:%)
108 Loxa) 1 gomw)’ ®)

where ¢ is a similarity metric, here we use the cosine similarity,
and w is a different sample than x. We found that cosine similar-
ity performs better on the pedigree distance metric than other
similarity metrics, such as inverse Euclidean distance.

Results and discussion

For the first experiments, we report Pearson’s correlation between
the Euclidean distance in the visualization and the known ances-
tral distance (as given by the pedigree records or the simulation).
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We provide 2 sets of results, based on 2 potential interpretations
of how distance between ancestors should be portrayed visually.
The upper portion of Table 1 shows results where the simple
Euclidean distance between points in the visualization is used,
while the lower portion of Table 1 shows results where log, of this
distance is used. The former is based on the assumption that pedi-
gree distance should be represented linearly, independent of
depth, while the latter assumes that distance between points
should correlate with the proportion of ancestry represented by
that ancestor. For example, if an individual is separated from their
parent by a distance of 4 units, then the linear distance assumes
that their grandparent should be 8 (2 x 4) units away, while the ex-
ponential distance assumes that the grandparent should be 16 (4?)
units away. We found that, in general, the log, definition resulted
in higher correlations with marker inferred distance.

On the basis that the pedigree distance ground truth could be
affected by populations containing inbreeding, we repeat all of
the analyses using the IBD matrices as the ground truth. We re-
port Pearson’s correlation between the Euclidean distance (or
log, of this distance) in the visualization and the inverse of the
IBD similarity. These results are shown in Table 2. The correla-
tion between the ground-truth distances and the Euclidean dis-
tance in the ambient marker space is shown in Table 3 for
reference. Detailed results for the simulation experiments are
shown in Figure 3 and Figure 4.

Comparison of linear and nonlinear methods

Our evaluations show that nonlinear methods are often superior
alternatives to PCA for visualizing population structure. t-SNE or
UMAP outperformed PCA in every dataset, with the exception of
strawberry. The strength of PCA in the strawberry example may
be due to ascertainment bias in genotyping arrays, depth and
complexity of the pedigree records, strength of selection between
different subgroups, or the overrepresentation of modern
Fragaria x ananassa in the database. PCA was outperformed by
1 or more of the neural network methods (AE, VAE, and contras-
tive) in 5 of the 8 datasets when linear distance was assumed and
4 of the 8 when exponential distance was assumed, demonstrat-
ing that there is little incentive to use these techniques over PCA
as a standard choice. Of the neural network-based methods, VAE
and contrastive learning alternated as the best performing in the
real datasets, although the VAE was superior in the experiments
with simulated data. MDS was the worst-performing method in
our tests, coming in last in almost all of the experiments. All of
the methods did consistently perform better than the random
projection, indicating that they do capture significant informa-
tion about ancestry.

The experiments using the pedigree path distance (Table 1)
and the IBD similarity (Table 2) as ground truth are similar in the
trend of their results. The pedigree distance resulted in generally
higher correlation values on average. Whether using pedigree
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Table 1. Pearson correlation (r) between the Euclidean distance, D, and log, of the Euclidean distance, log,(D), in the visualization and

the known pedigree distance.

Distance metric Model Strawberry Pig Soay sheep Florida Scrub-Jay Migration No migration
Random Assortative Random Assortative
D UMAP 0.85 0.73 0.78 0.18 0.80 (= 0.19) 0.78 (+ 0.17)°  0.16 (+ 0.02) 0.24 (+ 0. o3)f
t-SNE 0.76 0.77 0.75 0.17 072 (£ 0.20f  0.74 (+ 0.18)*¢ 0.11 (£ 0.01)% 0.19 (+ 0.03)¢
PCA 0.86 0.48 0.07 0.15 0.76 (x 0.21)9  0.75 (= 0.20)*¢ 0.11 (= 0.02)% 0.18 (+ 0.04)%
VAE 0.60 0.52 0.26 0.16 0.64 (£ 0.21)° 068 (x0.16)7 0.13 (= 0.02)° 0.22 (= 0.04)°
Contrastive 0.73 0.54 0.12 0.16 049 (+ 0.21)° 052 (*0.22)° 0.05(* 0.01)° 0.11 (+ 0.03)°
AE 0.76 0.44 0.01 0.14 0.35(x0.16)9  0.35(x0.18)°  0.03 (= 0.01)® 0.05 (+ 0.03)°
MDS 0.53 0.26 0.02 0.14 0.20 (+ 0.15)" 046 (+ 0.19)°  0.02 (+ 0.00)* 0.05 (+ 0.02)
Random 0.06 0.07 0.11 0.10 0.04 (£ 0.03) 0.07 (x0.05)* 0.02 (£ 0.01)% 0.03 (+ 0.01)%
log,(D) UMAP 0.71 0.72 0.70 0.29 0.85(+ 0.16) 0.82(+0.12)Y 0.28 (+ 0.02)¢ 0.39 (+ 0.03)?
t-SNE 0.64 0.70 0.64 0.31 0.75 (£ 0.19)°  0.78 (+ 0.15)%% 0.19 (= 0.02) 0.30 (= 0.03)
PCA 0.74 0.57 0.14 0.16 0.74 (+ 0.20)° 074 (* 0.19° 0.10 (* 0.02)¢ 0.17 (+ 0.04)¢
VAE 0.56 0.55 0.32 0.16 0.66 (£ 0.19) 071 (*0.14)° 0.17 (= 0.02)° 0.28 (= 0.04)°
Contrastive 0.57 0.56 0.12 0.17 0.50 (+ 0.21)° 052 (*0.21)>  0.05 (+ 0.01)> 0.11 (+ 0.03)°
AE 0.50 0.33 0.21 0.15 052 (£ 0.17)° 048 (+0.14)° 0.07 (= 0.02)° 0.11 (= 0.03)
MDS 0.48 0.25 0.02 0.01 0.20 (+ 0.14)" 047 (* 0.20)"  0.02 (+ 0.00)* 0.05 (+ 0.02)
Random 0.22 0.10 0.12 0.07 0.03 (£ 0.02)% 0.07 (x0.05)* 0.02 (£ 0.01)% 0.03 (+ 0.01)%

For the simulations, the superscript letters are the compact letter display for the Tukey least significant difference test (shown in Fig. 3). The standard deviations
from the simulated samples are shown in parentheses following the correlation coefficient. Highest correlation values for each dataset are bolded for readability.

Table 2. Pearson correlation (r) between the Euclidean distance, D, and log, of the Euclidean distance, log,(D), in the visualization and

the IBD distance.

Distance Model Strawberry Pig Soay sheep Florida Scrub-Jay Migration No migration

metric

Random Assortative Random Assortative

D UMAP 0.51 0.37 0.18 0.13 0.56 (+ 0.18)7  0.67 (+ 0.14)° 0.18 (= 0.01)? 0.26 (= 0.02)°
t-SNE 0.42 0.42 0.21 0.21 0.54 (+ 0.20)2  0.70 (= 0.16)° 0.14 (= 0. 01)f 0.22 (+ 0.02)4
PCA 0.57 0.29 0.03 0.08 0.52 (£ 0.20)7  0.65(+0.18)° 0.10 (+ 0.01) 0.16 (* 0.02)°
VAE 0.41 0.34 0.12 0.08 0.49 (= 0.18)F  0.61 (+ 0.15)° 0.13(+0.01)° 0.21(* 0.03)%
Contrastive 0.47 0.29 0.03 0.10 0.38 (£ 0.19)F° 0.52 (x0.18) 0.06 (+ 0.01)° 0.12 (= 0.02)
AE 0.31 0.13 0.00 0.10 0.22 (¥ 0.12)° 029 (+0.11)> 0.03(+0.01)" 0.05 (+ 0.02)*
MDS 0.32 0.16 0.04 0.10 017 (+ 0.13)"  0.44 (+ 0.17)° 0.02 (+ 0.00)* 0.04 (* 0.02)°
Random 0.10 0.05 0.03 0.10 0.05 (= 0.02)" 0.10 (+ 0.06)* 0.03 (+ 0.00)> 0.05 (+ 0.01)

log, (D) UMAP 0.48 0.51 0.25 0.31 0.73 (+ 0.15)° 0.84 (+ 0.09)° 0.42 (+0.02)9 0.59 (= 0.03)
t-SNE 0.42 0.56 0.32 0.43 0.70 (¥ 0.17)°  0.81(+0.12)° 0.35(+ 0.01) 047 (+ 0.03)
PCA 0.52 0.28 0.04 0.14 0.52(+0.19)% 065 (x0.17)% 0.12(x0.01)% 0.18 (= 0.03)
VAE 0.37 0.38 0.17 0.04 0.57(x0.18)% 0.69 (+ 0.14)7 021 (+0.02)° 0.33 (= 0.04)
Contrastive 0.37 0.27 0.04 0.16 041 (= 0.19)F° 0.54 (x 0.18)° 0.07 (+ 0.01)° 0.14 (= 0.02)
AE 0.35 0.20 0.06 0.20 0.39 (+ 0.15)° 044 (+0.12)> 0.09 (= 0.01)" 0.15 (+ 0.02)°
MDS 0.31 0.20 0.06 0.07 018 (+ 0.14)" 047 (+0.19)" 0.02 (+ 0.00)* 0.05 (* 0.02)°
Random 0.05 0.01 0.01 —0.02 0.04 (= 0.02)" 0.09 (+ 0.05)* 0.03(+0.00)* 0.04 (+ 0.01)

For the simulations, the superscript letters are the compact letter display for the Tukey least significant difference test (shown in Fig. 4). The standard deviations
from the simulated samples are shown in parentheses following the correlation coefficient. Highest correlation values for each dataset are bolded for readability.

Table 3. Correlation between the Euclidean distance (D) and log,
of the Euclidean distance (log, (D)) in the marker space and the
ground-truth ancestral distance for the natural datasets.

Dataset Pedigree distance IBD distance

D log,D D log,D
Strawberry 0.79 0.78 0.62 0.51
Pig 0.70 0.69 0.66 0.60
Soay sheep 0.76 0.74 0.74 0.58
Florida Scrub-Jay 0.15 0.08 0.12 0.16

distance or IBD similarity, some datasets provided generally low
correlation values. These are the Florida Scrub-Jay population,
and the simulations without migration. These universally low
correlation values could be attributed to true or artificial unifor-
mity in the pedigree distances.

The empirical datasets strongly differ in their median depth
(distance)—the median depth in the Scrub-Jay dataset is 2

generations, while the Soay sheep, pig, and strawberry have me-
dian depths of 5, 7, and 7, respectively (Tables 1 and 2). When the
majority of individuals included in a pedigree are assumed to be
unrelated (no connectivity), the distance between individuals in
inestimable. A moderate level of depth, e.g. median depth > 5, is
likely a necessity to eliminate the false uniformity of relation-
ships when nearly all individuals are assumed to be unrelated. In
the ideal scenario for our analyses, all pedigree connections
would be known and all individuals are a known distance from
every other individual.

Similarly, the “no migration” simulations yielded small corre-
lation coefficients between the projection distances and the pedi-
gree distances (Tables 1 and 2). This is likely because the pedigree
distances are uniform and the projections are likely sensitive to
initial conditions and may also prioritize global over local struc-
ture. When there are only local structure data, the projections
are simply prone to weaker performance compared to when there
is discernible global structure. Even when there is no global struc-
ture, there are significant differences in the performance of the
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different metrics with t-SNE and UMAP systematically outper-
forming other included methods.

In addition to the quantitative results, the visualizations in
Fig. 1c of the simulated population in Fig. 1b illustrate some key
differences between the methods. The ground-truth plot shows
that there are 7 major clusters of subpopulations, with some bro-
ken down further into multiple smaller subpopulations. Only
some of these clusters are captured with PCA, as the first 2 princi-
pal components are insufficient to differentiate between some of
the more closely related subpopulations. The AE shows its char-
acteristic “smearing” of points in the space, while clusters are
vaguely visible. It is apparent that the AE does not consider pair-
wise Euclidean distance to be important—the heads of each clus-
ter are closer to each other than to the points in their tails. The
VAE compacts clusters better than the AE but still tends to pull
points toward the mode of the prior distribution at the origin.

Meanwhile, the use of cosine distance in the contrastive method
creates a ring-like structure, as the positions of the points are based
on the angle they make with the origin. t-SNE and UMAP show the
major clusters clearly, although UMAP clusters individuals more
tightly within each group, while t-SNE prefers to spread each cluster
so individual points can be seen more clearly. This difference may
account for the advantage UMAP holds over t-SNE in the quantita-
tive results. Hyperparameters could also be tuned to decrease the
tightness of the clusters in UMAP, if larger clusters are preferable
for visualization reasons. Compared to the other techniques, the
advantages of t-SNE and UMAP are clearly demonstrated here.
These methods do not lose important information like PCA, which
collapses several of the subpopulations together, and they respect
pairwise Euclidean distances between individuals better than the
neural network-based methods.

On the success or failure of methods

It is important to note that the pedigree distance metric we de-
velop here only measures how closely a visualization matches
the viewer’s expectations of what it shows—that is to what de-
gree distances between points are indicative of differences in an-
cestry. The individual methods succeed or fail on this metric by
incidence, not by design. For example, a method such as UMAP
does not guarantee to preserve pairwise Euclidean distances be-
tween every pair of points, but rather, it seems to portray this in-
cidentally in our experiments. Conversely, a method such as
contrastive embedding learning is not a generally weak method
for learning good representations of data—it only fails to portray
what we expect an embedding method used in this domain to
show.

Limitations

Although we have attempted to quantify the “accuracy” of differ-
ent visualizations with as much objectivity as possible, it remains
true that visualization is inherently subjective. Even given these
evaluations, practitioners may still prefer one visualization over
another based on how it portrays certain known characteristics
of the population. Therefore, our results only provide additional
information for decision-making based on a particular set of
goals, not a blanket directive for which methods should be used.
All of the quantitative results reported here are associated with
a particular set of assumptions. We find these assumptions to be
reasonable—that distance between individuals should correlate
with distance in ancestry—but not necessarily universal. For exam-
ple, our evaluation metric assumes that this correlation should be
linear (or linear following a log transform). Some researchers may
prefer a method that exaggerates some types of distances, while

minimizing others. This is not a problem, so long as the audience is
aware of how the visualization should be interpreted. Other
researchers may be either more or less tolerant to outliers than is
reflected by our choice of Pearson’s r as the evaluation metric.

One weakness of the pedigree distance metric in natural data-
sets is that it does not measure the accuracy of distances be-
tween completely unrelated subpopulations, as there is no
known pedigree relationship between these individuals. For ex-
ample, a dataset containing 2 such subpopulations will attain the
same performance on the pedigree distance metric whether the
subpopulations are shown as completely separate or overlapping.
This creates a possible bias in evaluation, as pedigree relation-
ships are more likely to exist for closely related individuals—that
is the ground truth distances are more likely to exist between
samples that reside in the same local neighborhood. We have
addressed this by using simulations, where ancestral relation-
ships between every pair of individuals are known. When taking
these distant relationships into account using the simulated
data, we see that the same trends in performance hold for all of
the methods, suggesting that this effect is likely not a significant
drawback for our evaluations on the natural datasets.

We believe that our simulations (while not representative of
every scenario) do capture general patterns of what we would ex-
pect in situations with selection and/or migration, as we show
that the allele frequency spectrum shifts much more dramati-
cally in the selected populations than in the randomly mated
populations, regardless of migration (Figure 2). However, our sim-
ulations start out with uniform allele frequencies across sites.
This may be simplistic, but we feel it captures the general trend
of segregating sites in populations undergoing random and assor-
tative mating.

Conclusions

To evaluate which embedding methods most accurately portray
differences in ancestry, we have performed quantitative and
qualitative analyses. Our analyses suggest that graph-based algo-
rithms such as t-SNE and UMAP may provide visualizations of
population structure where differences in ancestry are portrayed
more accurately than with other dimensionality reduction meth-
ods, such as PCA or neural network-based methods. The results
are consistent across real-world datasets as well as simulations,
and for both random mating and assortative mating (breeding)
populations with and without subpopulation structure. The
results are also consistent whether evaluated on the basis of ei-
ther linear or exponential distance with depth of ancestry, and
using either the pedigree distance or the IBD matrix as the ground
truth. Our visualizations illustrate where nonlinear methods can
improve on the embeddings provided by PCA, as well as how neu-
ral network-based methods such as AEs and VAEs fail in ways,
which are anticipated by theory.

Data availability

Data are publicly available from the sources referenced by their
authors. Code for reproducing the experiments is available at
https://github.com/jubbens/popmodels.
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