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Ronald T. Hay,2 and Albena T. Dinkova-Kostova1,6,8,*

SUMMARY

Transcription factor nuclear factor erythroid 2 p45-related factor 2 (Nrf2) and its
main negative regulator, Kelch-like ECH-associated protein 1 (Keap1), are at the
interface between redox and intermediary metabolism, allowing adaptation and
survival under conditions of oxidative, inflammatory, and metabolic stress. Nrf2
is the principal determinant of redox homeostasis, and contributes to mitochon-
drial function and integrity and cellular bioenergetics. Using proteomics and lip-
idomics, we show that genetic downregulation of Keap1 in mice, and the conse-
quent Nrf2 activation to pharmacologically relevant levels, leads to upregulation
of carboxylesterase 1 (Ces1) and acyl-CoA oxidase 2 (Acox2), decreases triglycer-
ide levels, and alters the lipidome. This is accompanied by downregulation of he-
patic ATP-citrate lyase (Acly) and decreased levels of acetyl-CoA, a trigger for
autophagy. These findings suggest that downregulation of Keap1 confers fea-
tures of a fasted metabolic state, which is an important consideration in the
drug development of Keap1-targeting pharmacologic Nrf2 activators.

INTRODUCTION

Kelch-like ECH-associated protein 1 (Keap1) is the mammalian sensor for electrophiles and oxidants and

the main negative regulator of transcription factor nuclear factor erythroid 2 p45-related factor 2 (Nrf2,

gene name NFE2L2). Together, Keap1 and Nrf2 form a tightly coupled sensor/transducer system that or-

chestrates the expression of a large network of genes encoding proteins, which are essential for adaptation

and survival under conditions of oxidative, electrophilic, and inflammatory stress (Yamamoto et al., 2018).

Genetic disruption of Nrf2 renders cells and animals much more sensitive to damage by electrophiles, ox-

idants, and inflammatory agents when compared with their wild-type counterparts; conversely, pharmaco-

logic induction of Nrf2-dependent genes very effectively protects against electrophiles, oxidants, and pro-

inflammatory agents in numerous animal models of chronic disease, and has health benefits in humans

(Hayes and Dinkova-Kostova, 2014).

Under homeostatic conditions, Keap1 acts as a substrate adapter of a Cullin RING E3-ubiquitin Ligase

(CRL), containing Cul3 and Rbx1, which continuously targets Nrf2 for ubiquitination and proteasomal

degradation (Cullinan et al., 2004; Kobayashi et al., 2004; Zhang et al., 2004). In response to electrophiles

and oxidants (termed inducers), which recognize and chemically modify specific cysteine residues of Keap1

(Dayalan Naidu and Dinkova-Kostova, 2020; Dinkova-Kostova et al., 2002), ubiquitination of Nrf2 is in-

hibited, leading to its stabilization and nuclear accumulation. Nuclear Nrf2 coordinately activates transcrip-

tion of nearly 500 genes (Malhotra et al., 2010), the protein products of which are extraordinarily versatile

and, by a range of mechanisms—including direct antioxidant activity, obligatory 2-electron reduction re-

actions, conjugation with endogenous ligands, recognition, repair and removal of damaged proteins—

serve as critical cytoprotective defenses to eliminate a wide variety of potentially damaging agents and

to restore redox balance.

In addition to genes encoding a large number of enzymes for drug metabolism, glutathione- and thiore-

doxin-related biosynthesis, and regeneration, in proliferating cells, such as those in the gastrointestinal

epithelium, Nrf2 controls expression of malic enzyme 1 (ME1), isocitrate dehydrogenase 1 (IDH1), and

the pentose phosphate pathway (PPP) enzymes glucose-6-phosphate dehydrogenase (G6PDH) and
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6-phosphogluconate dehydrogenase (6PGD) (Mitsuishi et al., 2012; Thimmulappa et al., 2002; Wu et al.,

2011); together, these four enzymes are principally responsible for NADPH generation. As NADPH is the

main provider of reducing equivalents for redox and biosynthetic reactions, this critical function places

Nrf2 at the interface between redox and intermediary metabolism. We previously reported that Nrf2

also affects cellular metabolism by improving mitochondrial function and bioenergetics (Holmstrom

et al., 2013), in part by promoting fatty acid oxidation (FAO). In fact, FAO was enhanced in mouse embry-

onic fibroblast (MEF) cells and isolated mitochondria from Keap1-knockdown (Keap1-KD, with constitutive

Nrf2 pathway activation due to downregulation of expression of Keap1) mice, whereas it was impaired in

their Nrf2-knockout (Nrf2-KO) counterparts (Ludtmann et al., 2014). To gain further insights of the role of

Nrf2 in lipid metabolism, in the current study, we used mitochondria-enriched preparations from the mu-

rine liver, an organ of highmetabolic activity, and organoids frommouse small intestine, where themajority

of the end absorption of nutrients takes place. In addition, some of our investigations included the murine

colon, because high-fat diet accelerates progression of colorectal cancer in mice (Cai et al., 2015; Fu et al.,

2019), and obesity, the prevalence of which is increasing worldwide (Bluher, 2019), is a colorectal cancer risk

factor in humans (Kuipers et al., 2015).

Using proteomics and lipidomics, we demonstrate that downregulation of Keap1 in mice, and consequent

Nrf2 activation to pharmacologically relevant levels, leads to induction of carboxylesterase 1 (Ces1) and

acyl-CoA oxidase 2 (Acox2), enzymes involved in lipid catabolism; decreases triglyceride levels; and con-

fers a distinct fatty acid profile. At the same time, hepatic ATP-citrate lyase (Acly) is suppressed and levels

of its enzymatic product, acetyl coenzyme A (acetyl-CoA), are decreased, which is a trigger for autophagy.

Together, these findings suggest that downregulation of Keap1 confers features of a fasted metabolic

state. Understanding this is important, as dysregulation (either down- or upregulation) of Keap1/Nrf2 func-

tion is associated with disease risk in humans, including chronic obstructive pulmonary disease, cardiovas-

cular and neurodegenerative diseases, as well as cancer (Cho et al., 2015; Quinti et al., 2017; Rojo de la

Vega et al., 2018; von Otter et al., 2010). Furthermore, the Keap1/Nrf2 system is now considered a drug

target, with a number of small molecule pharmacologic activators currently being in various stages of clin-

ical development (Cuadrado et al., 2019).

RESULTS

Genetic Interference with Keap1/Nrf2 Affects the Abundance of Metabolic Proteins

To identify the protein components of metabolic pathways displaying altered expression in response to

genetic interference with Keap1/Nrf2, a proteomic analysis was conducted. Mitochondria were enriched

by differential centrifugation from (1) liver and (2) early-passage (p1) intestinal organoids prepared from

wild-type (WT), Nrf2-KO, and Keap1-KD mice (Knatko et al., 2015; Taguchi et al., 2010). Proteins frommito-

chondria-enriched preparations, in triplicate, were separated by SDS-PAGE and visualized by Coomassie

staining (Figures 1A and 1B). Tryptic peptides were extracted and analyzed by liquid chromatography-tan-

dem mass spectrometry (LC-MS/MS) with two different run parameters using MaxQuant (Cox and Mann,

2008) for label-free Quantitation and Perseus (Tyanova et al., 2016) for bioinformatic analysis. Principal-

component analysis (PCA) showed separation by tissue type (Figure 1C, component 1), as well as by geno-

type (Figure 1C, component 2), with the WT mouse samples spatially positioned between the two mutants

(see Data S1, and Table S1 for details). This is a clear indication of the opposing effects of Nrf2 and Keap1

interference. Individual comparisons of Nrf2-KO and Keap1-KD with WT identified groups of proteins

significantly up- or down-regulated by the mutations, however, to simplify further analysis, the ratio of

Nrf2-KO/Keap1-KD was used, with any protein whose abundance is dependent on Nrf2 having a low

Nrf2-KO/Keap1-KD ratio (or negative log2 ratio). Volcano plots of these comparisons for each MS run for

liver (Figures S1A and S1B) and intestinal organoids (Figures S1C and S1D) indicated that the majority of

quantified proteins do not change. A small group of proteins showed significant differences between

Nrf2-KO and Keap1-KD genotypes (Figure 1D for liver and 1E for organoids), with nine defined as signifi-

cantly altered (Student’s t test, false discovery rate 0.1, S0 0.1) between the two genotypes in all four MS

runs. These include enzymes involved in xenobiotic metabolism, namely, glutathione S-transferase m1

(Gstm1), carbonyl reductase 1 (Cbr1), the endoplasmic reticulum (ER) enzymes epoxide hydrolase 1

(Ephx1), UDP-glucuronosyltransferase (Ugt2b35), liver carboxylesterase 1 (Ces1), carboxylesterase 1f

(Ces1f), and hexose-6-phosphate dehydrogenase (H6pd), the initial enzyme of a PPP inside the ER that gen-

erates NADPH for ER enzymes. In addition, NADPH-binding short-chain oxidoreductase family member

Htatip2 and endocytic-lysosomal compartment-residing protein Creg1 were also less abundant in the

Nrf2-KO compared with the Keap1-KD genotype.
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Figure 1. Proteomic Analyses of Mitochondria-Enriched Preparations from Liver and Early-Passage Intestinal

Organoids from Wild-Type (WT), Nrf2-Knockout (Nrf2-KO), and Keap1-knockdown (Keap1-KD) Mice

(A and B) Coomassie-stained SDS-PAGE gel of protein samples prepared from mitochondria-enriched fraction from liver

(A) or intestinal organoids (B) from mice with the indicated genetic alterations.

(C) Principal-component analysis (PCA) of 906 proteins with intensities reported in all samples in all MS runs in both

experimental systems. Normalized LFQ intensities were log2 transformed and Z-scored by average log2 LFQ before PCA.

(D and E) Summary of the quantitative data from two MS runs each for the enriched mitochondria samples from liver (D)

and intestinal organoids (E). Proteins are colored by statistical criteria for outlier status (see text for statistical methods).

Red entries are described further in Tables S1 and S2. The indicated proteins were found in all four MS runs to be
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To extract more general biological patterns, STRING analysis was used to determine if any functionally

related proteins showed similar changes between the two genotypes. Samples derived from liver provided

fewer protein identifications and fewer functional enrichments than those from organoids. Liver network

clusters with the highest enrichment score contained a number of carboxylesterases (Ces1 members)

and UDP-glucuronosyltransferases (Ugt proteins), with lower abundances in Nrf2-KO (Figure 2A; see

also Data S2, STRING functional group enrichment analysis, related to Figures 2 and 3, and Table S2). Curi-

ously, an exception among members of the Ugt family of enzymes was Ugt1a10, the abundance of which

was higher in Nrf2-KO than Keap1-KD. As transcription of Ugt1a10 is regulated by both Nrf2 and the aryl

hydrocarbon receptor (AhR) (Kalthoff et al., 2010) and the two transcription factors engage in crosstalk

(Hayes et al., 2009; Yeager et al., 2009), this finding suggests that binding of AhR to the promoter of

Ugt1a10, and consequently its expression, might be enhanced in the absence of Nrf2. Few other networks

showed coordinated changes in liver samples, although clusters of proteins with roles in protein processing

in ER and signal peptidase complex (Figure S2A) and proteins involved in mitochondrial complex I biogen-

esis (Figure S2B) showed quantitatively modest, but statistically significant differences.

In organoids, due to the greater differences between the genotypes, it was possible to identify a higher

number of significant network clusters. In close agreement with the liver data, organoid network clusters

with the highest enrichment score also contained carboxylesterases (Ces1 members) and UDP-glucurono-

syltransferases (Ugt proteins), with lower abundances in Nrf2-KO compared with Keap1-KD (Figure 2B).

STRING also clustered in this network a group of cytochrome P450 (Cyp) proteins, which were more abun-

dant in Nrf2-KO organoids. As AhR is a major transcriptional regulator of the Cyp family of enzymes (An-

droutsopoulos et al., 2009), this finding further supports the possibility that Nrf2 deficiency promotes

AhR binding to its cognate promoter sequences. As expected, proteins involved in glutathione meta-

bolism were much more abundant in Keap1-KD samples (Figure S3A). Moreover, proteins involved in

glycolysis and the PPP were also significantly changed in expression (Figure 3A), although not in a coordi-

nated fashion. Extracellular matrix proteins weremuchmore abundant in organoid preparations fromNrf2-

KO than Keap1-KD mice (Figure S3B). Finally, a group of DNA replication and repair proteins were

modestly more abundant in Keap1-KD than Nrf2-KO (Figure S3C) organoids.

The effects of Nrf2 on the levels of enzymes involved in glycolysis were also apparent at the metabolic level.

LC-MS of metabolites in colon tissue extracts showed dramatic changes in glycolysis, especially in Keap1-

KD mice. Metabolic changes included glucose 6-phosphate (Figure 3C) and fructose 6-phosphate (Fig-

ure 3D), involved in the first steps of the pathway, which were significantly higher in colons of Keap1-KD

mice compared with WT, whereas metabolites such as dihydroxyacetone phosphate (Figure 3E) and glyc-

eraldehyde 3-phosphate (Figure 3F), involved in the later steps of glycolysis, were lower than in WT. These

results are consistent with previously reported metabolic flux analyses using [1,2-13C2] glucose-containing

medium inMEF cells, where glucose oxidation and entry of oxaloacetate and acetyl-CoA into the tricarbox-

ylic acid (TCA) cycle were found to be significantly reduced in Nrf2-KO compared with WT cells, whereas

Keap1-knockout cells showed a significant increase in substrate entry into the TCA cycle (Singh et al., 2013).

In addition to glycolysis and the PPP, gluconeogenesis also affects the levels of glucose 6-phosphate. Ex-

amination of our proteomics data for gluconeogenesis-related enzymes did not reveal any consistent dif-

ferences among the genotypes, with the exception of hexokinase 1 (Hk1) and glycerol-3-phosphate dehy-

drogenase 2 (Gpd2), which were significantly differentially abundant in organoids; Hk1 was also

approaching significance in liver samples (Table S3 and Figures S4A and S4B). These results are in agree-

ment with the similar hepatic expression of the key gluconeogenic enzymes phosphoenolpyruvate carbox-

ykinase 1 (Pepck) and glucose-6-phosphatase (G6pase) in WT and Keap1-KD mice fed standard diet, and

comparable glucose production upon induction of gluconeogenesis in primary hepatocytes from these

mice (Slocum et al., 2016). Notably, however, under conditions of high-fat-diet feeding, the expression

of both Pepck and G6pase was �30% lower in Keap1-KD compared with WT mice, suggesting Nrf2-medi-

ated repression of gluconeogenesis (Slocum et al., 2016).

Figure 1. Continued

significantly different between Nrf2-KO and Keap1-KD genotypes. Gene names: Cbr1: carbonyl reductase [NADPH] 1,

Ces1: liver carboxylesterase 1, Ces1f: carboxylesterase 1F, Creg1: protein CREG1, Ephx1: epoxide hydrolase 1,

Gstm1: glutathione S-transferase Mu 1, H6pd: GDH/6PGL endoplasmic bifunctional protein, Htatip2: oxidoreductase

HTATIP2, Ugt2b35: UDP-glucuronosyltransferase. All data can be found in Data S1, Quantitative proteomics data.

See also Figure S1.
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Nrf2 Regulates Gene Expression of Carboxylesterase 1 (Ces1) and Acyl-CoA Oxidase 2

(Acox2)

As the proteomic analyses identified several members of the carboxylesterase 1 (Ces1) family as some of the

most statistically significant differentially abundant proteins among the three genotypes in both experimental

systems, further investigations were conducted to validate the link. First, mRNA levels for Ces1gwere found to

be 47-fold higher in Keap1-KD than in WT organoids and 98% lower in Nrf2-KO than in WT organoids (Fig-

ure 4A). Second, when intestinal organoids from the three genotypes of mice were treated with a tricyclic cy-

anoenone (TBE-31, Figure S5A), a compound that reacts with cysteine 151 in Keap1, thereby activating Nrf2

(Dayalan Naidu et al., 2018), the pattern of expression of Ces1g was similar to that of classical Nrf2-target

genes, such as Nqo1, Gstp1, and Gclc in early-passage (p3) cultures. Thus, TBE-31 induced Ces1g to high

levels in WT (Figure 4B), but not Nrf2-KO organoids (Figure S5B), and its induction was greatly diminished

in their Keap1-KD counterparts (Figure S5C). Third, in colon tissue from mice of the three genotypes,

mRNA levels for Ces1g and Ces1f were 9- and 1.5-fold, respectively, higher in colon tissue from Keap1-KD

mice in comparison with their WT counterparts, whereas these levels were 94% and 80% lower in colons of

Nrf2-KO mice, again with a pattern among the genotypes typical of classical Nrf2-target genes (Figure 4C).

In addition to changes in mRNA levels, protein levels of Ces1g were similarly affected by genetic disruption

or activation of Nrf2 in colon tissues (Figure 4D). Furthermore, the pentacyclic cyanoenone RTA-408 (Fig-

ure S5A), which, like TBE-31, reacts with cysteine 151 in Keap1 to activate Nrf2 (Shekh-Ahmad et al., 2018),

induced expression of Ces1g and Ces1f dose dependently in colons of WT mice (Figure 4E), in a way similar

to that of classical Nrf2-target genes Nqo1 (Figure S5D) and Gclc (Figure S5E).

As in mouse cells and tissues, treatment with TBE-31 or the naturally occurring Nrf2 activator sulforaphane

(SFN) upregulated the expression of CES1 in the human hepatoma cell line HepG2, which has high basal

levels of CES1 (Figure S6A), in a manner resembling that of NQO1 (Figure S6B) and GCLC (Figure S6C).

Silencing of Nrf2 (by RNAi–for NFE2L2) (Figure S6D) reduced the expression of CES1 by 35%–40% in

A B

Figure 2. Clusters of Metabolic Proteins Identified by STRING Functional Group Enrichment Analyses

(A and B) Network of proteins identified by STRING with both functional enrichments and quantitative relationships in

mitochondria-enriched preparations from livers (A) and early-passage intestinal organoids (B) from Nrf2-knockout (Nrf2-

KO) and Keap1-knockdown (Keap1-KD) mice. Networks created by STRING ‘‘Proteins with values/ranks’’ tool (Szklarczyk

et al., 2019) were rendered in Cytoscape (Shannon et al., 2003) to overlay ratio values (colors). Gray proteins were not

identified in the experiments but were included by STRING. For edges, a minimum interaction score of 0.4 (medium

confidence) was applied, with disconnected nodes and subnetworks hidden. Some node positions have been

adjusted in highly interacting regions to show names. This type of analysis identified clusters of metabolic proteins

within the Ces1 and Ugt families in livers (A) and proteins within the Ces1 and Cyp families in intestinal organoids (B)

as statistically significantly different between the Nrf2-KO and Keap1-KD genotypes. For other protein clusters, see

Figures 3, S2, and S3.
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HepG2 cells growing in either glucose-containing or glucose-free medium, and abolished CES1 upregula-

tion by TBE-31 (Figure S6E). The Nrf2 dependence of the expression of CES1 was further confirmed by us-

ing the human colorectal cancer cell line DLD1 and its Nrf2-KO and Nrf2-gain-of-function mutant isogenic

lines that were generated using CRISPR/Cas9 genome editing (Torrente et al., 2017): compared with Nrf2-

WT, the mRNA levels for CES1 were 8.4-fold higher in Nrf2-gain-of-function DLD1 cells, whereas these

levels were 75% lower in their Nrf2-KO counterparts (Figure S6F). In Nrf2-WT DLD1 cells, exposure to

TBE-31 caused a concentration-dependent Nrf2 stabilization (Figure S6G, immunoblot), and a correspond-

ing CES1 upregulation, which was also observed following treatment with SFN (Figure S6G, bar graph),

whereas CES1 upregulation by TBE-31 was greatly diminished in Nrf2-KO DLD1 cells (Figure S6H). Thus,

using proteomic, genetic, and pharmacologic approaches, we validated that genes encoding Ces1 family

members are transcriptional targets of Nrf2 in human cell lines, in mouse intestinal organoid cultures, and

in vivo in the murine colon.

Proteomic analysis of mitochondria-enriched preparations isolated from intestinal organoids of WT, Nrf2-

KO, and Keap1-KD mice identified another differentially abundant protein of relevance to FAO, namely,

acyl-CoA oxidase 2 (Acox2) (Figure 1E), a peroxisomal enzyme that catalyzes oxidation of CoA esters of

branched-chain fatty acids and bile acid intermediates (Vanhove et al., 1993). Similar to the classical Nrf2

A B

C

D

E

Figure 3. Genetic Interference with Keap1/Nrf2 Affects the Abundance of Glycolytic Enzymes and Metabolites

(A–E) (A) Networks created by STRING ‘‘Proteins with values/ranks’’ tool (Szklarczyk et al., 2019) were rendered in

Cytoscape (Shannon et al., 2003) to overlay ratio values (colors). Gray proteins were not identified in the experiments but

were included by STRING. For edges, a minimum interaction score of 0.4 (medium confidence) was applied, with

disconnected nodes and subnetworks hidden. Some node positions have been adjusted in highly interacting regions to

show names. *Edited networks have had proteins not identified in the proteomics analysis removed for brevity. Full details

of STRING data can be found in Data S2. In addition to clusters of proteins shown in Figures 2B and S3, this type of analysis

identified clusters of proteins involved in glycolysis and the pentose phosphate pathway as statistically significantly

different between the Nrf2-KO and Keap1-KD genotypes of organoid preparations. (B–E) Concentration of glucose-6-

phosphate (B), glucose-1-phosphate/fructose-6-phosphate (C), dihydroxyacetone phosphate (DHAP) (D), and

glyceraldehyde 3-phosphate (E) in colon tissue of C57BL/6 mice. Green bars represent wild-type (WT) mice, red bars Nrf2-

knockout (Nrf2-KO) mice, and blue bars Keap1-knockdown (Keap1-KD) mice. * 0.05 > p > 0.01; ** 0.01 > p > 0.001. See

also Figure S4 and Table S3.
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Figure 4. Ces1 and Acox2 Are Transcriptional Targets of Nrf2

(A) mRNA levels for Ces1g in cultures (n = 3) of intestinal organoids from wild-type (WT), Nrf2-knockout (Nrf2-KO), and Keap1-knockdown (Keap1-KD)

C57BL/6 mice.

(B) mRNA levels for Nqo1, Gstp, Gclc, and Ces1g in cultures (n = 3) of intestinal organoids from WT C57BL/6 mice that had been treated with vehicle (0.1%

acetonitrile) or TBE-31 (10 nM) for 16 h.

(C) mRNA levels for Ces1g, Ces1f, and Nqo1 in colon tissue of WT, Nrf2-KO, and Keap1-KD C57BL/6 mice (n = 3).

(D) Protein levels for Ces1g in colon tissue of WT, Nrf2-KO, and Keap1-KD C57BL/6 mice (n = 3).

ll
OPEN ACCESS

iScience 23, 101638, October 23, 2020 7

iScience
Article



target Nqo1, mRNA levels for Acox2 were 3-fold higher than WT in colons of Keap1-KD, whereas those

levels were 80% lower in colons of Nrf2-KO mice (Figure 4F). Oral administration of Nrf2 activator RTA-

408 dose dependently induced gene expression of Acox2 in colons of WT animals (Figure 4G), similarly

to Ces1g, Ces1f (Figure 4E), Nqo1 (Figure S5D), and Gclc (Figure S5E). In addition, Nrf2 activator TBE-31

induced expression of Acox2 in intestinal organoids from WT, but not Nrf2-KO mice (Figure 4H), in a

manner similar to that of Nqo1, Gstp, Gclc, and Ces1g (Figures 4B and S5B). Both Acox2 (Figure 4I) and

Nqo1 (Figure S5F) were induced by oral administration of TBE-31 in colons of WT, but not Nrf2-KO

mice. Thus, as with Ces1, using both genetic and pharmacologic approaches, we validated that Acox2 is

a transcriptional target of Nrf2 in intestinal organoid cultures and in vivo in the murine colon.

The levels of ACOX2 have been shown to be downregulated upon knockdown of Nrf2 (by RNAi forNFE2L2) in

293T human embryonic fibroblasts (Pang et al., 2014), suggesting that like in mice, human ACOX2 is a tran-

scriptional target of Nrf2. Surprisingly, we found no evidence for Nrf2 dependence of ACOX2 regulation in

several human cell lines (i.e., HepG2 [hepatoma], Caco2 [colorectal cancer], and IMR90 [normal lung fibro-

blasts]) that we tested, and its expression levels were below the limit of detection in DLD1 (colorectal cancer),

A549 (lung cancer), and U2OS (osteosarcoma) cells, indicating cell type and/or species specificity. Thus,

ACOX2 expression was not upregulated by treatment with TBE-31 or SFN in HepG2 (Figure S7A), Caco2 (Fig-

ure S7B), or IMR90 (Figure S7K) cells. A time course analysis in Caco2 cells showed that the basal mRNA levels

for ACOX2 increased �2-fold at the 48-h time point, but there was no difference between vehicle- and SFN-

treated cells (Figure S7E). Furthermore, knockdown of Nrf2 (by RNAi for NFE2L2) (Figure S7H) in Caco2 cells

did not affect the mRNA levels for ACOX2 (Figure S7J). By contrast, the levels of the Nrf2-targets NQO1 (Fig-

ures S6B, S7C, S7F, and S7L) and AKR1B10 (Figures S7D, S7G, and S7M) were upregulated by the inducer and

downregulated by the small interfering RNA (Figure S7I) treatments, as expected. Thus, it is unlikely that Nrf2

plays a role in the transcriptional regulation of ACOX2 in humans, indicating species differences.

Downregulation of Keap1 Decreases the Levels of Triglycerides and Alters the Lipidome

In agreement with their function in lipid metabolism and our finding that genes encoding Ces1 and Acox2

are transcriptionally activated by Nrf2, levels of triglycerides were lower in livers (Figure 5A) and colons (Fig-

ure 5B) of Keap1-KD compared with WT mice. This is fully consistent with the lower hepatic triglyceride

levels in Keap1-KD compared with WT mice that had been fed either regular chow or high-fat diet (Slocum

et al., 2016). Notably, however, triglyceride levels in the corresponding tissues of Nrf2-KO mice were not

significantly different from either WT or Keap1-KD animals (Figures 5A and 5B), indicating that Ces1 and

Acox2 are not the only enzymes responsible for differences in triglycerides among the genotypes.

To better understand how fatty acid metabolism was affected by genotype, as suggested by differential

expression of Ces1- and Acox2-encoding genes, fatty acids were esterified, after hydrolysis from lipids,

and analyzed using gas chromatography-MS. Distinct fatty acid profiles were apparent for each genotype,

with the WT again having a mid-point position between the other two genotypes (Figure 5C). Saturated

and mono-unsaturated fatty acids, including C14:0, C14:1n9, and C16:0 were higher in Nrf2-KO mice,

whereas polyunsaturated fatty acids, such as C22:5n3, C18:3n6, and C20:5n3, and the odd-chain fatty

acid C17:0 were lower in Nrf2-KO mice (Figure 5D).

Reduced Expression of Keap1 Lowers Hepatic Levels of Acetyl-CoA

Metabolomic analysis of colon tissue extracts showed that levels of acetyl-CoA were significantly higher in

Nrf2-KO mice than in WT or Keap1-KD animals, whereas levels of phosphoenolpyruvate and fructose bis-

Figure 4. Continued

(E) mRNA levels for Ces1g in colon tissue of male C57BL/6 WT mice (n = 3–4) that had been treated with vehicle (1% DMSO in corn oil) or RTA-408, per os, 3

times, 24 h apart; colon tissue was harvested 6 h after the last dose.

(F) mRNA levels for Acox2 in colon tissue of WT, Nrf2-KO, and Keap1-KD C57BL/6 mice (n = 5).

(G) mRNA levels for Acox2 in colon tissue of male WT C57BL/6 mice (n = 3–4) that had been treated with vehicle (1% DMSO in corn oil) or RTA-408, per os,

3 times, 24 h apart; colon tissue was harvested 6 h after the last dose.

(H) mRNA levels for Acox2 in cultured intestinal organoids (n = 3) from WT and Nrf2-KO C57BL/6 mice that had been treated with vehicle (0.1% acetonitrile,

white bars) or TBE-31 (10 nM, black bars) for 16 h.

(I) mRNA levels for Acox2 in the colon of female WT and Nrf2-KO C57BL/6 mice (n = 4–5). The animals were treated with TBE-31 (5 nmol/g body weight,

3 times, at 24-h intervals, per os, black bars) or vehicle (1% DMSO in corn oil, white bars) and fasted for 4 h before tissue harvesting 24 h after the last dose.

*p < 0.05.

See also Figures S5, S6, S7, and S11.
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Figure 5. Nrf2 Alters the Lipidome

(A and B) Levels of triglycerides in liver (A) and colon (B) of wild-type (WT), Nrf2-knockout (Nrf2-KO), and Keap1-

knockdown (Keap1-KD) C57BL/6 mice (n = 4). *p < 0.05.

(C) Orthogonal projection to latent structure-discriminant analysis (OPLS-DA) score plot from GC-MS data for total fatty

acids. Seven independent biological replicates of colon tissue from WT (green), Keap1-KD (blue), and Nrf2-KO (red)

C57BL/6 mice were included.
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phosphate did not differ among the genotypes (Figure 6A). The enzyme primarily responsible for the syn-

thesis of cytosolic acetyl-CoA is ATP-citrate lyase (Acly). Correlating with differences in acetyl-CoA levels,

mRNA levels for Acly were higher in organoid preparations from Nrf2-KO mice compared with their WT or

Keap1-KD counterparts (Figure 6B). These differences betweenWT and Nrf2-KO genotypes are consistent

with previous gene expression profiling and proteomics studies demonstrating that Nrf2 negatively regu-

lates the gene expression of Acly in murine liver (Kitteringham et al., 2010; Yates et al., 2009). However, dif-

ferences in abundance of Acly among the three genotypes were not apparent in our proteomics analysis.

To address the possibility that high inter-individual variability may have masked differences in Acly expres-

sion among the genotypes, we first examined mRNA levels for Acly in the liver of ad libitum-fed WT and

Keap1-KD mice. Based on the greater physiological relevance of Keap1 downregulation as opposed to

Nrf2 absence, we focused our comparisons on the Keap1-KD and WT genotypes. Indeed, hepatic Acly

mRNA levels of ad libitum-fed WT mice were highly variable among individual animals (n = 8), although

these levels appeared lower in Keap1-KD compared with WT animals (Figures 6C and S8A). We hypothe-

sized that the high inter-individual variability might be due to differences in feeding times, fasted the an-

imals overnight, and found a dramatically decreased (by �80%), but much more uniform, hepatic Acly

expression (Figure 6C). Levels of Acly mRNA in colon were similar in fed Keap1-KD and WT mice (Figures

6D and S8B), and compared with liver, these levels decreased much more modestly (by �20%) following

fasting in WT mice, and did not change in KD animals (Figure 6D). Thus, high inter-individual variability

and tissue specificity in Acly expression in fed animals provides one explanation for lack of statistically sig-

nificant differences among the genotypes in our proteomics analysis.

Immunoblotting analysis of hepatic protein levels of Acly in individual mice further revealed that overall,

Acly levels were lower in Keap1-KD compared with WT mice at both fed and fasted states (Figure 6E).

Furthermore, levels of the Acly reaction product, acetyl-CoA, were lower in livers of ad libitum-fed

Keap1-KD mice than in WT animals (Figures 6F and S8C). The levels of acetyl-CoA are also affected by

the activity of acyl-CoA synthetase short-chain family member 2 (Acss2), which catalyzes the synthesis of

acetyl-CoA from acetate (Berg, 1956). Similar to Acly, fasting caused a drop (by �80%) in the mRNA levels

for Acss2, but in contrast to the lower expression of Acly in livers of fasted Keap1-KD compared with WT

mice (Figure 6C), there was no difference in expression of Acss2 between genotypes at either fed or fasted

state (Figure S8D). Curiously, the decrease in hepatic protein levels of Acly in fasted mice seemed to corre-

late with the order of tissue harvest/time after food withdrawal (Figure S8E). As expected, overnight fasting

induced expression of a number of classical FAO enzymes, i.e., Cpt1, Cd36, Acads, Acadm, Acadl, and

Acadvl, but interestingly, the extent of upregulation was blunted in livers of Keap1-KD animals compared

with their WT counterparts (Figure S9A). By contrast, the levels of most enzymes involved in fatty acid syn-

thesis (FAS), i.e., Acaca, Fasn, Scd1, Scd2, Elovl1, and Elovl6, were downregulated by fasting with no differ-

ence between genotypes (Figure S9B). In colon, fasting-mediated changes in expression of the classical

enzymes involved in FAO and FAS were modest and similar between WT and Keap1-KD animals (Figures

S10A and S10B). Notably, the levels of Ces1g and Acox2 were higher in livers and colons of Keap1-KD than

WT mice at both fed and fasted states (Figures S11A and S11B).

Collectively, these results show that changes in Acly expression consequent to genetic interference with

Keap1/Nrf2 are tissue specific as well as dependent on the nutrient intake (fed versus fasted) state of

the animals. In a fed state, acetyl-CoA is directed out of mitochondria to the cytoplasm for use in FAS,

whereas under fasted state, acetyl-CoA is channeled into mitochondria for ATP synthesis (Shi and Tu,

2015). Thus, the finding that hepatic levels of acetyl-CoA are lower in fed Keap1-KD compared with WT

mice, together with our earlier observations of increased FAO upon Nrf2 activation (Ludtmann et al.,

2014) suggest that Nrf2 activation by Keap1 downregulation under fed conditions has features of a fasted

metabolic state.

A decrease in acetyl-CoA levels is a trigger for autophagy (Marino et al., 2014). During autophagy, the levels

of acetylated (AcK40)-a-tubulin increase, and this event is an essential requirement for starvation-induced

autophagy (Geeraert et al., 2010; Marino et al., 2014). We found that levels of acetylated (AcK40)-a-tubulin

were higher in hepatic tissue of both ad libitum-fed and fasted Keap1-KD mice than in their WT

Figure 5. Continued

(D) Plot showing the individual fatty acids driving the separation among the genotypes (loadings). The variables (i.e., fatty

acids) are represented as green circles, while the direction of the discriminate variable from the classification matrix for

each genotype (WT $M1-DA(1), Keap1-KD -$M1-DA(2), and Nrf2-KO $M1-DA(3)) is in blue.
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Figure 6. Downregulation of Keap1 Decreases the Hepatic Levels of Acetyl-CoA at Fed State and Increases the

Acetylation of a-tubulin Following Fasting

(A) Concentration of phosphoenolpyruvate, fructose bis-phosphate, and acetyl-CoA in colons of wild-type (WT, green

bars), Nrf2-knockout (Nrf2-KO, red bars), and Keap1-knockdown (Keap1-KD, blue bars) C57BL/6 mice. ** 0.01 > p > 0.001.

(B) mRNA levels for Acly in organoids from wild-type (WT), Nrf2-knockout (Nrf2-KO), and Keap1-knockdown (Keap1-KD)

C57BL/6 mice. *p < 0.01.

(C and D) mRNA levels for Acly in livers (C) and colons (D) of wild-type (WT) and Keap1-knockdown (Keap1-KD) female

C57BL/6 mice (n = 8) that were either fed ad libitum or fasted for 18 h; 18S used as a reference gene; *p < 0.01, in relation

to fed state in respective genotype; $p < 0.01 and $$0.01 < p < 0.05, relative to respective WT.

(E) Protein levels for Acly, AcK40-a-tubulin, and a-tubulin in livers from wild-type (WT) and Keap1-knockdown (Keap1-KD)

female C57BL/6 mice (n = 7–8) that were either fed ad libitum or fasted for 18 h.

(F) Levels of acetyl-CoA in livers of fed wild-type (WT) and Keap1-knockdown (Keap1-KD) female C57BL/6 mice (n = 8).

See also Figures S8–S12.
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counterparts (Figures 6E and S8F). Consistent with Nrf2 activation promoting a-tubulin acetylation,

compared with WT, the levels of (AcK40)-a-tubulin were higher in primary embryonic fibroblast (MEF) cells

isolated from Keap1-KD mice, and lower in their Nrf2-KO counterparts (Figure S12). In close agreement

with the mouse data, the levels of (AcK40)-a-tubulin were also higher in human lung cancer A549 cells

when compared with CRISPR/Cas9-generatedNrf2-KOA549 cells (Figure 7A). The A549 cell line has consti-

tutively high Nrf2 levels due to a homozygous mutation (G333C) in the Kelch domain of Keap1, the site of

interaction between Keap1 and Nrf2 (Singh et al., 2006). As this experimental system (i.e., Nrf2-KO A549

A

B

C

Figure 7. Deletion of Nrf2 in the Context of Mutant Keap1, Which Does Not Suppress Nrf2, Decreases the

Acetylation of a-tubulin and Autophagic Flux

(A) Levels of NQO1, AcK40-a-tubulin, and a-tubulin in whole-cell lysates of A549 and Nrf2-KO A549 cells.

(B) Levels of LC3B-I (non-lipidated form) and LC3B-II (lipidated form) in whole-cell lysates of A549 and Nrf2-KO A549 cells

that had been treated with vehicle (0.1% DMSO, VEH) or 10 nM bafilomycin A1 (BAF) for 16 h. GAPDH served as a loading

control. See also Figure S12.

(C) Downregulation of Keap1 has features of a fasted metabolic state. Nrf2 channels glucose through the pentose

phosphate pathway by upregulating glucose-6-phosphate dehydrogenase (G6pd) and the enzymes of the pentose

phosphate pathway (PPP) and enhances fatty acid oxidation (FAO) in part by upregulating Ces1 and Acox2, as well as the

fatty acid transporter Cpt1, while inhibiting fatty acid synthesis (FAS) by downregulating Acly, and thus decreasing the

levels of cytosolic acetyl-CoA. These features of a fasted metabolic state channel acetyl-CoA into the mitochondria for

ATP synthesis and increase autophagic flux. The upregulation of the PPP, isocitrate dehydrogenase-1 (Idh1), and malic

enzyme-1 (Me1) provides reducing equivalents (NADPH) for redox reactions and regeneration of reduced glutathione

(GSH), which is catalyzed by the Nrf2-target enzyme glutathione reductase (Gr).
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and A549 cells) represents the two extreme conditions, namely, Nrf2 absence versus Nrf2 constitutive acti-

vation, we used it to examine autophagic flux. We found that, compared with Nrf2-KO A549 cells, autopha-

gic flux was enhanced in the parental A549 cells, as evident by the higher levels of the lipidated form of the

autophagosomal marker microtubule-associated protein 1A/1B light chain 3B (LC3B), (LC3B-II), and its

further accumulation upon treatment with the autophagy inhibitor bafilomycin A1 (Figure 7B). This result

is in agreement with the known involvement of Nrf2 in regulation of multiple genes that participate in mac-

ropautophagy and chaperone-mediated autophagy (Pajares et al., 2016, 2018).

DISCUSSION

The results from this study are in agreement with previous reports showing (1) dysregulated expression of

lipid-metabolizing enzymes, including lower levels of Ces1g in livers of Nrf2-KO compared with WT mice

(Kitteringham et al., 2010; Tanaka et al., 2012); (2) reduced hepatic expression of genes involved in FAS and

desaturation in mice with high Nrf2 levels (Sharma et al., 2018; Wu et al., 2011; Yates et al., 2009); (3)

increased high-fat-diet-induced levels of lipogenic enzymes in livers of Nrf2-KO compared with WT mice

(Meakin et al., 2014); (4) lower ethanol-induced accumulation of free fatty acids in livers of hepatocyte-spe-

cific Keap1-knockout mice (Wu et al., 2012); (5) requirement for Nrf2 for hepatic Ces1g induction by theNrf2

activator oltipraz (Zhang et al., 2012); and (6) higher mRNA levels for Ces1g and Ces1h in lungs of Keap1-

knockout compared withWTmice (Paek et al., 2012). Taken together with knowledge that Nrf2 activation in

proliferating cells, such as cultured MEF cells, as well as cells in the murine intestinal and forestomach

epithelium, channels glucose through the PPP by upregulating glucose-6-phosphate dehydrogenase

(G6pd) and enzymes of the PPP (Mitsuishi et al., 2012), our findings suggest that Nrf2 activation confers fea-

tures of a fasted metabolic state (Figure 7C). Nrf2 activation enhances FAO in part by upregulating Ces1

and Acox2, as well as the uptake of fatty acids through Cd36, while inhibiting FAS by downregulating

Acly, and thus decreasing the levels of acetyl-CoA. Notably, however, although Nrf2 activation does not

equate typical fasting, the blunted response to fasting of the Keap1-KD mice suggests that Nrf2 activation

provides quantitatively modest, but widespread preconditioning to fasting, allowing adaptation to the

associated metabolic stress.

Ces1 enzymes catalyze the trans-esterification and hydrolysis of ester, thioester, or amide bonds within

various substrates, including acyl glycerols to give free fatty acids and participate in fatty acid and choles-

terol ester metabolism (Hosokawa et al., 2007), channeling fatty acids toward oxidation and away from stor-

age (Ko et al., 2009). These enzymes are localized in the ER, which is physically connected with mitochon-

dria (Rowland and Voeltz, 2012). Furthermore, physical contacts between mitochondria and ER lead to

formation of specialized structures termed mitochondria-associated membranes, where critical metabolic

processes, such as lipid trafficking, reactive oxygen species, and Ca2+ signaling occur, thereby allowing

localized inter-organellar communication (Csordas et al., 2018; Scorrano et al., 2019). Acting in concert

with uridine 50-diphospho-glucuronosyltransferaseares (UGTs), Ces1 enzymes are also involved in xenobi-

otic metabolism, including the metabolism of cocaine and heroin and detoxification of organophosphate

chemical weapons, such as sarin, soman, and tabun (Bencharit et al., 2003). The UGTs are drug-metabo-

lizing enzymes encoded by classical Nrf2-target genes; indeed, we observed members of this family to

be differentially expressed among the genotypes in the proteomics screen (Tables S1 and S2, and Figure 2),

confirming the presence of ER proteins in our mitochondria-enriched fractions. Ces1g-knockout mice have

reduced energy expenditure, increased lipogenesis, and postprandial hyperlipidemia due to increased

secretion of chylomicrons, whereas Ces1g overexpression leads to increased FAO and reduced hepatic tri-

glyceride levels (Quiroga et al., 2012; Xu et al., 2014). Most recently, it was shown that hepatocyte-specific

overexpression of human CES1 in mice promotes FAO and attenuates high-fat/high-cholesterol/high-fruc-

tose diet- or alcohol-induced hepatic steatosis, inflammation, fibrosis, and hyperlipidemia, strongly sug-

gesting a protective role of hepatic CES1 against metabolic disorders (Xu et al., 2020). Taken together

with our findings of the regulation of CES1 by Nrf2, it can be concluded that one mechanism by which

Nrf2 activation protects against metabolic disorders is through induction of CES1.

Although other transcription factors are also involved in regulating Ces1 expression, some similarities be-

tween Ces1g-KO and Nrf2-KOmice are noteworthy. Thus, Ces1 deficiency results in hepatosteatosis (Quir-

oga et al., 2012), and albeit to amuch lower degree, there is evidence for microvesicular hepatic steatosis in

Nrf2-KO animals (Chowdhry et al., 2010; Meakin et al., 2014; Sugimoto et al., 2010). Ces1g-KOmice are pro-

tected against development of atherosclerosis (Xu et al., 2017), as are Nrf2-KO mice (Polonen et al., 2019;

Sussan et al., 2008). In addition, knockout of Ces1g decreases levels of cholesterol in plasma (Xu et al.,
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2017), as does Nrf2 deficiency (Meakin et al., 2014; Polonen et al., 2019), whereas plasma low-density lipo-

protein levels are increased following chronic pharmacologic activation of Nrf2 by TBE-31 (Kostov et al.,

2015). Taken together, these findings suggest that one mechanism by which Nrf2 activation affects lipid

metabolism involves Ces1.

The beneficial effects of intermittent fasting have been consistently observed in numerous preclinical

models of chronic disease, including obesity, diabetes, and neurodegenerative diseases, and although

the clinical evidence is much more limited, benefits have been also noted in patients with metabolic disor-

ders, such as obesity and insulin resistance (de Cabo and Mattson, 2019). A recent study in mice has shown

that although the improvements in physical performance resulting from caloric restriction do not require

Nrf2, the alterations in metabolic and protein homeostasis were Nrf2 dependent (Pomatto et al., 2020). Par-

allels can be drawn between reduced expression of Keap1/activation of Nrf2 and intermittent fasting.

Similar to intermittent fasting, Nrf2 activation triggers adaptive responses resulting in improved glucose

regulation, increased resistance to stress, and resolution of inflammation. Like Nrf2 activation, which coun-

teracts and provides long-lasting protection against subsequent challenges (Gao et al., 2001), intermittent

fasting leads to adaptive responses of long duration, which confer resistance to subsequent potentially

damaging exposures and has inspired the search for targeted pharmacologic approaches that mimic

the effects of fasting (de Cabo and Mattson, 2019). Our findings suggest that pharmacologic inhibition

of Keap1 may offer such approach, particularly for conditions such as obesity-induced metabolic syn-

drome. Indeed, the anti-inflammatory, anti-lipogenic, and anti-fibrotic effects of Nrf2 pathway activation

are particularly pronounced when mice are fed high-fat or high-fat plus high-fructose diet (Meakin et al.,

2014; Sharma et al., 2018; Slocum et al., 2016). This notion is further supported by results from a human

study showing that a 12-week intervention with the classical Nrf2 activator SFN (administered as broccoli

sprout extracts) improved glucose control in obese patients with type 2 diabetes, as evidenced by the

decrease in glycated hemoglobin and fasting blood glucose, which correlated with serum SFN concentra-

tion (Axelsson et al., 2017). Like TBE-31 and RTA-408, SFN inactivates Keap1 by reacting with cysteine 151

(Zhang and Hannink, 2003).

It should be pointed out that the level of Nrf2 activation in the Keap1-KD animals that we used in this study is

relatively modest and comparable to levels observed following interventions with pharmacologic Nrf2 acti-

vators in both mice (Knatko et al., 2015) and humans (Dinkova-Kostova et al., 2007; Liu et al., 2020). This was

an important consideration, particularly because Nrf2 activators, such as SFN and the pentacyclic cyanoe-

nones bardoxolone methyl and RTA-408 (used in this study), are currently in clinical trials for multiple indi-

cations, including chronic kidney disease, liver disease, pulmonary arterial hypertension, mitochondrial

myopathy, and autism spectrum disorder (Cuadrado et al., 2019). In addition, development of non-electro-

philic compounds, which target the Nrf2-binding domain of Keap1 and consequently disrupt its protein-pro-

tein interactions with Nrf2, is also actively being pursued and has been the focus of a recent extensive virtual

screen drug discovery effort, in which more than 1 billion compounds were assessed (Gorgulla et al., 2020).

Limitations of the Study

The comparisons among WT, Nrf2-KO, and Keap1-KD genotypes provide confidence that most functional

outcomes observed in this study are Nrf2 dependent. Nonetheless, we cannot exclude the possibility that

some may be partially Nrf2 dependent. This is because, in addition to activating Nrf2, the lower expression

of Keap1 in Keap1-KD animals is expected to affect the behavior of other (known as well as yet to be discov-

ered) Keap1-binding partners, and the potential consequences have not been examined. Another limita-

tion of this study is that, for most experiments, we have used female mice, and although highly unlikely, we

cannot exclude the possibility that some of the responses of male mice could be different. Finally, future

work is needed to elucidate themechanisms by which Nrf2 acts as a negative regulator of the proteins iden-

tified in our proteomics screen.
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with the dataset identifier PXD021639.
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All methods can be found in the accompanying Transparent Methods supplemental file.
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Uniprot 
Accession Uniprot Locus Protein name Gene name
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KD Run 2

P48410 ABCD1_MOUSE ATP-binding cassette sub-family D member 1 Abcd1 -1.79 2.22 + + -1.92 -1.66 2.61 1.83
P97449 AMPN_MOUSE Aminopeptidase N Anpep 1.64 2.05 + + 1.38 1.90 2.60 1.51
P16015 CAH3_MOUSE Carbonic anhydrase 3 Ca3 1.62 2.02 + + 1.61 1.62 2.12 1.92
P48758 CBR1_MOUSE Carbonyl reductase [NADPH] 1 Cbr1* -0.97 2.57 + + -0.95 -0.98 2.90 2.25
Q8VCC2 EST1_MOUSE Liver carboxylesterase 1 Ces1* -4.09 1.97 + + -4.25 -3.92 1.73 2.21
Q8VCT4 CES1D_MOUSE Carboxylesterase 1D Ces1d -0.68 2.63 + + -0.58 -0.78 2.73 2.54
H3BL34 H3BL34_MOUSE Carboxylic ester hydrolase Ces1e -1.28 2.01 + + -1.41 -1.14 2.04 1.98
Q91WU0 CES1F_MOUSE Carboxylesterase 1F Ces1f* -2.48 3.54 + + -2.89 -2.07 4.56 2.51
Q91WG0 EST2C_MOUSE Acylcarnitine hydrolase Ces2c -2.98 1.88 + + -2.11 -3.85 1.85 1.90
Q8BJ64 CHDH_MOUSE Choline dehydrogenase, mitochondrial Chdh -0.74 2.67 + + -0.76 -0.72 2.76 2.58
O88668 CREG1_MOUSE Protein CREG1 Creg1* -1.32 2.75 + + -1.36 -1.29 2.50 2.99
P15392 CP2A4_MOUSE Cytochrome P450 2A4 Cyp2a4 -2.65 2.95 + + -2.64 -2.67 3.22 2.69
Q91X75 Q91X75_MOUSE Cyp2a4 protein Cyp2a5 -3.89 3.07 + + -4.03 -3.74 2.91 3.24
P33267 CP2F2_MOUSE Cytochrome P450 2F2 Cyp2f2 -1.30 1.96 + + -1.40 -1.21 2.01 1.90

Q9WUZ9 ENTP5_MOUSE Ectonucleoside triphosphate diphosphohydrolase 5 Entpd5 -2.06 3.94 + + -2.34 -1.79 3.72 4.17
Q9D379 HYEP_MOUSE Epoxide hydrolase 1 Ephx1 -2.19 3.30 + + -2.41 -1.97 3.77 2.84
E9PV24 FIBA_MOUSE Fibrinogen alpha chain Fga 0.88 1.95 + + 1.00 0.76 2.19 1.70
P15105 GLNA_MOUSE Glutamine synthetase Glul 1.08 2.04 + + 1.04 1.13 2.48 1.60
P10649 GSTM1_MOUSE Glutathione S-transferase Mu 1 Gstm1* -3.37 2.93 + + -3.36 -3.38 2.66 3.21
Q8CFX1 G6PE_MOUSE GDH/6PGL endoplasmic bifunctional protein H6pd* -0.82 2.39 + + -0.75 -0.88 2.43 2.35
Q8VCR2 DHB13_MOUSE 17-beta-hydroxysteroid dehydrogenase 13 Hsd17b13 -6.58 4.22 + + -6.95 -6.22 5.52 2.92
Q3U816 Q3U816_MOUSE Oxidoreductase HTATIP2 Htatip2* -3.39 4.21 + + -4.02 -2.76 4.71 3.71
Q9DCY0 KEG1_MOUSE Glycine N-acyltransferase-like protein Keg1 Keg1 -1.34 1.97 + + -1.39 -1.29 2.15 1.79
Q71RI9 KAT3_MOUSE Kynurenine--oxoglutarate transaminase 3 Kyat3 -0.84 2.95 + + -0.91 -0.77 3.06 2.83

Q7TNG8 LDHD_MOUSE Probable D-lactate dehydrogenase, mitochondrial Ldhd -0.92 2.68 + + -1.02 -0.82 3.19 2.17
Q9DBN5 LONP2_MOUSE Lon protease homolog 2, peroxisomal Lonp2 -0.78 2.93 + + -0.86 -0.71 3.18 2.67
Q3ULD5 MCCB_MOUSE Methylcrotonoyl-CoA carboxylase beta chain, mitochondrial Mccc2 -0.56 2.74 + + -0.61 -0.50 2.71 2.76
Q8BH59 CMC1_MOUSE Calcium-binding mitochondrial carrier protein Aralar1 Slc25a12 0.74 2.54 + + 0.86 0.61 2.68 2.39
K9J7B2 K9J7B2_MOUSE UDP-glucuronosyltransferase Ugt1a6b -1.20 2.20 + + -1.30 -1.10 2.30 2.09
Q8R084 Q8R084_MOUSE UDP-glucuronosyltransferase Ugt2b1 -1.39 3.66 + + -1.50 -1.28 3.15 4.17
Q8BJL9 Q8BJL9_MOUSE UDP-glucuronosyltransferase Ugt2b35* -3.76 3.34 + + -3.69 -3.82 2.24 4.45
Q8K169 Q8K169_MOUSE UDP-glucuronosyltransferase Ugt2b5 -1.60 3.57 + + -1.63 -1.57 3.58 3.55

Table S1. Shortlist of 32 proteins identified as significantly different (FDR 10% & S0=0.1 - See Figure S1) in both MS runs 
from the liver samples. Student’s two tailed t-test results and log2 Nrf2 KO/Keap1 KD ratios are presented. A negative log2 
ratio is indicative of a protein whose abundance is positively influenced by Nrf2 and/or negatively influenced by Keap1. For 
further details see Data S1. Proteins organised by gene name. *Proteins also shortlisted from the organoid samples are 
marked with an asterisk. Related to Figure 1.

Liver



Table S2. Shortlist of 50 proteins identified as significantly different (FDR 10% & S0=0.1 - See Figure S1) in both MS runs 
from the intestinal organoid samples. Student’s two tailed t-test results and log2 Nrf2 KO/Keap1 KD ratios are presented. A 
negative log2 ratio is indicative of a protein whose abundance is positively influenced by Nrf2 and/or negatively influenced by 
Keap1. For further details see Data S1. Proteins organised by gene name. *Proteins also shortlisted from the liver samples 
are marked with an asterisk. Related to Figure 1.
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B2RX12 MRP3_MOUSE Canalicular multispecific organic anion transporter 2 Abcc3 -2.73 2.46 + + -3.08 -2.38 2.63 2.30
E9Q236 E9Q236_MOUSE ATP-binding cassette, sub-family C (CFTR/MRP), member 4 Abcc4 -3.49 2.91 + + -3.01 -3.96 2.54 3.29
Q9QXD1 ACOX2_MOUSE Peroxisomal acyl-coenzyme A oxidase 2 Acox2 -5.66 3.27 + + -5.61 -5.70 2.12 4.42
Q99NF1 BCDO2_MOUSE Beta,beta-carotene 9,10-oxygenase Bco2 2.34 2.63 + + 3.15 1.53 2.95 2.32
P48758 CBR1_MOUSE Carbonyl reductase [NADPH] 1 Cbr1* -2.69 3.30 + + -2.73 -2.66 3.19 3.42
Q8K354 CBR3_MOUSE Carbonyl reductase [NADPH] 3 Cbr3 -6.36 3.47 + + -6.06 -6.66 3.85 3.08
Q8VCC2 EST1_MOUSE Liver carboxylesterase 1 Ces1* -6.41 3.61 + + -5.91 -6.91 3.31 3.91
Q91WU0 CES1F_MOUSE Carboxylesterase 1F Ces1f* -6.33 2.56 + + -6.70 -5.97 2.83 2.30
O88668 CREG1_MOUSE Protein CREG1 Creg1* -1.70 1.93 + + -1.64 -1.76 2.06 1.81

Q9WUD0 Q9WUD0_MOUSE Cytochrome P450 2B10 Cyp2b10 2.40 1.90 + + 2.39 2.41 2.00 1.81
O88533 DDC_MOUSE Aromatic-L-amino-acid decarboxylase Ddc -3.24 2.29 + + -3.44 -3.05 2.31 2.27
Q9D379 HYEP_MOUSE Epoxide hydrolase 1 Ephx1* -1.63 2.66 + + -1.67 -1.60 2.78 2.54
Q8R180 ERO1A_MOUSE ERO1-like protein alpha Ero1a -2.99 2.65 + + -3.21 -2.77 2.77 2.54
Q9D6U8 F162A_MOUSE Protein FAM162A Fam162a -1.59 3.02 + + -1.69 -1.50 3.14 2.90
Q00612 G6PD1_MOUSE Glucose-6-phosphate 1-dehydrogenase X G6pdx -2.72 2.99 + + -2.83 -2.61 3.31 2.67
P97494 GSH1_MOUSE Glutamate--cysteine ligase catalytic subunit Gclc -4.97 3.29 + + -4.41 -5.53 2.84 3.75
O09172 GSH0_MOUSE Glutamate--cysteine ligase regulatory subunit Gclm -2.92 3.28 + + -2.86 -2.97 2.90 3.66
Q64521 GPDM_MOUSE Glycerol-3-phosphate dehydrogenase, mitochondrial Gpd2 -0.84 2.89 + + -0.76 -0.92 2.98 2.81

A0A0R4J111 A0A0R4J111_MOUSE Glutathione peroxidase Gpx2 -2.86 2.97 + + -2.59 -3.13 3.36 2.58
P47791 GSHR_MOUSE Glutathione reductase, mitochondrial Gsr -2.38 2.89 + + -2.44 -2.33 3.56 2.22
P13745 GSTA1_MOUSE Glutathione S-transferase A1 Gsta1 -5.98 2.86 + + -7.23 -4.73 3.89 1.83
P30115 GSTA3_MOUSE Glutathione S-transferase A3 Gsta3 -5.51 2.68 + + -5.91 -5.11 3.14 2.21

Q9DCM2 GSTK1_MOUSE Glutathione S-transferase kappa 1 Gstk1 -1.04 2.26 + + -1.05 -1.03 2.37 2.14
P10649 GSTM1_MOUSE Glutathione S-transferase Mu 1 Gstm1* -5.02 3.76 + + -5.04 -5.00 3.74 3.78
P19639 GSTM3_MOUSE Glutathione S-transferase Mu 3 Gstm3 -3.74 3.19 + + -3.68 -3.81 3.28 3.10
Q8CFX1 G6PE_MOUSE GDH/6PGL endoplasmic bifunctional protein H6pd* -2.90 2.77 + + -2.96 -2.83 2.95 2.59
Q8K2C9 HACD3_MOUSE Very-long-chain (3R)-3-hydroxyacyl-CoA dehydratase 3 Hacd3 -0.89 2.32 + + -0.82 -0.97 2.35 2.28
G3UVV4 G3UVV4_MOUSE Hexokinase 1, isoform CRA_f Hk1 -2.15 2.06 + + -2.14 -2.17 2.10 2.02
Q3U816 Q3U816_MOUSE Oxidoreductase HTATIP2 Htatip2* -2.16 2.80 + + -2.23 -2.08 3.78 1.83
F8VPT3 F8VPT3_MOUSE Lactase Lct 5.67 1.87 + + 5.70 5.63 1.88 1.85
P06801 MAOX_MOUSE NADP-dependent malic enzyme Me1 -4.13 2.99 + + -4.22 -4.04 3.74 2.23
Q91VS7 MGST1_MOUSE Microsomal glutathione S-transferase 1 Mgst1 -0.99 2.08 + + -1.02 -0.97 2.09 2.06
Q7M758 NALDL_MOUSE Aminopeptidase NAALADL1 Naaladl1 -3.94 2.43 + + -4.10 -3.79 3.01 1.85
Q64669 NQO1_MOUSE NAD(P)H dehydrogenase [quinone] 1 Nqo1 -5.28 3.90 + + -5.25 -5.31 4.30 3.49
Q9DCD0 6PGD_MOUSE 6-phosphogluconate dehydrogenase, decarboxylating Pgd -1.49 3.19 + + -1.62 -1.35 3.05 3.32
Q9D711 PIR_MOUSE Pirin Pir -2.29 1.94 + + -2.37 -2.20 2.09 1.79
Q9DBX5 Q9DBX5_MOUSE Phospholipase A2 Pla2g4a -1.82 1.87 + + -1.59 -2.05 1.83 1.90
Q91YR9 PTGR1_MOUSE Prostaglandin reductase 1 Ptgr1 -2.97 2.71 + + -3.14 -2.79 3.34 2.07
P43137 LIT1_MOUSE Lithostathine-1 Reg1 3.55 2.50 + + 3.56 3.54 2.70 2.30
P52760 RIDA_MOUSE 2-iminobutanoate/2-iminopropanoate deaminase Rida -4.30 2.98 + + -4.16 -4.45 2.80 3.15
Q99P72 RTN4_MOUSE Reticulon-4 Rtn4 -1.38 2.35 + + -1.36 -1.40 2.03 2.67
Q91Y74 SIA4C_MOUSE CMP-N-acetylneuraminate-beta-galactosamide-alpha-2,3-sialyltransferase 4 St3gal4 6.31 3.90 + + 6.20 6.43 3.58 4.21
Q9D939 ST1C2_MOUSE Sulfotransferase 1C2 Sult1c2 2.05 2.48 + + 1.87 2.23 2.17 2.80
E9Q6Q8 E9Q6Q8_MOUSE TBC1 domain family member 4 Tbc1d4 -1.55 2.07 + + -1.30 -1.80 2.18 1.95
Q9JMH6 TRXR1_MOUSE Thioredoxin reductase 1, cytoplasmic Txnrd1 -1.46 2.50 + + -1.28 -1.63 2.99 2.00
O70475 UGDH_MOUSE UDP-glucose 6-dehydrogenase Ugdh -3.28 3.40 + + -3.32 -3.23 3.59 3.20
Q91ZJ5 UGPA_MOUSE UTP--glucose-1-phosphate uridylyltransferase Ugp2 -2.04 2.31 + + -1.82 -2.25 1.82 2.79
Q64435 UD16_MOUSE UDP-glucuronosyltransferase 1-6 Ugt1a6 -3.37 2.38 + + -3.37 -3.36 2.11 2.66
Q8BJL9 Q8BJL9_MOUSE UDP-glucuronosyltransferase Ugt2b35* -2.32 3.57 + + -2.44 -2.20 3.99 3.15
Q3UEP4 Q3UEP4_MOUSE UDP-glucuronosyltransferase Ugt2b36 -1.99 2.20 + + -1.98 -2.00 1.79 2.61

Intestinal Organoids
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Aldoa sp|P05064|ALDOA_MOUSE Fructose-bisphosphate aldolase A OS=Mus musculus OX=10090 GN=Aldoa PE=1 SV=2;tr|A6ZI44|A6ZI44_MOUSE Fructose-bisphosphate aldolase OS=Mus musculus OX=10090 GN=Aldoa PE=1 SV=1;tr|D3YWI1|D3YWI1_MOUSE Fructose-bisphosphate aldolase (Frag+ 0.21 0.28 -0.31 1.01
Aldob sp|Q91Y97|ALDOB_MOUSE Fructose-bisphosphate aldolase B OS=Mus musculus OX=10090 GN=Aldob PE=1 SV=3+ 0.46 0.65 0.68 0.67
Aldoc sp|P05063|ALDOC_MOUSE Fructose-bisphosphate aldolase C OS=Mus musculus OX=10090 GN=Aldoc PE=1 SV=4+ 0.64 1.23
Dera sp|Q91YP3|DEOC_MOUSE Deoxyribose-phosphate aldolase OS=Mus musculus OX=10090 GN=Dera PE=1 SV=1;tr|A0A0N4SV34|A0A0N4SV34_MOUSE Deoxyribose-phosphate aldolase OS=Mus musculus OX=10090 GN=Dera PE=1 SV=1;tr|A0A0N4SUV7|A0A0N4SUV7_MOUSE Deoxyribose-phosphate ald+ 0.51 1.42
Eno1 sp|P17182|ENOA_MOUSE Alpha-enolase OS=Mus musculus OX=10090 GN=Eno1 PE=1 SV=3;tr|Q6PHC1|Q6PHC1_MOUSE Alpha-enolase OS=Mus musculus OX=10090 GN=Eno1 PE=1 SV=1+ 0.56 0.88 0.46 0.47
Fbp1 sp|Q9QXD6|F16P1_MOUSE Fructose-1,6-bisphosphatase 1 OS=Mus musculus OX=10090 GN=Fbp1 PE=1 SV=3+ 1.52 1.10 1.77 1.61
Fbp2 sp|P70695|F16P2_MOUSE Fructose-1,6-bisphosphatase isozyme 2 OS=Mus musculus OX=10090 GN=Fbp2 PE=1 SV=2+ 1.05 1.21
G6pc sp|P35576|G6PC_MOUSE Glucose-6-phosphatase OS=Mus musculus OX=10090 GN=G6pc PE=1 SV=2+ 1.09 0.65
Gapdh sp|P16858|G3P_MOUSE Glyceraldehyde-3-phosphate dehydrogenase OS=Mus musculus OX=10090 GN=Gapdh PE=1 SV=2;tr|A0A0A0MQF6|A0A0A0MQF6_MOUSE Glyceraldehyde-3-phosphate dehydrogenase OS=Mus musculus OX=10090 GN=Gapdh PE=1 SV=1;tr|A0A1D5RLD8|A0A1D5RLD8_MOUSE Glyc+ 0.65 0.61 0.30 1.17
Got1 sp|P05201|AATC_MOUSE Aspartate aminotransferase, cytoplasmic OS=Mus musculus OX=10090 GN=Got1 PE=1 SV=3+ 1.14 0.76 1.18 1.11
Got2 sp|P05202|AATM_MOUSE Aspartate aminotransferase, mitochondrial OS=Mus musculus OX=10090 GN=Got2 PE=1 SV=1+ 0.29 0.91 -0.33 0.36
Gpd1 sp|P13707|GPDA_MOUSE Glycerol-3-phosphate dehydrogenase [NAD(+)], cytoplasmic OS=Mus musculus OX=10090 GN=Gpd1 PE=1 SV=3;tr|E0CXN5|E0CXN5_MOUSE Glycerol-3-phosphate dehydrogenase [NAD(+)] OS=Mus musculus OX=10090 GN=Gpd1 PE=1 SV=1+ -0.27 1.86 0.77 0.73
Gpd2 sp|Q64521|GPDM_MOUSE Glycerol-3-phosphate dehydrogenase, mitochondrial OS=Mus musculus OX=10090 GN=Gpd2 PE=1 SV=2;tr|A2AQR0|A2AQR0_MOUSE Glycerol-3-phosphate dehydrogenase OS=Mus musculus OX=10090 GN=Gpd2 PE=1 SV=1+ 0.21 0.54 -0.84 2.89 +
Gpi sp|P06745|G6PI_MOUSE Glucose-6-phosphate isomerase OS=Mus musculus OX=10090 GN=Gpi PE=1 SV=4+ 0.32 0.25
Hk1 tr|G3UVV4|G3UVV4_MOUSE Hexokinase 1, isoform CRA_f OS=Mus musculus OX=10090 GN=Hk1 PE=1 SV=1;sp|P17710|HXK1_MOUSE Hexokinase-1 OS=Mus musculus OX=10090 GN=Hk1 PE=1 SV=3+ -1.50 0.66 -2.15 2.06 +
Hk2 sp|O08528|HXK2_MOUSE Hexokinase-2 OS=Mus musculus OX=10090 GN=Hk2 PE=1 SV=1;tr|E9Q5B5|E9Q5B5_MOUSE Hexokinase-2 OS=Mus musculus OX=10090 GN=Hk2 PE=1 SV=1+ -1.15 1.60
Hkdc1 sp|Q91W97|HKDC1_MOUSE Hexokinase HKDC1 OS=Mus musculus OX=10090 GN=Hkdc1 PE=2 SV=1+ -0.66 0.95
Hoga1 sp|Q9DCU9|HOGA1_MOUSE 4-hydroxy-2-oxoglutarate aldolase, mitochondrial OS=Mus musculus OX=10090 GN=Hoga1 PE=1 SV=1;tr|E9Q1R2|E9Q1R2_MOUSE 4-hydroxy-2-oxoglutarate aldolase, mitochondrial OS=Mus musculus OX=10090 GN=Hoga1 PE=1 SV=1+ -0.06 0.12
Khk tr|A0A0J9YU79|A0A0J9YU79_MOUSE Ketohexokinase OS=Mus musculus OX=10090 GN=Khk PE=1 SV=1;tr|E9Q1Q9|E9Q1Q9_MOUSE Ketohexokinase OS=Mus musculus OX=10090 GN=Khk PE=1 SV=1;sp|P97328|KHK_MOUSE Ketohexokinase OS=Mus musculus OX=10090 GN=Khk PE=1 SV=1;tr|A0A0J9YU+ 1.77 1.03
Mdh1 sp|P14152|MDHC_MOUSE Malate dehydrogenase, cytoplasmic OS=Mus musculus OX=10090 GN=Mdh1 PE=1 SV=3+ -0.09 0.30 0.31 0.51
Mdh2 sp|P08249|MDHM_MOUSE Malate dehydrogenase, mitochondrial OS=Mus musculus OX=10090 GN=Mdh2 PE=1 SV=3+ -0.11 0.37 -0.09 0.32
Pck2 sp|Q8BH04|PCKGM_MOUSE Phosphoenolpyruvate carboxykinase [GTP], mitochondrial OS=Mus musculus OX=10090 GN=Pck2 PE=1 SV=1;tr|A0A0R4J0G0|A0A0R4J0G0_MOUSE Phosphoenolpyruvate carboxykinase [GTP], mitochondrial OS=Mus musculus OX=10090 GN=Pck2 PE=1 SV=1;tr|A0A2+ -1.81 0.29 -0.91 0.52
Pcx tr|G5E8R3|G5E8R3_MOUSE Pyruvate carboxylase OS=Mus musculus OX=10090 GN=Pcx PE=1 SV=1;tr|E9QPD7|E9QPD7_MOUSE Pyruvate carboxylase OS=Mus musculus OX=10090 GN=Pcx PE=1 SV=1;sp|Q05920|PYC_MOUSE Pyruvate carboxylase, mitochondrial OS=Mus musculus OX=10090 GN=+ -0.49 1.44 -0.95 1.13
Pgam1 sp|Q9DBJ1|PGAM1_MOUSE Phosphoglycerate mutase 1 OS=Mus musculus OX=10090 GN=Pgam1 PE=1 SV=3+ 1.06 1.16 0.40 0.63
Pgk1 sp|P09411|PGK1_MOUSE Phosphoglycerate kinase 1 OS=Mus musculus OX=10090 GN=Pgk1 PE=1 SV=4;tr|S4R2M7|S4R2M7_MOUSE Phosphoglycerate kinase OS=Mus musculus OX=10090 GN=Pgk1 PE=1 SV=1+ 0.93 0.61 0.42 0.94
Pgm1 sp|Q9D0F9|PGM1_MOUSE Phosphoglucomutase-1 OS=Mus musculus OX=10090 GN=Pgm1 PE=1 SV=4;tr|A2CEK3|A2CEK3_MOUSE Phosphoglucomutase-1 OS=Mus musculus OX=10090 GN=Pgm1 PE=1 SV=1+ 1.16 0.89 -1.05 1.84
Rbp4 sp|Q00724|RET4_MOUSE Retinol-binding protein 4 OS=Mus musculus OX=10090 GN=Rbp4 PE=1 SV=2;tr|H7BWY6|H7BWY6_MOUSE Retinol-binding protein 4 OS=Mus musculus OX=10090 GN=Rbp4 PE=1 SV=1+ 0.38 0.78
Slc25a1 sp|Q8JZU2|TXTP_MOUSE Tricarboxylate transport protein, mitochondrial OS=Mus musculus OX=10090 GN=Slc25a1 PE=1 SV=1;tr|F6VVY4|F6VVY4_MOUSE Tricarboxylate transport protein, mitochondrial (Fragment) OS=Mus musculus OX=10090 GN=Slc25a1 PE=1 SV=1+ -0.18 0.98 -0.51 1.10
Slc25a10 sp|Q9QZD8|DIC_MOUSE Mitochondrial dicarboxylate carrier OS=Mus musculus OX=10090 GN=Slc25a10 PE=1 SV=2+ -0.22 0.82 -0.21 0.61
Slc25a11 sp|Q9CR62|M2OM_MOUSE Mitochondrial 2-oxoglutarate/malate carrier protein OS=Mus musculus OX=10090 GN=Slc25a11 PE=1 SV=3;tr|Q5SX46|Q5SX46_MOUSE Mitochondrial 2-oxoglutarate/malate carrier protein (Fragment) OS=Mus musculus OX=10090 GN=Slc25a11 PE=1 SV=1+ 0.15 0.62 0.04 0.03
Slc25a12 sp|Q8BH59|CMC1_MOUSE Calcium-binding mitochondrial carrier protein Aralar1 OS=Mus musculus OX=10090 GN=Slc25a12 PE=1 SV=1+ 0.74 2.54 0.08 0.12
Slc25a13 sp|Q9QXX4|CMC2_MOUSE Calcium-binding mitochondrial carrier protein Aralar2 OS=Mus musculus OX=10090 GN=Slc25a13 PE=1 SV=1+ -0.15 0.50 -0.16 0.16
Slc37a4 tr|Q9D1F9|Q9D1F9_MOUSE Solute carrier family 37 (Glucose-6-phosphate transporter), member 4 OS=Mus musculus OX=10090 GN=Slc37a4 PE=1 SV=1;tr|A0A1L1SUI3|A0A1L1SUI3_MOUSE Solute carrier family 37 (glucose-6-phosphate transporter), member 4 OS=Mus musculus OX+ -0.32 0.24 1.57 1.25
Taldo1 sp|Q93092|TALDO_MOUSE Transaldolase OS=Mus musculus OX=10090 GN=Taldo1 PE=1 SV=2;tr|A0A1B0GR11|A0A1B0GR11_MOUSE Transaldolase OS=Mus musculus OX=10090 GN=Taldo1 PE=1 SV=1+ -0.41 1.74
Tpi1 sp|P17751|TPIS_MOUSE Triosephosphate isomerase OS=Mus musculus OX=10090 GN=Tpi1 PE=1 SV=4;tr|H7BXC3|H7BXC3_MOUSE Triosephosphate isomerase OS=Mus musculus OX=10090 GN=Tpi1 PE=1 SV=1+ 0.80 0.40 0.76 0.70

Table S3. Proteins related to gluconeogenesis that were detected in both MS runs from the liver and organoid samples 
(see also Figure S4). Student’s two tailed t-test was used to determine statistical significance, and log2 Nrf2 KO/Keap1 
KD ratios are presented. A negative log2 ratio is indicative of a protein whose abundance is positively influenced by Nrf2 
and/or negatively influenced by Keap1. Related to Figure 3. 
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Figure S1. Proteomic analyses of mitochondria-enriched preparations from liver and early-passage intestinal organoids from 
wild-type (WT), Nrf2-knockout (Nrf2-KO), and Keap1-knockdown (Keap1-KD) mice. Fold change versus t-test p-value 
results for proteins quantified in each MS run for liver (A,B) and intestinal organoids (C,D). Red markers are those proteins 
that met the statistical cutoff of 10% FDR and S0=0.1 in two samples unpaired Student’s t-test. See Data S1 for details. 
Related to Figure 1.
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Figure S2. Network of proteins identified by STRING with both functional enrichments and quantitative 
relationships in mitochondria-enriched preparations from livers of Nrf2-knockout (Nrf2-KO) and Keap1-knock-
down (Keap1-KD) mice. In addition to clusters of metabolic proteins within the Ces1 and Ugt families shown in 
Figure 2A, this type of analysis identified proteins with roles in protein processing in endoplasmic reticulum 
and signal peptidase complex (A), and proteins involved in mitochondrial complex I biogenesis (B) as statisti-
cally significantly different between the Nrf2-KO and Keap1-KD genotypes. Related to Figure 2.
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Figure S3. Network of proteins identified by STRING with both functional enrichments and quantitative relation-
ships in mitochondria-enriched preparations from early-passage intestinal organoids from Nrf2-knockout 
(Nrf2-KO) and Keap1-knockdown (Keap1-KD) mice. In addition to clusters of metabolic proteins within the 
Ces1 and Cyp families shown in Figure 2B, and proteins involved in glycolysis and the pentose phosphate 
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Figure S4. Proteomic analyses of enzymes related to gluconeogenesis in mitochondria-enriched preparations from liver 
and early-passage intestinal organoids from wild-type (WT), Nrf2-knockout (Nrf2-KO), and Keap1-knockdown (Keap1-
KD) mice. Fold change versus t-test p-value results for proteins quantified in the two MS runs for liver (A) and intestinal 
organoids (B). Red markers are proteins related to gluconeogenesis. Those that met the statistical cutoff of 10% FDR 
and S0=0.1 in two samples unpaired Student’s t-test are indicated with an asterisks. The side panels show the protein 
intensities for Hk1 (liver), and for Hk1 and Gpd2 (organoids) in the three genotypes. Related to Figure 3. 
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Figure S5. The cyclic cyanoenones TBE-31 and RTA-408 activate Nrf2-dependent transcription. (A) Chemical structures 
of TBE-31 and RTA-408. (B,C) mRNA levels for Nqo1, Gstp, Gclc and Ces1g in intestinal organoids from Nrf2-knockout 
(Nrf2-KO) (B) and Keap1-knockdown (Keap1-KD) (C) mice. The organoids (n=3) were treated with the Nrf2 activator 
TBE-31 (10 nM, 16h) or vehicle (0.1% acetonitrile). (D,E) mRNA levels for Nqo1 (D) and Gclc (E) in colons of male WT 
C57BL6 mice (n=3-4) that had been treated with RTA-408, per os, 3 times, 24h-apart, and colon tissue was harvested 
6h after the last dose. (F) mRNA levels for Nqo1 in colons of male C57BL6 wild type (WT) and Nrf2-knockout (Nrf2-KO) 
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Figure S6. Nrf2 dependence of human CES1 expression. (A-C) mRNA levels for CES1 (A), NQO1 (B) and GCLC (C) in 
HepG2 cells following 16h treatment with Nrf2 activators TBE-31 (10 and 50 nM), SFN (5 µM) or vehicle (0.1% 
acetonitrile). (D-E) mRNA levels for NFE2L2 (D) and CES1 (E) in HepG2 cells following siRNA knock-down of NFE2L2 
for 45h combined with TBE-31 (100nM, last 16h) or glucose deprivation (last 27h), or vehicle control treatment (0.1% 
acetonitrile). (F) mRNA levels for CES1 in isogenic DLD1 cell lines with either unaltered Nrf2 (WT), or Nrf2-knockout 
(Nrf2-KO) or Nrf2-gain-of-function (Nrf2-GoF) mutations. (G) Nrf2 protein (top panel) and CES1 mRNA levels (bottom 
panel) in DLD1 cells following 17h treatment with Nrf2 activators TBE-31 (50 and 100 nM), SFN (5 µM) or vehicle (0.1% 
acetonitrile). (H) CES1 mRNA levels in unaltered (WT) and Nrf2-knockout (Nrf2-KO) isogenic DLD1 cell lines following 
17h treatment with Nrf2 activator TBE-31 (50 nM) or vehicle (0.1% acetonitrile). *p<0.01, relative to the respective 
leftmost control (A,B,C,E,G,H,F); $p<0.01, changes in response to siNFE2L2 treatment (D). Related to Figure 4. 
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Figure S7. (A) mRNA levels for ACOX2 in HepG2 cells following 16h treatment with Nrf2 activators SFN, TBE-31, or vehicle 
(0.1% acetonitrile). (B-D) mRNA levels for ACOX2 (B), NQO1 (C) and AKR1B10 (D) in Caco2 cells following 16h treatment 
with Nrf2 activators TBE-31 (100 nM), SFN (5 µM) or vehicle in serum-free media. (E-G) mRNA levels for ACOX2 (E), NQO1 
(F) and AKR1B10 (F) in Caco2 treated with the Nrf2 activator SFN (5 µM, black bars) or vehicle (white bars) for the indicated 
times. *p<0.05, compared to vehicle at the 1h-time point. (H-J) mRNA levels for NFE2L2 (H), NQO1 (I) and ACOX2 (J) in 
Caco2 following transfection with siRNA targeting NFE2L2 (black bars) or no-targeting si-control (white bars) for the indicated 
times. *p<0.05, compared to vehicle at the 49h-time point. (K-M) mRNA levels for ACOX2 (K), NQO1 (L) and AKR1B10 (M) in 
IMR90 cells following 16h treatment with Nrf2 activators SFN (5 µM), TBE-31 (100 nM), or vehicle. *p<0.05, compared to 
vehicle. Related to Figure 4. 
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and Keap1-knockdown (Keap1-KD) female Skh1-hairelss mice (n=5-10); *p < 0.05. (D) mRNA levels for Acss2 in livers 
from wild-type (WT) and Keap1-knockdown (Keap1-KD) female C57BL/6 mice (n=8) that were either fed ad libitum or 
fasted for 18h; 18S used as a reference gene; $p<0.01 and $$p<0.05, compared to respective fed genotype. (E) Protein 
levels for Acly in livers of fasted wild-type (WT) and Keap 1-knockdown (Keap1-KD) female Skh1-hairless mice (n=6). 
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Figure S9. Liver response to fasting. Fasted-to-fed ratios of mRNA levels for proteins involved in FAO (A) and FAS (B) in 
livers from wild-type (WT) and Keap1-knockdown (Keap1-KD) female C57BL/6 mice (n=8) that were either fed ad 
libitum or fasted for 18h. 18S used as a reference gene. Effect of fasting on gene expression was significant (p<0.01, 
not shown) for all FAO genes (A) and most FAS genes (B) except where marked: $$0.01<p<0.05, NS – non-significant; 
significance of the genotype and feeding status interaction (Type I Anova): *p<0.01, #0.05<p<0.1. Related to Figure 6. 
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Figure S10. Colon response to fasting. Fasted-to-fed ratios of mRNA levels for proteins involved in FAO (A) and FAS (B) 
in colons from wild-type (WT) and Keap1-knockdown (Keap1-KD) female C57BL/6 mice (n=8) that were either fed ad 
libitum or fasted for 18h. 18S used as a reference gene. Effect of fasting on gene expression was significant (p<0.01, 
not shown) for most FAO genes (A) and FAS genes (B) except where marked: $$ 0.01<p<0.05, NS – non-significant; 
significance of the genotype and feeding status interaction (Type I Anova): **0.01<p<0.05. Related to Figure 6. 
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Figure S12. Downregulation of Keap1 increases, whereas depletion of Nrf2 decreases the acetylation of α-tubulin in 
mouse embryonic fibroblast (MEF) cells. Levels of AcK40-α-tubulin and α-tubulin in primary MEF cells from wild-type 
(WT), Nrf2-knockout (Nrf2-KO), and Keap1-knockdown (Keap1-KD) mice. Related to Figures 6 and 7. 



TRANSPARENT	METHODS	

Materials	

All	chemicals	and	reagents	were	of	the	highest	purity	available	and	were	purchased	

from	common	commercial	suppliers.	RTA-408	was	from	Cayman	Chemical.	R,S-

sulforaphane	(SFN)	was	from	LKT	Labs.	(±)-TBE-31	was	synthesized	as	described	

previously	(Honda	et	al.,	2011).	For	organoid	culture	experiments,	a	stock	solution	of	

TBE-31	in	acetonitrile	(AcN)	was	prepared	and	diluted	(1:1,000)	in	the	culture	

medium	to	achieve	the	final	concentrations	indicated	in	the	figure	legends.	The	final	

concentration	of	the	solvent	in	the	culture	medium	was	0.1%	(v/v).	For	

administration	to	animals	by	oral	gavage,	stock	solutions	of	TBE-31	and	RTA-408	in	

DMSO	were	prepared	and	diluted	(1:100)	in	corn	oil	to	achieve	the	compound	doses	

indicated	in	the	figure	legends.	The	control	mice	received	equal	volumes	of	1%	

DMSO	in	corn	oil.	

	

Antibodies	

Solutions	of	primary	antibodies	were	prepared	in	5%	(v/v)	non-fat	milk	or	3%	(w/v)	

BSA	(anti-AcK40-α-tubulin	only)	in	PBST.	The	following	antibodies	were	used:	rabbit	

polyclonal	anti-carboxylesterase	1	(Ces1),	1:1,000,	Abcam;	rabbit	monoclonal	anti-

acetylated	(AcK40)-α-tubulin,	1:1,000,	CST;	mouse	monoclonal	anti-α-tubulin,	

1:1,000,	CST;	rabbit	polyclonal	anti-ATP-citrate	lyase	(Acly),	1:1,000,	CST;	rabbit	

polyclonal	anti-GAPDH,	1:5,000,	Sigma;	mouse	monoclonal	anti-β-actin,	1:10,000,	

Sigma;	rabbit	monoclonal	LC3B,	1:1000,	CST.	

	

Animals	

All	mouse	experiments	were	performed	after	ethical	approval,	in	accordance	with	

the	regulations	described	in	the	UK	Animals	(Scientific	Procedures)	Act	1986.	Mice	

were	bred	and	maintained	at	the	Medical	School	Resource	Unit	of	the	University	of	

Dundee,	with	free	access	to	water	and	food	(pelleted	RM1	diet	from	SDS	Ltd.,	

Witham,	Essex,	UK),	on	a	12-h	light/	12-h	dark	cycle,	35%	humidity.	Wild-type,	Nrf2-

knockout	(Nrf2-/-,	N0)	and	Keap1-knockdown	(Keap1flox/flox,	KD)	mice	(Taguchi	et	al.,	

2010)	were	originally	generously	provided	by	Masayuki	Yamamoto	(Tohoku	

University,	Japan),	and	the	resulting	mouse	colonies	were	maintained	on	either	



C57BL/6	or	Skh-1	hairless	genetic	backgrounds.	Both	male	and	female	mice	were	

used.	

	

Isolation	of	mitochondria-enriched	fractions	from	liver	

To	obtain	mitochondria-enriched	preparations	from	liver	for	proteomic	analysis,	3	

individual	20-22-week-old	female	mice	of	each	genotype,	all	on	the	Skh-1	hairless	

genetic	background,	were	used.	The	animals	were	euthanized	by	cervical	dislocation,	

followed	by	decapitation	and	the	blood	was	drained	for	20	sec.	All	subsequent	steps	

were	performed	on	ice	using	pre-chilled	solutions	and	instruments.	Large	bore	

pipette	tips	were	used	(made	by	cutting	2-3	mm	off	the	standard	tip	end).	Excised	

fresh	whole	livers	were	rinsed	in	100	ml	of	ice-cold	PBS	and	then	in	50	ml	of	ice-cold	

Mitochondrial	Isolation	Buffer	(MIB,	250	mM	sucrose,	1mM	EGTA,	20	mM	Tris-Cl	pH	

7.4),	transferred	into	a	fresh	beaker	with	15	ml	MIB	on	ice,	chopped	with	scissors	

and	then	homogenised	using	Dounce	homogeniser	for	5	min	on	ice.	Homogenates	

were	clarified	by	centrifugation	at	400	x	g	for	6	min	(Sorvall	T21,	SL50T),	and	the	

resultant	supernatants	were	transferred	into	fresh	tubes	and	subjected	to	

centrifugation,	first	at	1,200	x	g	for	6	min,	followed	by	8,000	x	g	for	10	min.	The	

resulting	pellets	were	gently	re-suspended	in	25	ml	MIB,	transferred	into	fresh	tubes	

and	subjected	to	centrifugation	at	8,000	x	g	for	12	min.	The	supernatants	were	

discarded	and	pellets	washed	twice	by	gently	swirling	the	tube	walls	with	25	ml	of	

MIB.	The	pellets	were	then	carefully	re-suspended	in	1	ml	MIB,	frozen	in	aliquots	in	

liquid	nitrogen,	and	stored	at	-80°C	until	further	use.	Small	aliquots	of	fractions	from	

all	purification	steps	were	taken	and	analysed	by	immunoblotting	for	Vdac1,	Lamin	A	

and	Actin	B	as	quality	control.			

	

Preparation	of	mitochondrial	proteins	for	tryptic	digest	

Mitochondrial-enriched	fractions	were	thawed	on	ice	and	diluted	1:1	with	MIB	

containing	1x	Protease	Inhibitors	Cocktail	(Roche).	LDS	loading	buffer	(4x,	Thermo)	

and	Sample	Reducing	Agent	(Thermo)	were	added	at	1:4	and	1:10	ratios,	

respectively,	and	the	samples	were	incubated	at	95°C	for	5	min	and	sonicated	for	25	

sec	at	25%	amplitude.	The	insoluble	material	was	removed	by	centrifugation	for	10	

min	at	16,000	x	g,	the	supernatant	was	transferred	to	a	fresh	tube.	The	protein	



concentration	was	determined	by	the	BCA	assay	(Thermo),	and	adjusted	to	the	same	

protein	concentration	in	all	samples	with	MIB	containing	LDS	and	sample	reducing	

agent.	Proteins	(24	μg)	per	lane	were	resolved	on	10%	Novex	Bis-Tris	NuPAGE	gel,	

which	was	then	fixed	for	30	min	in	50%	v/v	MeOH,	40%	v/v	Acetic	acid,	stained	with	

Coomassie	R	stain	(0.25%	w/v	Coomassie	R,	50%	v/v	MeOH,	40%	v/v	Acetic	acid)	for	

20	min,	and	de-stained	for	3	hours	with	3-4	changes	of	the	de-staining	solution	(5%	

v/v	MeOH,	7.5%	v/v	Acetic	acid),	and	then	in	deionised	water	for	2	hours,	with	

gentle	agitation	at	room	temperature.	

	

Organoids	

Organoids	were	generated	from	isolated	intestinal	crypts	as	described	(Carroll	et	al.,	

2017;	Sato	et	al.,	2009).	Mice	were	euthanized,	small	intestine	was	collected,	and	

flushed	with	ice-cold	PBS.	The	small	intestine	was	cut	open,	and	the	villi	were	

removed	with	a	coverslip.	After	washing	with	ice-cold	PBS,	the	intestine	was	

incubated	with	3	mM	EDTA	in	PBS	for	20	min	on	a	rocker	in	a	cold	room.	Crypts	were	

obtained	by	mechanical	shaking,	followed	by	centrifugation	at	4°C	for	3	min	at	76	x	g	

and	3	washes	with	PBS	to	remove	single	cells	and	microorganisms.	The	pellet	was	

washed	with	cold	Advanced	DMEM/F12	(ADF)	and	resuspended	in	3	ml	pre-warmed	

TrypLE	Express	at	37°C	for	5	min	to	break	crypts	into	individual	cells.		Once	crypts	

were	broken	up,	7	ml	ADF+100	µl	of	Pen/Strep	was	added.	The	suspension	was	

passed	through	a	40-µm	cell	strainer	(BD	Biosciences)	to	filter	out	any	large	

aggregates	of	cells.	Single	cells	were	then	collected	by	centrifugation	at	1349	x	g	for	

3	min.	The	pellet	was	resuspended	in	a	small	volume	of	the	remaining	supernatant,	

mixed	with	phenol-free	Matrigel	(BD	Biosciences)	and	seeded	into	a	24-well	plate.	

The	plate	was	placed	into	a	37°C	incubator	to	solidify	the	Matrigel,	following	which	

0.5	ml	of	crypt	medium	was	added	to	each	well.	The	crypt	medium	had	the	following	

composition:	advanced	DMEM/F12	supplemented	with	10	mM	HEPES,	20	mM	

Glutamax-1,	N2	supplement,	B27	supplement,	penicillin-streptomycin,	TrypLE	

Express	(all	from	Invitrogen),	N-acetylcysteine	(Sigma),	growth	factors	(EGF,	50	

ng/ml,	Invitrogen;	Noggin,	100	ng/ml,	Peprotech),	and	R-Spondin	conditioned	

medium	(1:4).	During	the	first	48	h,	3	µM	Chiron99021	and	1	mM	valproic	acid	(both	

from	Sigma)	and	10	µM	Y27632	(Cambridge	Bioscience)	were	also	added.	The	



resulting	organoid	cultures	were	passaged	by	washing	with	cold	ADF	medium	

followed	by	mechanical	breaking	of	the	Matrigel	and	organoids	using	a	pipette.	After	

a	further	wash,	the	organoids	were	mixed	with	100	µl	of	fresh	Matrigel	and	grown	

on	24-well	plates	in	5%	CO2	at	37°C.	For	gene	expression	analysis,	RNA	was	extracted	

from	organoids	growing	in	3	individual	wells;	these	organoids	originated	from	one	

animal	of	each	genotype.		

	

To	obtain	mitochondria-enriched	preparations	from	organoids	for	proteomic	

analysis,	cultured	organoids	from	3	individual	7-10	week-old	animals	of	each	

genotype,	all	on	the	C57BL/6	genetic	background,	were	used.	The	organoids	were	

harvested	with	CorningTM	Cell	Recovery	Solution	(Fisher	Scientific)	following	the	

manufacturer's	instructions.	Mitochondria-enriched	fractions	were	prepared	from	

WT,	N0	and	KD	C57/BL6	mice	(n=3)	as	described	(Frezza	et	al.,	2007).	Briefly,	

organoid	pellets	were	reuspended	with	ice-cold	mitochondria	isolation	buffer	(10	

mM	Tris/MOPS,	1	mM	EGTA/Tris,	200	mM	sucrose,	pH	7.4)	and	homogenized	with	

glass-Teflon	potter	homogenizer	on	ice.	The	homogenate	was	subjected	to	

centrifugation	at	600	×	g	for	10	min	at	4°C	to	remove	nuclei.	The	supernatant	was	

then	subjected	to	centrifugation	at	7,000	×	g	for	20	min	at	4°C	to	pellet	the	

mitochondrial	fraction.	The	pellet	was	washed	once	with	ice-cold	mitochondria	

isolation	buffer,	mitochondria	were	resupended	in	the	same	buffer,	and	protein	

concentrations	were	determined	by	the	BCA	assay	(Thermo).	The	resuspended	

mitochondria-enriched	fractions	were	mixed	with	NuPAGE	LDS	Sample	Buffer	

(Thermo)	and	heated	at	70°C	for	10	min.	NuPAGE™	Sample	Reducing	Agent	

(Thermo)	was	added	into	the	samples,	and	proteins	(14	µg)	were	resolved	on	10%	

SDS-PAGE	gel	(with	NuPAGE	–	MOPS	buffer,	Thermo).		

	

Cells	

Primary	mouse	embryonic	fibroblast	(MEF)	cells	were	prepared	from	wild-type,	Nrf2-

knockout,	and	Keap1-knockdown	Skh-1	hairless	mice	(Knatko	et	al.,	2015).	MEF	cells	

were	cultured	in	plastic	dishes	coated	for	30	min	with	0.1%	(w/v)	gelatin	before	use	

and	grown	in	Iscove’s	modified	Dulbecco's	medium	(with	L-glutamine)	(IMDM)	

supplemented	with	human	recombinant	EGF	(10	ng/mL),	1	×	



insulin/transferring/selenium,	and	10%	(v/v)	heat-inactivated	fetal	bovine	serum	

(FBS,	Thermo	Scientific).	Isogenic	human	colorectal	cancer	DLD1	cell	lines	with	either	

Nrf2-knockout	(Nrf2-KO)	or	Nrf2-gain-of-function	(Nrf2-GoF)	mutations	and	Nrf2-KO	

lung	cancer	A549	cells	were	generated	using	CRISPR/Cas9	genome	editing	as	

described	(Torrente	et	al.,	2017)	and	confirmed	by	sequencing.	DLD1,	A549	and	

human	liver	cancer	HepG2	cells	were	grown	in	Dulbecco's	Modified	Eagle	Medium	

(DMEM,	Gibco,	Thermo	Scientific)	that	contains	L-glutamine,	sodium	pyruvate,	and	

high	D-glucose	content	(4.5 g/L)	supplemented	with	10%	(v/v)	heat-inactivated	FBS.	

The	human	colorectal	cancer	cell	line	Caco2	was	cultured	in	DMEM	supplemented	

with	10%	(v/v)	heat-inactivated	FBS	and	1%	MEM	Non-essential	Amino	Acid	Solution	

(Sigma).	The	human	normal	lung	fibroblast	cell	line	IMR90	was	grown	in	DMEM	

supplemented	with	20%	(v/v)	heat-inactivated	FBS	and	2mM	L-Glutamine	(Gibco,	

Thermo	Scientific).	All	cell	cultures	were	maintained	in	5%	CO2	at	37°C	and	were	

routinely	tested	to	ensure	that	they	were	mycoplasma-free.	

	

Small	interfering	RNA	(siRNA)	transfection	

Caco2	and	HepG2	cells	were	transfected	with	20	nM	ON-TARGET	plus	Smart	Pool	

siRNA	against	human	NFE2L2	(L-003755-00-0005,	Horizon	Discovery)	or	ON-TARGET	

plus	Non-targeting	Control	Pool	(D-001810-10-50,	Horizon	Discovery)	using	

Lipofectamine®	RNAiMAX	(Thermo	Scientific)	following	manufacture’s	instruction.	In	

brief,	siRNA	targeting	NFE2L2/non-targeting	control	and	Lipofectamine®	RNAiMAX	

were	mixed	in	Opti-MEM	(Gibco,	Thermo	Scientific)	and	incubated	for	20	min	at	

room	temperature.	At	the	same	time,	cells	were	trypsinized	as	normal	and	diluted	to	

1	x	105	cells	per	ml	of	medium.	500	µl	of	the	RNAiMAX/siRNA/Opti-MEM	was	

aliquoted	into	each	well	of	a	6-well	plate,	to	which	2	ml	of	the	diluted	cell	

suspension	was	added,	and	gently	mixed.	Cells	were	harvested	at	2,3	and	4	days	

after	transfection	for	further	analysis.	

	

Real-time	quantitative	PCR	

Total	RNA	was	extracted	from	cultured	cells,	organoids	and	mouse	liver	and	colon	

using	RNeasy	Kit	(Qiagen	Ltd.).	Omniscript	RT	Kit	(Qiagen	Ltd.)	was	then	used	to	

reverse-transcribe	500	ng	of	total	RNA	into	cDNA.	Real-time	PCR	was	carried	out	on	



Applied	Biosystems	QuantStudio™	5	Real-Time	PCR	System.	The	TaqMan	data	for	the	

mRNA	species	were	normalized	using	mouse	ribosomal	protein	lateral	stalk	subunit	

P0	(Rplp0),	actin-beta,	and	18S	rRNA	as	internal	controls.	For	human	samples,	

human	hypoxanthine	phosphoribosyltransferase	1	(Hprt1)	was	used	as	an	internal	

control.	The	TaqManTM	Gene	Expression	Assay	IDs	(Thermo)	used	are	listed	below.	

	
Gene	Name		 Assay	ID	
18S	 Hs99999901_s1	
Acaca	(mouse)	 Mm01304257_m1	
Acadl	(mouse)	 Mm00599660_m1	
Acadm	(mouse)	 Mm01323360_g1	
Acads	(mouse)	 Mm00431617_m1	
Acadvl	(mouse)	 Mm00444293_m1	
Acly	(mouse)	 Mm01302282_m1	
Acox2	(mouse)	 Mm00446408_m1	
Acss2	(mouse)	 Mm00480101_m1	
Actb	(mouse)	 Mm00607939_s1	
Cd36	(mouse)	 Mm00432403_m1	
Ces1f	(mouse)	 Mm00523518_m1	
Ces1g	(mouse)	 Mm00491334_m1	
Cpt1a	(mouse)	 Mm01231183_m1	
Elovl1	(mouse)	 Mm01188316_g1	
Elovl3	(mouse)	 Mm00468164_m1	
Elovl6	(mouse)	 Mm00851223_s1	
Fasn	(mouse)	 Mm00662319_m1	
Gclc	(mouse)	 Mm00802655_m1	
Gstp1	(mouse)	 Mm04213618_gH	
Nqo1	(mouse)	 Mm01253561_m1	
Rplp0	(mouse)	 Mm00725448_s1	
Scd1	(mouse)	 Mm00772290_m1	
Scd2	(mouse)	 Mm01208542_m1	
Slc25a20	(mouse)	 Mm00451571_m1	
ACOX2	(human)	 Hs00185873_m1	
AKR1B10	(human)	 Hs00252524_m1	
CES1	(human)	 Hs00275607_m1	
GCLC	(human)	 Hs00155249_m1	
HPRT1	(human)	 Hs02800695_m1	
NFE2L2	(human)	 Hs00975961_g1	
NQO1	(human)	 Hs00168547_m1	
	

Immunoblotting	

Frozen	tissues	(liver	and	colon)	were	pulverised	under	liquid	nitrogen	using	a	mortar	

and	pestle.	Colon	tissue	powder	(15	mg)	was	homogenized	in	10	volumes	of	ice-cold	

RIPA	buffer	(50	mM	Tris-HCl,	pH	7.5,	150	mM	NaCl,	1%	NP-40,	0.1%	SDS,	1%	sodium	



deoxycholate),	supplemented	with	EDTA-free	protease	inhibitors	cocktail	(Roche)	on	

a	rotator	wheel	for	1	hour	at	4°C.	Liver	tissue	powder	(15	mg)	was	homogenized	for	

20	sec	in	10	volumes	of	ice-cold	assay	buffer	from	the	PicoProbe	acetyl-CoA	assay	kit	

(Abcam,	ab87546)	supplemented	with	EDTA-free	protease	inhibitors	cocktail	(Roche)	

using	rotor-stator	homogeniser	(Physcotron	NS310-E3,	Microtech,	Japan).	The	

insoluble	material	was	removed	by	centrifugation	for	10	min	at	16,000	x	g	at	4°C.	An	

aliquot	of	the	supernatant	was	taken	for	determination	of	protein	concentration	by	

the	bicinchoninic	acid	(BCA)	assay	(Thermo).	To	the	remaining	supernatant,	4	x	LDS	

loading	buffer	(Thermo)	was	added	to	achieve	a	final	1	x	concentration,	and	the	

protein	concentration	was	adjusted	using	LDS	in	RIPA	buffer	to	the	same	protein	

concentration	in	all	samples.	Sample	Reducing	Agent	(Thermo)	was	added,	and	the	

samples	were	incubated	at	70°C	for	10	min	prior	to	electrophoresis.	

	

Cells	were	washed	once	with	PBS	before	lysing	in	SDS	Laemmli	loading	buffer	(62.5	

mM	Tris-HCl,	pH	6.8,	2%	SDS,	10%	glycerol,	0.02%	Bromophenol	Blue);	the	volume	of	

lysis	buffer	was	between	100-150	μl	depending	on	the	cell	confluence.	Lysates	were	

then	transferred	into	Eppendorf	tubes,	boiled	for	5	min,	sonicated	for	20	sec	at	20%	

amplitude	using	Vibra-Cell	ultrasonic	processor	(Sonic).	Protein	concentrations	were	

determined	by	the	bicinchoninic	acid	(BCA)	assay	(Thermo).	A	solution	of	

bromophenol	blue	(5%,	v/v)	was	then	added	to	each	sample,	and	the	volume	was	

adjusted	to	achieve	the	same	protein	concentration	in	all	samples.	Proteins	were	

resolved	by	electrophoresis	using	pre-cast	4-12%	gradient	NuPage™	gels	(Life	

Technologies)	or	hand-cast,	8%	Tris-Glycine	gels,	and	transferred	onto	nitrocellulose	

membranes	(Amersham	Biosciences).	Membranes	were	blocked	in	either	5%	non-fat	

milk	or	3%	BSA	for	45	min,	on	a	rocker	(60-70	rpm),	at	room	temperature,	and	then	

incubated	with	the	primary	antibodies	at	4°C	on	a	rocker	overnight.	

	

Determination	of	autophagic	flux	

Parental	A549	or	Nrf2-KO	A549	cells	were	seeded	at	a	density	of	3	x	105	cells	per	well	

of	a	6-well	plate.	After	20-24	h,	cells	were	treated	with	either	vehicle	(0.1%	DMSO)	

or	10	nM	Bafilomycin	A	(BAF)	for	16	h.	Following	the	treatment,	the	cells	were	

washed	thrice	with	PBS	and	lysed	in	150	μL	of	SDS	lysis	buffer	[50	mM	Tris-HCl	pH	



6.8,	2%	SDS	(w/v),	10%	Glycerol	(v/v)	and	0.005%	Bromophenol	Blue	(w/v)].	The	

lysates	were	subjected	to	sonication	for	20	sec	at	20	%	amplitude.	Protein	

concentrations	were	determined	using	the	BCA	assay	(Thermo),	and	equal	amounts	

of	protein	(10-20	μg)	from	each	sample	was	loaded	into	each	well	of	a	15%	Tris-

Glycine	SDS	polyacrylamide	gel	and	subjected	to	electrophoresis.	Once	the	proteins	

were	resolved	on	the	gel,	they	were	transferred	onto	0.45-μm	premium	

nitrocellulose	membranes	(Amersham	Biosciences)	using	wet	electroblotting	

transfer	system	(Bio-Rad).	Subsequently,	the	membranes	were	blocked	in	PBST-milk	

[5%	(w/v)	non-fat	milk	dissolved	in	PBS-0.01	%	Tween	(v/v)]	for	1	h	at	room	

temperature	(RT).	Following	blocking,	the	membranes	were	incubated	overnight	at	

4oC	with	either	the	LC3B	or	GAPDH	antibody	diluted	in	PBST-milk.	Next,	the	

membranes	were	washed	thrice	for	30	min	with	PBS-0.01%	Tween	and	incubated	

with	the	respective	fluorescently-labeled	IRDye®	secondary	antibodies	1:20,000	(LI-

COR)	for	1	hour	at	room	temperature,	and	were	protected	from	light.	After	

incubation	with	the	secondary	antibodies,	the	immunoblots	were	washed	thrice	for	

30	min	with	PBS-0.01%	Tween	before	scanning	using	the	Odyssey	CLx	Near-Infrared	

Fluorescence	Imaging	System	(LI-COR).	The	images	obtained	were	analysed	in	the	

Image	Studio	software	(Version	4.0.21).		

	

Determination	of	triglycerides	and	acetyl-CoA	

Triglycerides	were	determined	using	Trigyceride	Assay	Kit	(Abcam,	ab65336)	

according	to	the	manufacturer’s	instructions	for	the	colorimetric	detection	method.	

Briefly,	frozen	tissues	were	pulverised	under	liquid	nitrogen	followed	by	extraction	in	

5%	NP-40	(10	µl	per	mg	of	tissue).	Two	µl	of	extract	was	used	per	assay	well,	in	

triplicates.	

	

Acetyl-CoA	was	measured	using	PicoProbe	Acetyl	CoA	Assay	kit	(Abcam,	ab87546)	

according	to	the	manufacturer’s	instructions	for	tissue	samples.	In	brief,	frozen	

tissues	were	pulverised	under	liquid	nitrogen,	homogenised	in	1M	ice-cold	HClO4	

(2 µl	per	1	mg	tissue),	the	precipitants	were	removed	by	centrifugation	for	10	min	at	

10,000	x	g	at	4°C,	and	the	supernatants	neutralized	with	3M	KHCO3.	10	µl	of	clear	

supernatants	were	used	per	assay	reaction.		



	

Proteomics	

For	both	proteomic	experiments,	proteins	from	mitochondrial	preparations	of	three	

types,	namely	WT	control	(WT),	Nrf2	knockout	(Nrf2-KO),	and	Keap1	knockdown	

(Keap1-KD),	were	fractionated	by	SDS-PAGE	and	excised	into	two	gel	sections	per	

lane.	Peptides	were	extracted	by	tryptic	digestion	(Shevchenko	et	al.,	2006),	

including	alkylation	with	iodoacetamide.	Peptide	samples	were	analyzed	by	LC-

MS/MS	on	a	Q	Exactive	mass	spectrometer	(Thermo	Scientific)	coupled	to	an	EASY-

nLC	1000	liquid	chromatography	system	via	an	EASY-Spray	ion	source	(Thermo	

Scientific)	running	a	75	μm	x	500	mm	EASY-Spray	column	at	45°C.	Data	were	

acquired	in	the	data-dependent	mode.	Full	scan	spectra	(m/z	300–1800)	were	

acquired	with	resolution	R	=	70,000	at	m/z	200	(after	accumulation	to	a	target	value	

of	1,000,000	with	maximum	injection	time	of	20	ms).	The	10	most	intense	ions	were	

fragmented	by	HCD	and	measured	with	a	resolution	of	R	=	17,500	at	m/z	200	(target	

value	of	500,000,	maximum	injection	time	of	60	ms)	and	intensity	threshold	of	

2.1x104.	Peptide	match	was	set	to	‘preferred’	and	a	40	second	dynamic	exclusion	list	

was	applied.	For	each	experiment	two	elution	gradients	were	used:	Liver	–	60	min	

and	240	min,	Intestinal	organoids	–	140	min	and	180	min.	

	

Raw	MS	data	files	were	processed	using	MaxQuant	(v	1.6.1.0)	with	the	built-in	

Andromeda	peptide	search	engine	(version	1.3.0.5)	(Cox	and	Mann,	2008;	Cox	et	al.,	

2011).	The	mouse	uniprot	protome	was	searched	(downloaded	October	2019	–	

55153	entries).	Enzyme	specificity	was	set	to	trypsin-P.	Cysteine	

carbamidomethylation	was	selected	as	a	fixed	modification	with	methionine	

oxidation	and	protein	N-terminal	acetylation	as	variable	modifications.	Initial	

maximum	allowed	mass	deviation	was	set	to	20	parts	per	million	(ppm)	for	peptide	

masses	and	0.5	Da	for	MS/MS	peaks.	The	minimum	peptide	length	was	set	to	7	

amino	acids	and	maximum	size	4600	Da.	A	maximum	of	two	missed	cleavages	were	

considered.	A	false	discovery	rate	(FDR)	of	1%	was	required	at	both	the	protein	and	

peptide	levels.	Label-free	quantification	was	selected	and	the	‘match	between	runs’	

option	was	applied	with	a	time	window	of	two	minutes.		

	



The	unfiltered	proteinGroups.txt	file	(Data	S1,	Quantitative	proteomics	data)	

contained	6259	protein	group	entries,	which	after	filtering	for	decoy	proteins,	those	

identified	only	by	modified	peptide(s),	putative	contaminants	and	those	without	a	

complete	set	of	three	LFQ	values	in	at	least	one	set	of	triplicates	in	at	least	one	MS	

run,	left	3752	proteins.	Prior	to	further	statistical	analysis,	LFQ	values	were	further	

manually	normalized	within	each	MS	run	by	median	ratio	of	lane	protein	

intensity/average	of	all	lanes	protein	intensity	for	all	common	proteins	for	each	slice	

(upper	or	lower).	Once	normalized,	a	single	normalized	LFQ	value	for	each	replicate	

in	each	MS	run	was	calculated	by	the	sum	of	the	two	slices	normalized	LFQ	intensity	

for	each	peptide.	This	was	necessary	as	output	LFQ	values	were	apparently	not	

appropriately	normalized	when	replicates	were	compared.	Statistical	analyses	were	

performed	using	Perseus	(v	1.6.1.1)	(Tyanova	et	al.,	2016).	Data	were	separated	into	

the	four	MS	runs	(two	for	liver	and	two	for	organoids	samples).	Zero	values	were	

replaced	using	Perseus	default	settings,	and	comparisons	among	cell	types	was	

performed	using	a	two-tailed	Student’s	t-test	with	cutoffs	set	at	10%	FDR	with	an	S0	

value	of	0.1.	Data	for	all	four	MS	runs	were	recombined	into	a	single	Excel	file	(Data	

S1,	Quantitative	proteomics	data;	“Accepted”	sheet).	The	mass	spectrometry	

proteomics	data	have	been	deposited	to	the	ProteomeXchange	Consortium	via	the	

PRIDE	(Perez-Riverol	et	al.,	2019)	partner	repository	with	the	dataset	identifier	

PXD021639.	

	

STRING	functional	enrichment	analyses	were	performed	as	follows.	For	both	liver	

(1590	entries)	and	intestinal	organoid	(3335	entries)	experiments,	gene	sets	and	

quantitative	data	were	uploaded	to	STRING	(December	2019)	using	the	‘Proteins	

with	values/ranks”	tool	(Szklarczyk	et	al.,	2019).	This	looks	for	functional	

enrichments	among	proteins	deviating	away	from	log2	ratio=0,	and	therefore	cellular	

functions	potentially	regulated	by	the	experimental	conditions	(see	Data	S2,	STRING	

functional	group	enrichment	analysis	for	a	full	list	of	enrichments).	Networks	of	

proteins	with	high	enrichment	scores	(extreme	ratios),	and	low	FDR	values	(high	

statistical	significance)	were	selected	for	presentation.	

	

	



	

Metabolomics	

Metabolites	were	extracted	using	the	methanol/chloroform/water	(2:2:1;	v/v)	

method	described	previously	(Wang	et	al.,	2015;	West	et	al.,	2016).	Briefly,	50	mg	of	

wet	weight	tissue	was	mixed	with	600	µl	of	CH3OH/CHCl3	(2:1;	v/v),	and	the	samples	

were	homogenized	with	a	Tissuelyser	(Qiagen,	UK)	for	5	min	at	a	frequency	of	20/s	

and	sonicated	for	15	min.	Water	and	chloroform	(each	of	200	μl)	were	added	to	the	

samples	before	centrifugation	at	13,300	rpm	for	20	min.	The	resulting	aqueous	and	

organic	phases	were	separated	from	the	protein	pellets.	The	extraction	procedure	

was	repeated	on	the	remaining	protein	pellets.	Both	organic	and	aqueous	phases	

were	collected	and	evaporated	to	dryness.	The	dried	samples	were	stored	at	−80°C	

until	further	analysis.	

	

FAME	Analysis	

50	 μl	 of	 D-25	 tridecanoic	 acid	 (200	 μM	 in	 chloroform),	 650	 μl	 of	

chloroform/methanol	(1:1	v/v)	and	125	μl	BF3/methanol	(Sigma-Aldrich)	was	added	

to	100	μl	organic	extract	dissolved	in	chloroform/methanol	(1:1	v/v)	(a	quarter	of	the	

organic	material	extracted	for	each	sample).	The	samples	were	then	incubated	at	80	

ºC	 for	 90	min.	 500	μl	H2O	and	1	ml	 hexane	were	 added	and	each	 vial	mixed.	 The	

organic	layer	was	evaporated	to	dryness	before	reconstitution	in	200	μl	hexane	for	

analysis.	 Using	 a	 Trace	 GC	 Ultra	 coupled	 to	 a	 Trace	 DSQ	 II	 mass	 spectrometer	

(Thermo	 Scientific,	 Hemel	 Hempstead,	 UK),	 4	 μl	 of	 the	 derivatised	 organic	

metabolites	were	injected	onto	a	TR-fatty	acid	methyl	ester	(FAME)	stationary	phase	

column	 (Thermo	 Electron;	 30	 m	 ×	 0.25	 mm	 ID	 ×	 0.25	 μm;	 70%	 cyanopropyl	

polysilphenylene-siloxane)	 with	 a	 split	 ratio	 of	 20.	 The	 injector	 temperature	 was	

230°C	and	the	helium	carrier	gas	flow	rate	was	1.2	ml/min.	The	column	temperature	

was	60°C	for	2	min,	increased	by	15°C/min	to	150°C,	and	then	increased	at	a	rate	of	

4°C/min	to	230°C	(transfer	line	=	240°C;	ion	source	=	250°C,	EI	=	70	eV).	The	detector	

was	turned	on	after	240	s,	and	full-scan	spectra	were	collected	using	3	scans/s	over	a	

range	 of	 50–650	 m/z.	 Peaks	 were	 assigned	 using	 the	 Food	 Industry	 FAME	 Mix	

(Restek	6098).	

	



	

LC-MS	analysis	of	aqueous	metabolites	

Half	of	the	extracted	aqueous	samples	were	reconstituted		in	7:3	acetonitrile:	0.1	M	

aqueous	ammonium	carbonate	containing	2	μM	[13C1015N5]	adenosine	

monophosphate,	[13C1015N5]	adenosine	triphosphate,	10	μM	[13C4]	succinic	acid	and	

10	μM	[13C515N5]	glutamic	acid	(all	from	Sigma	Aldrich	except	the	glutamic	acid	from	

Cambridge	Isotope	Laboratories)	as	internal	standards.	The	samples	were	vortexed	

then	sonicated	for	15	min	followed	by	centrifugation	at	21,000	x	g	to	pellet	any	

remaining	undissolved	material.	They	were	analyzed	on	a	Quantiva	triple	stage	

quadrupole	mass	spectrometer	coupled	to	a	Vanquish	Horizon	(all	analytical	

instrument	combinations	supplied	by	Thermo	Fisher	Scientific),	using	a	bridged	

ethylene	hybrid	(BEH)	amide	hydrophilic	interaction	liquid	chromatography	(HILIC)	

column,	as	previously	described	(Cader	et	al.,	2020).	The	strong	mobile	phase	(A)	

was	100	mM	ammonium	carbonate,	the	weak	mobile	phase	was	acetonitrile	(B)	with	

water:acetonitrile	(1:1)	being	used	for	the	needle	wash.	The	LC	column	used	was	the	

BEH	amide	column	(150	×	2.1	mm,	1.7	μm,	Waters).	The	following	linear	gradient	

was	used:	20%	A	in	acetonitrile	for	1.5	min	followed	by	an	increase	to	60%	A	over	

2.5	min	with	a	further	1	min	at	60%	A	after	which	the	column	was	re-equilibrated	for	

1.9	min.	After	each	chromatographic	run	the	column	was	washed	with	30	column	

volumes	of	water:acetonitrile	(6:4)	followed	by	a	further	10	column	volumes	of	

acetonitrile:water	(95:5)	for	storage.	The	total	run	time	was	7	min,	the	flow	rate	was	

0.6	mL/min	and	the	injection	volume	was	5	μL.	In	order	to	resolve	pentose	

phosphates	for	the	identification	of	ribose-1-phosphate	a	shallower	gradient	was	

employed:	30%	A	in	acetonitrile	for	2.0	minutes	followed	by	an	increase	to	50%	A	

over	3.0	minutes	with	re-equilibration	for	1.9	minutes.	

	

GC-MS	and	LC-MS	data	processing	

GC–MS	 and	 LC-MS	 chromatograms	 were	 analysed	 using	 Xcalibur,	 version	 2.0	

(Thermo	Fisher),	integrating	each	peak	individually.	GC-MS	Peaks	were	normalised	to	

total	area,	while	LC-MS	peaks	were	normalised	to	the	internal	standard.	

	

Multivariate	analysis	of	metabolite	profiles	



The	 set	 of	 metabolic	 profiles	 obtained	 were	 analysed	 by	 multivariate	 analysis.	

Datasets	were	 imported	 into	SIMCA-P	15.0	 (Sartorius	AG,	Gottingen,	Germany)	 for	

processing	using	PCA	and	PLS-DA	(a	regression	extension	of	PCA	used	for	supervised	

classification).	GC-MS	data	were	scaled	to	unit	variance	by	dividing	each	variable	by	

1/(Sk).	

	

Univariate	statistical	analysis	

Univariate	statistical	analyses	were	performed	using	Excel	(Microsoft).	Values	are	

expressed	as	mean	±	S.D.	and	the	significance	level	was	set	at	p<0.05.	For	

comparisons	of	three	groups,	one-way	ANOVA	was	used	with	a	Tukey	test	with	

Bonferroni	correction	as	a	post-test.*	0.05>	p	<	0.01;	**	0.01>	p	<	0.001.	
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