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Does adjustment for non-differential misclassification of dichotomous 
exposure induce positive bias if there is no true association? 

Igor Burstyn *,1 

Environmental and Occupational Health, Drexel University, Philadelphia, PA, United States of America  

A B S T R A C T   

This article is a response to an off-the-record discussion that I had at an international meeting of epidemiologists more than decade ago. It centered on a concern, 
perhaps widely spread, that adjustment for exposure misclassification can induce a false positive result. I trace the possible history of this supposition and test it in a 
simulated case-control study under the assumption of non-differential misclassification of binary exposure, in which a Bayesian adjustment is applied. Probabilistic 
bias analysis is also briefly considered. The main conclusion is that adjustment for the presumed non-differential exposure misclassification of dichotomous does not 
“induce” positive associations, especially if the focus of the interpretation of the result is taken away from the point estimate. The misconception about positive bias 
induced by adjustment for exposure misclassification, if more clearly explained during the training of epidemiologists, may promote appropriate (and wider) use of 
the adjustment techniques. The simple message that can be derived from this paper is: “Exposure misclassification as a tractable problem that deserves much more 
attention than just a typical qualitative throw-away discussion”.   

Introduction 

There is a suspicion among some epidemiologists that adjustment for 
error in exposure estimate can artificially create an apparent positive 
association, a false positive. The typical argument to support this notion 
proceeds along these lines: 

In most cases an argument is made that the observed exposures were 
not influenced by the knowledge of health outcome and therefore, 
exposure misclassification (measurement error) is typically non- 
differential. If non-differential exposure misclassification (measure-
ment error) attenuates an estimate of risk, then adjusting for this 
phenomenon will increase the risk estimate proportionately to the 
presumed extent of imprecision in the observed exposure. By simply 
assuming an ever-increasing magnitude of error in exposure, one can 
arrive at a correspondingly increasing risk estimate even if there is no 
true association. 

While there is no empirical evidence (to my knowledge) of such 
abuse of the adjustment methods, the obvious opportunity for a 
dishonest or naïve individual to bias the results seems to have cast a 
shadow of suspicion on all misclassification and measurement error 
adjustment techniques. I illustrate the reason for this suspicion of 

adjustment methods being unfair in the context of the regression cali-
bration method for adjustment of the odds ratio (OR) (classical additive 
measurement error) introduced by Rosner et al. [1] in Fig. 1. We can see 
that as the non-differential measurement error increases (or is assumed 
to increase) the larger is the push towards higher values in the adjusted 
OR away from the null. The further is the observed OR from the null, the 
stronger is this adjustment, but when the observed OR = 1, there is no 
adjustment (in practice, we almost never observe OR exactly equal to 
one). By simple algebra, a seemingly unimpressive observed point esti-
mate of OR of 1.3 would by pushed to an alarming value of 3.72 if one 
can show (or misrepresent) that slope relating true and observed expo-
sure is 0.2, given that all other assumptions of Rosner et al. [1] hold. 

Arguments illustrated above are rarely openly voiced but may not be 
an uncommon concern in private discussions and are one reason put 
forward against adjustment for known exposure misclassification. 
However, if “measurement error is threatening our profession”, [2] then 
the apparent avoidance of exposure misclassification adjustment tech-
niques [3,4] seems to be an unhealthy tendency. Reflecting on Willett, 
[5] this state of the affairs has largely not changed since the late 1980's, 
even though most of then-enumerated practical barriers are gone 
(namely: incorporation of uncertainty, accessible adjustment for 
commonly used regression models, lack of software), albeit there is still 
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a shortage of reliability and validity studies. The problem with lack of 
validation studies is self-aggravating: since there is largely no intent to 
adjust for misclassification and measurement error in epidemiology, 
reliability and validity studies are not performed (despite strong 
encouragement from journals like Epidemiology, which has a separate 
section devoted to validation studies3). This implies that the barriers to 
adjustment for measurement error in exposure hypothesized by Willett 
[5] were not effective targets of an intervention. Some of the most recent 
efforts to motivate epidemiologists to adjust for measurement error (e. 
g., by Wallace in 2020 [6]) appear to be using the same motivation as 
Willett [5] – the concerns about under-estimating effects or false nega-
tives – and therefore are likewise likely will not stimulate any change to 
the epidemiologic practice. (One exception to the aforementioned 
gloomy assessment appears to me to be nutritional epidemiology, within 
which an impressive arsenal of measurement error adjustment tech-
niques, including validation studies, has been implemented starting at 
least in the early 1990's, as exemplified by [1,7–11].) 

Maybe it is time to listen to the concerns of practicing epidemiolo-
gists about methods for misclassification and measurement error in 

exposure advocated by statisticians? One of them may be the rarely 
articulated worry that adjustment for non-differential exposure 
misclassification can produce false positive by exaggerating true effect. 
After all, it has been written almost 30 years ago that non-differential 
misclassification of exposure does not always leads to an underesti-
mate of risk, [12] implying that the adjustment for it should sometimes 
allow for the conclusion that the true effect may be weaker than the 
observed. Wacholder et al. [13] clarified in comment on Sorahan et al. 
[12] that there is a difference between misclassification process and 
misclassification in the resulting data: whereas the process of misclas-
sification may be perfectly non-differential it would be difficult to expect 
that the empirical sensitivity and specificities will be exactly the same. 
In fact, there are both theoretical and practical reasons for non- 
differential misclassification [14] and measurement error [15] of 
exposure to cause false positives, likely contributing the “replication 
crisis”, which is habitually linked with misuse of null hypothesis testing. 
[15]. 

This article is my attempt to contribute to overcoming the reluctance 
of some (many) epidemiologists to explicitly tackle the problem of 
misclassification of dichotomous exposure. It is a follow-up to my work 
on multiplicative measurement error that tacked the same question in a 
context of a cohort study with either binary or continuous outcome, 
which is an unpublished (in peer-reviewed literature) prequel to the 
current manuscript. [16] Those readers who wish to jump to an in-depth 
yet accessible treatment of exposure measurement error and misclassi-
fication issues in epidemiology are advised to proceed to the publica-
tions of the STRATOS initiative (https://stratos-initiative.org/). [17,18] 

The above perception of artificial inflation of exposure-response as-
sociations due to misclassification and measurement error adjustment 
can perhaps be traced to some of the early adjustment methods intro-
duced to epidemiologists, such as the relationship popularized by 

Fig. 1. The effect of adjusting odds ratio (OR) for the ever-increasing measurement error; the observed OR are given in the corresponding colors next to each line; if 
the wrong measurement error parameter is used, the adjusted value is biased; assuming more error leads to large adjusted OR, unless the observed OR is exactly 1; 
(see Rosner et al. [1] for the details of regression calibration, where the “slope” is denoted by λ). 

3 Epidemiology: Instruction for authors: “Validation Studies (2000 words) 
Validation studies should follow the outline for an Original Research Article 
and should provide estimates to inform bias analyses or otherwise be of use in 
epidemiologic research (see editorial). Examples include estimates of mea-
surement error for continuous variables, classification parameters for discrete 
variables (sensitivity, specificity, or positive and negative predictive values), 
strengths of association to inform analyses of an unmeasured confounder, or 
participation proportions within combinations of exposures and outcomes. The 
validation study should be designed and the results presented to optimize their 
utility in other similar settings.”; https://edmgr.ovid.com/epid/accounts/ifauth 
.htm (accessed 6/12/2023). 
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Armstrong, [19] between the true and observed slopes of linear 
regression via the coefficient of reliability, which assumes a non- 
differential classical additive measurement error model. A similar rela-
tionship is known for the true and the observed relative risks [20] and 
ORs. [1] It is obvious from equations in [1,19,20] that as the measure-
ment error grows larger, then these adjustment methods will yield an 
ever increasing point estimates of the association parameters. Conse-
quently, a person wishing to “game” the rules can always postulate a 
non-differential measurement error sufficiently large to arrive at some 
target “elevated” point estimate of the association parameter, e.g., OR >
2 deemed by Doll as not weak. [21] 

The simple approaches to the measurement error and exposure 
misclassification problems reviewed above do not reflect the state of the 
art in the field. [17,18,22,23] For example, well-established Bayesian 
methods that reconcile our knowledge about measurement error and 
misclassification with the available data do not simply scale the naïve 
point estimates by a multiplier derived from a validation study. [22,23] 
Please note that even if the adjustment is as simple as using a multiplier, 
false positives cannot be manufactured, because the multiplier would 
also be applied to endpoints of the naïve interval estimate, the null 
would be inside the corrected interval if and only if it is inside the naïve 
interval. In fact, it was shown in Bayesian framework “that failing to 
adjust for misclassification can (lead one to) overstate the evidence”, but 
“an honest admission of uncertainty about the misclassification” can 
result in a more accurate estimate of the association parameter; “neither 
of these phenomena are predicted by common rules-of-thumb”. [24] 
Nonetheless, epidemiological practice is dominated by the use of rules- 
of-thumb in dealing with measurement error and misclassification. [3,4] 

My specific purpose in this article is to illustrate that odds ratios 
estimated from an unmatched case-control study are not materially 
biased upward by employing Bayesian adjustment for suspected non- 
differential misclassification of a dichotomous exposure. Thus, my aim 
is akin to that of a demonstration project that has the pedagogic value of 
combating a misconception about a specific way of analyzing data, not 

an attempt to trick a statistical method to perform in an unexpected 
manner. 

Methods 

I consider a case-control study with exposures that is either truly 
binary or a dichotomy of continuous exposures. The study, if properly 
analyzed, should reveal no association between the exposure and the 
outcomes, i.e., true OR is equal to one. Such a state of nature would 
yield, in probability, OR = 1 (equal prevalence of exposure in cases and 
controls). Next, I imagined that exposures among 200 cases are 
compared to 400 controls, assuming no important confounding or effect 
modification. The apparent prevalence of exposure is 20% in cases and 
controls, yielding a conventionally estimated frequentist OR 1.00 with 
95% confidence interval 0.68 to 1.48. I would interpret such an estimate 
as likely excluding strong association with 95% certainty (using intui-
tion of Doll [21]), provided that all sources of bias are so small as to be 
ignorable. 

In keeping with typical experience in occupational epidemiology (e. 
g., ever exposed according to experts to diesel exhaust [25]) and 
assessment of stigmatized behavior (e.g., maternal smoking in preg-
nancy [26]), I assumed that sensitivity of exposure classification (SN) is 
smaller than its specificity (SP). Adopting the common assumption in the 
field, I dealt only with exposure misclassification that is non-differential 
with respect to the perfectly ascertained case status, even though I 
believe that this is a rare exception (an accessible argument to support 
this belief is repeated in Singer et al. [27], with more technical treatment 
as differential-due-to-dichotomization misclassification problem in the 
textbook book of Gustafson [23] and an even more detailed exposition in 
[28]). 

Next, I made the common constraint of better than random exposure 
classification, on average: SN + SP > 1. I explore the combinations of SN 
and SP that are centered on 0.5 to 0.9 and 0.55 to 0.95, respectively. The 
uncertainty about SN and SP is captured by Beta distributions, with its 
parameters chosen in a manner that keeps variance of these distributions 
about the same across the scenarios, but more importantly, small rela-
tive to the means (i.e., these are strong Bayesian priors). The actual 
parameters of Beta distributions that I used as priors on SN and SP are 
given in Table 1. 

I adjusted for misclassification using a method described in the 
textbook of Gustafson [23] (in section 5.6.2) and in [29] that employs 
Gibbs sampler. The method accounts for uncertainty about SN and SP in 
case-control studies and is shown to be less biased than an unrealistic 
(yet easy to implement) approach of using fixed values of SN and SP. The 
method can be extended to account for covariates. [23] I do not present 
technical details, but the implementation is given in Supplementary 
material 1 and all of my other calculations are in Supplementary ma-
terial 2. Heuristically, various combinations of SN and SP are sampled 
from prior and used to recalculate the “true” number of exposed and 
unexposed cases, leading to the candidate misclassification-adjusted OR. 
The resulting candidate adjusted OR is more likely to be retained as a 
sample from the posterior distribution if it fits the data and does not rely 

Table 1 
Priors on the sensitivity (SN ~ Beta(ap, bp)) and specificity (SN ~ Beta(aq, bq)), their means and variances (V).  

Scenario Youden's J Sensitivity Specificity 

Mean ap bp V(SN) Mean aq bq V(SP) 

1 0.05 0.50 5.0 5.0 0.023 0.55 5.5 4.5 0.023 
2 0.15 0.55 5.5 4.5 0.023 0.60 6.0 4.0 0.022 
3 0.25 0.60 6.0 4.0 0.022 0.65 6.5 3.5 0.021 
4 0.35 0.65 6.5 3.5 0.021 0.70 7.0 3.0 0.019 
5 0.45 0.70 7.0 3.0 0.019 0.75 7.5 2.5 0.017 
6 0.55 0.75 7.5 2.5 0.017 0.80 8.0 2.0 0.015 
7 0.65 0.80 8.0 2.0 0.015 0.85 8.5 1.5 0.012 
8 0.75 0.85 8.5 1.5 0.012 0.90 9.0 1.0 0.008 
9 0.85 0.90 9.0 1.0 0.008 0.95 9.5 0.5 0.004  

Table 2 
Summaries of posteriors odds ratios under different priors on the misclassifica-
tion parameters: case-control study of 200 cases and 400 controls with apparent 
prevalence of exposure 20% and apparent odds ratio = 1; SN = sensitivity, SP =
specificity.  

Scenario Assumed misclassification Posterior odds ratio 

Youden's J mean(SN) mean(SP) Median Interquartile 
range 

1 0.05 0.50 0.55 1.05 0.38 3.74 
2 0.15 0.55 0.60 1.12 0.47 3.12 
3 0.25 0.60 0.65 1.12 0.53 2.42 
4 0.35 0.65 0.70 1.04 0.57 1.72 
5 0.45 0.70 0.75 1.01 0.62 1.62 
6 0.55 0.75 0.80 1.02 0.73 1.44 
7 0.65 0.80 0.85 1.02 0.77 1.33 
8 0.75 0.85 0.90 1.01 0.80 1.26 
9 0.85 0.90 0.95 1.01 0.85 1.19  
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on an extreme combination of SN, SP, and prevalence of exposure; any 
combinations of these parameters that lead to negative cell counts in 
contingency tables are excluded. The process is repeated many times till 
samples from posterior appear to be independent and these are then 
used to describe percentiles of the posterior distribution of the OR to 
construct credible intervals. I conducted analysis under uninformative 
prior on OR, which some may find unrealistic, but in this manner, I 
examined the effect of the manipulation of only the misclassification 
parameters. 

All calculations were conducted in R software (R version 4.3.0 (2023- 
04-21 ucrt) – “Already Tomorrow” Copyright (C) 2023 The R Founda-
tion for Statistical Computing Platform: x86_64-w64-mingw32/x64 (64- 
bit)). [30] 

Results 

I show in Table 2 that after adjustment for exposure misclassification 
most of the medians of the posterior of OR were shifted towards values 
>1, with more extreme values associated with assumption of greater 
misclassification (smaller Youden's J-statistic = SN + SP-1) [31]. The 
misclassification-adjustment algorithm found it harder to identify 
acceptable candidate samples from the posterior with the greater pre-
sumed misclassification (small J-statistic), signaling that it is difficult to 
justify adjusted OR that is far from the null when data alone does not 
favor such effects and is assumed to be of poor quality. I take this as one 
of the hedges against the risk of the priors on misclassification param-
eters dominating the data. This pattern is illustrated in Fig. 2. The 
credible intervals (the red dashed lines) are wider than confidence in-
tervals (blue dashed lines) when exposure misclassification is high and 
the opposite when low. This shows how Bayesian procedure 

compensates for overconfidence of its frequentist counterpart's 
assumption of perfect exposure assessment. Only by cherry-picking in 
the extremes of the posterior distribution under presumed considerable 
misclassification (J-statistic ≤0.25 here) can one conclude that these 
adjusted estimates supported a “strong” association, as defined by Doll 
[21], when data did not. 

Discussion 

The method for adjustment for exposure misclassification that I 
illustrated in this paper does not show any tendency to inflate evidence 
of an association that is not supported by data alone. However, the same 
care should be taken in interpreting such adjusted association parame-
ters as ought to go into considering the validity of inferences drawn from 
naïve estimates, with the added comfort of knowing that the impact of 
exposure misclassification on the results has been reduced. 

My simulation focused on one hypothetical study and only one 
method of adjustment, thus a concern about generalizability may linger. 
The reader is invited to use my code in the appendices to evaluate their 
own situation. My simulation is idealized, because the observed OR is 
almost never exactly equal to one and in such situations, there may be 
more tendency for the adjustment algorithm to produce extreme values 
(especially with fixed SN and SP, details not shown). But if there is no 
true association between exposure and the outcome, the totality of 
observed effect estimates, absent other biases, would center on the null, 
and my argument that one should not blame measurement error and 
misclassification adjustment procedures for false positives would hold. 
Other methods for handling measurement error and misclassification 
that are not specifically designed to adjust for the bias due to errors, e.g., 
quantitative (probabilistic) bias analyses popularized by Lash et al., [32] 

Fig. 2. Median posterior odds ratios (circles) and their interquartile range (blue dashed line) in relation to assumptions about exposure misclassifications (Youden's J 
statistic); the red line is the frequentist point estimate and dashed red lines denote its 75% confidence limits. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 
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may not have the same desirable properties as those illustrated here. 
[33] (I note that in the particular case examined here, quantitative bias 
analyses yield the simulated OR that are barely distinguishable from the 
naïve estimates, not even allowing for the possibility of strong effects 
with poor quality of exposure and thus are overly conservative; details in 
Supplementary material 3.) 

As in all statistics, my arguments hold in probability: see [12,34–37] 
on this and other the misconceptions about measurement error and 
misclassification of exposure. Therefore, one can never escape the sub-
jective nature of interpretation of any given data, because we do not 
have the luxury of infinite sample size and multiple replications in 
epidemiology. At least with the misclassification adjustment procedures, 
there is a theoretical guarantee that the estimates do not tend to be 
biased if misclassification is accurately evaluated. Hence the need for 
informative exposure validation studies. 

In the policy realm, one can view adjusted estimates in Table 2 as 
proving a range of effect estimates consistent with data and models. This 
can be useful for determining how much risk is tolerable, given the in-
formation contained in data and model. Thus, we are not reduced to 
dichotomous interpretation of any associations as either present or ab-
sent. For example, if there is indeed a reason to suspect that the study is 
of poor quality (scenario 1), then it is perhaps wise to consider a policy 
that allows for the possibility of OR as high as 3.7 (75th percentile of the 
posterior distribution). This may stimulate epidemiologic research that 
is known to be more like scenario 9, i.e., of higher quality, and 75th 
percentile of OR at 1.2, for the same data. [38] The simple and un-
original [39] message that can be derived from this is: do not focus on 
point estimates, but mind the gap between boundaries that reflect 
variability in the estimate. 

It is also worth reiterating the cautionary note of Armstrong: “If 
corrections are carried out on the basis of incorrect information on error 
magnitude, bias may be increased, rather than decreased.” [19] The 
emphasis in the above quote in italics in the quote is mine as it reinforces 
the notion that only incorrect information about error in exposure will 
induce bias. In Bayesian methodology for measurement error and 
exposure misclassification, one is allowed to be uncertain about the 
misclassification parameters and the exact knowledge of the true dis-
tribution of exposure is not necessary. [23] I observed that the prior on 
the degree of misclassification did in fact influence the central tendency 
of the posterior distributions of the association parameters. Therefore, 
while blatantly incorrect assumptions about misclassification structure 
and magnitude are likely to lead to biased inferences, Bayesian methods 
appear to be able to reflect uncertainty about the magnitude of 
misclassification in the estimates that they yield, while still providing 
informative results. In other words, in the Bayesian framework an 
investigator no longer has to rely on correct adjustment for getting one 
number right, which is indeed a risky proposition. 

Conclusions 

Please treat exposure misclassification as a tractable problem that 
deserves much more attention than just a qualitative (throw-away) 
discussion: quantitative adjustments for exposure misclassification does 
not induce bias in the hands of an honest investigator. 
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