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A B S T R A C T

Self-related processes define assorted self-relevant or social-cognitive functions that allow us to gather insight
and to draw inferences related to our own mental conditions. Self-related processes are mediated by the default
mode network (DMN), which, critically, shows altered functionality in individuals with posttraumatic stress
disorder (PTSD). In PTSD, the midbrain periaqueductal gray (PAG) demonstrates stronger functional con-
nectivity with the DMN [i.e., precuneus (PCN), medial prefrontal cortex (mPFC)] as compared to healthy in-
dividuals during subliminal, trauma-related stimulus processing. Here, we analyzed the directed functional
connectivity between the PAG and the PCN, as well as between the PAG and the mPFC to more explicitly
characterize the functional connectivity we have observed previously on the corresponding sample and para-
digm. We evaluated three models varying with regard to context-dependent modulatory directions (i.e., bi-
directional, bottom-up, top-down) among individuals with PTSD (n = 26) and healthy participants (n = 20),
where Bayesian model selection was used to identify the most optimal model for each group. We then compared
the effective connectivity strength for each parameter across the models and between our groups using Bayesian
model averaging. Bi-directional models were found to be favoured across both groups. In PTSD, we revealed the
PAG to show stronger excitatory effective connectivity to the PCN, as well as to the mPFC as compared to
controls. In PTSD, we further demonstrated that PAG-mediated effective connectivity to the PCN, as well as to
the mPFC were modulated more strongly during subliminal, trauma-related stimulus conditions as compared to
controls. Clinical disturbances towards self-related processes are reported widely by participants with PTSD
during trauma-related stimulus processing, where altered functional connectivity directed by the PAG to the
DMN may elucidate experiential links between self- and trauma-related processing in traumatized individuals.
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1. Introduction

Traumatic experiences can have a severe affect on the sense of self,
where traumatized individuals remain often tortured by thoughts that
echo strongly negative core beliefs about themselves, or can experience
somatically-based alterations in self-identity. Clinical disturbances to-
wards self-related processes are evidenced by statements, like, “I do not
know myself anymore,” “I will never be able to feel normal emotions
again,” or, “I feel as though my body does not belong to me” (Foa et al.,
1999; Bernstein and Putnam, 1986; Dell, 2006). Statements such as
these are recited often by individuals with posttraumatic stress disorder
(PTSD), which underscores the vulnerability the sense of self has in
regard to trauma (for a review, see Frewen et al., 2020). In PTSD, in-
dividuals who report the greatest symptom severity are more likely to
reveal an apparent link between self- and trauma-related processing
(Berntsen and Rubin, 2007). Related, when participants with PTSD are
asked to characterize a self-defining memory, they state more often a
trauma-related memory as compared to trauma-exposed healthy in-
dividuals (Sutherland and Bryant, 2005). Clinical disturbances in self-
related processes have been described robustly in participants with
PTSD (for a review, see Frewen and Lanius, 2006; Lanius, Bluhm, and
Frewen, 2011), where these disturbances are thought to arise from in-
trinsic brain networks (Conway and Pleydell-Pearce, 2000; Qin and
Northoff, 2011).

Self-related processes are mediated predominantly by the default
mode network (DMN), which refers to a large-scale, intrinsic brain
network distributed across the cortical mid-line and comprised pri-
marily by the posterior cingulate cortex, the precuneus (PCN), as well
as the medial prefrontal cortex (mPFC) (Greicius et al., 2003; Spreng
et al., 2009; Qin and Northoff, 2011; for a review, see Raichle, 2015).
The DMN is recruited during rest principally, but also demonstrates
activity during internally-guided cognition, which includes auto-
biographical memory and self-referential processes (Greicius and
Menon, 2004; Fransson, 2005). Self-referential processes describe var-
ious self-relevant or social-cognitive functions that allow us to gather
insight and to draw inferences about the mental and the physical states
of ourselves and others (Greicius et al., 2003). In PTSD as compared to
healthy individuals, both the PCN and the mPFC demonstrate disrupted
functional connectivity with the DMN during rest (Bluhm et al., 2009;
DiGangi et al., 2016; Reuveni et al., 2016; Wu et al., 2011; Qin et al.,
2012; Akiki et al., 2018; for a review, see Wang et al., 2016; Koch et al.,
2016; Barredo et al., 2018; Akiki et al., 2017). Furthermore, reductions
in DMN functional connectivity are found to be related to greater
symptom severity in participants with PTSD (Bluhm et al., 2009;
Sripada et al., 2012; Qin et al., 2012; Shang et al., 2014; for a review,
see Kennis et al., 2016; Wang et al., 2016; Barredo et al., 2018).
Traumatized individuals who display the strongest symptom severity
are more likely to show the clinical disturbances in self-related pro-
cesses that were mentioned prior (Cloitre et al., 1997; Frewen et al.,
2017; Qin et al., 2012; Nicholson et al., 2020; for a review, see van der
Kolk et al., 2005; Frewen et al., 2008). In PTSD, clinical disturbances
towards self-related processes are observed both at rest, as well as
during trauma-related stimulus conditions (Lanius et al., 2011;
Sutherland and Bryant, 2005), where the latter may be mediated by the
DMN as well.

In PTSD, traumatized individuals describe clinically a link between
self- and trauma-related processing (Berntsen and Rubin, 2007), where
these links may be mediated by aberrant functional connectivity across
distributed neural systems. Here, Terpou et al. (2019a) have described
an interaction between the midbrain periaqueductal gray (PAG) and the
DMN in participants with PTSD during subliminal, trauma-related sti-
mulus conditions. The PAG refers to the gray matter located around the
cerebral aqueduct of the midbrain, which, when activated, can elicit
evolutionarily conserved defense responses that function to quell or to
escape an impending threat (e.g., fight, flight, faint; De Oca et al., 1998;
Brandão et al., 2008; Fenster et al., 2018; for a review, see Keay and

Bandler, 2014). Interestingly, the PAG reveals stronger activity in
participants with PTSD as compared to controls during subliminal,
trauma-related stimulus conditions (Terpou et al., 2019b; Rabellino
et al., 2016; Felmingham et al., 2008), where the PAG is thought to
mediate, in part, threat-evoked physiological changes (for a review, see
Kozlowska et al., 2015; Terpou et al., 2019c). In PTSD, Terpou et al.
(2019a) revealed increased functional connectivity between the PAG
and the PCN, as well as between the PAG and the mPFC during sub-
liminal, trauma-related stimulus conditions as compared to controls.
Trauma-related stimulus conditions were compared to neutral stimulus
conditions, where both conditions were presented subliminally in order
to prevent participants from exercising avoidance techniques. Avoid-
ance can reduce neurophysiological responses, but only during stimulus
conditions where participants are consciously aware of the content
presented. Stronger functional connectivity between the PAG and the
DMN wastaken as evidence linking both self- and trauma-related pro-
cessing under subliminal conditions in participants with PTSD, where
the proposed study now aims to characterize the directed functional
connectivity observed by Terpou et al. (2019a) across the same parti-
cipant sample and paradigm we analyzed previously.

These findings by Terpou et al. (2019a) are intriguing both in regard
to the unanticipated functional connectivity revealed between the PAG
and the DMN, as well as the context by which the findings were gen-
erated, namely – subliminal, trauma-related stimulus conditions.
However, we have yet to study the effective connectivity dynamics
between the PAG and the DMN across the corresponding sample, where
effective connectivity has the advantage to measure the directed func-
tional connectivity between two regions. Hence, we implemented dy-
namic causal modeling (DCM) to estimate the directionality across
network interactions between the PAG and the PCN, as well as between
the PAG and the mPFC in participants with PTSD and healthy controls
during subliminal, neutral and subliminal, trauma-related stimulus
conditions. Specifically, we sought to determine whether these stimulus
conditions modulate functional connectivity between the PAG and the
DMN predominantly via bi-directional, bottom-up, or top-down effec-
tive connectivity. Nicholson et al. (2017) have documented previously
greater bottom-up, PAG-mediated effective connectivity to the mPFC in
participants with PTSD who displayed a more traditionalsymptom
pattern as compared to participants with PTSD who displayed a dis-
sociative symptom pattern principally. Findings by Nicholson et al.
(2017) were observed during rest and generated on a subject sample
that did not overlap with the participant sample (or paradigm) char-
acterized in the present study. Accordingly, we hypothesized that the
participants with PTSD in the current sample would show stronger
condition-dependent modulations in effective connectivity in the
bottom-up direction, a pattern that would suggest the PAG is driving
the aberrant functional connectivity observed with the DMN. By con-
trast, we hypothesized that the healthy participants would demonstrate
greater condition-dependent modulations in effective connectivity bi-
directionally; however, we caution that healthy individuals did not
display strong functional connectivity between the PAG and the DMN in
Terpou et al. (2019a), and thus were not the primary focus to char-
acterize in the present study. Additionally, we sought to determine the
group-specific strengths in effective connectivity between the PAG and
the PCN, as well as between the PAG and the mPFC. Identification of
the effective connectivity strengths, as well as the excitatory and the
inhibitory characteristics of the network interactions, would indeed
afford a stronger understanding of the functional dynamics that may
mediate the intrinsic links between self- and trauma-related processing
in individuals with PTSD.

2. Methods

2.1. Participants

Our study was reviewed by the Health Sciences Research Ethics

B.A. Terpou, et al. NeuroImage: Clinical 27 (2020) 102345

2



Board of Western University and adhered to the standards set out by
Canada’s Tri-Council Policy in accordance with the Code of Ethics of the
World Medical Association (i.e., Declaration of Helsinki). Our sample
included 46 participants recruited by the London Health Services
Centre via referrals from family physicians, community clinics, mental
health professionals, and local advertisements. Twenty-six participants
met criteria for a primary PTSD diagnosis and the remaining twenty
participants were included as healthy control subjects. Written and
informed consent was received by all participants. Analyses discussed
in the present paper are novel; however, data generated on the present
sample have been analyzed in previous publications (Rabellino et al.,
2015, 2016, 2017; Terpou et al., 2019a,b). Scanning began on March
29, 2011 and concluded on November 12, 2013.

Exclusion criteria included incompatibilities with scanning condi-
tions, previous neurologic and development illness, comorbid schizo-
phrenia or bipolar disorder, alcohol or substance abuse, a history of
head trauma, or pregnancy during scan. Diagnoses were determined
using a Clinician Administered PTSD Scale (CAPS-IV (cut-off score >
50 for PTSD diagnosis); Blake et al., 1995) as well as the Structured
Clinical Interview for DSM-IV Axis-I disorders (SCID-I; First, 2015).
Healthy controls were permitted if they did not meet any current or
lifetime criteria for an Axis-I psychiatric disorder. Participants with
PTSD were medication free for at least six weeks prior to scanning. The
Childhood Trauma Questionnaire (CTQ; Bernstein et al., 2003) and the
Multiscale Dissociation Inventory (MDI; Briere et al., 2005) were ad-
ministered as well to characterize our clinical sample further. The State-
Trait Anxiety Inventory (STAI; Spielberger, 2010), the Responses to
Script Driven Imagery Questionnaire (RSDI; Hopper et al., 2007), and
the Clinician Administered Dissociative States Scale (CADSS; Bremner
et al., 1998) were administered after each scanning session to provide
information on subject symptom states for individuals with PTSD and
healthy individuals.

2.2. Experimental paradigm

Paradigm and stimulus presentation durations were based on other
previously published methods (Felmingham et al., 2008; Rabellino
et al., 2016; Williams et al., 2006). Stimuli had a subliminal and a su-
praliminal display over two consecutive sessions that were separated by
a two-minute rest period and were counterbalanced across subjects.
Whereas subliminal stimuli were presented for 16 ms and followed by a
backward mask, supraliminal stimuli were presented for 500 ms. Sti-
muli consisted of both threat (i.e., fearful faces and trauma-related
words) and neutral (i.e., neutral faces and neutral words) material,
presented in a pseudo-randomized block design. Word stimuli were
subject-specific, with trauma-related words generated in reference to a
trauma memory, or, in the case of controls, an aversive memory.
Neutral words were selected on the basis that they had not elicited a
strong positive or a strong negative reaction during a pre-scan exposure
to the words. Trauma-related and neutral words were matched for
syllable and for letter length. For a detailed description of the sub-
liminal-supraliminal threat paradigm, please see Supplemental
Information.

2.3. Data acquisition

Functional magnetic resonance imaging (fMRI) was conducted
using a 3.0 T whole-body MRI scanner (Siemens Biograph mMR,
Siemens Medical Solutions, Erlangen, Germany) with a 32-channel
phased-array head coil. T1-weighted anatomical images were collected
with 1 mm isotropic resolution (MP-RAGE, TR/TE/TI = 2300 ms/
2.98 ms/900 ms, FA 9°, FOV = 256 mm × 240 mm × 192 mm, ac-
celeration factor = 4, total acquisition time = 192 s). For blood-
oxygen-level dependent fMRI, transverse imaging slices covering the
whole-brain were prescribed parallel to the anterior commissure-pos-
terior commissure (AC-PC) line. Data were acquired using a gradient

echo planar imaging (EPI) sequence (single-shot, blipped) with an in-
terleaved slice acquisition order and tridimensional prospective acqui-
sition correction (3D PACE) and an isotropic resolution of 2 mm
[(FOV = 192 mm × 192 mm × 128 mm (94 × 94 matrix, 64 slices),
TR/TE = 3000 ms/20 ms, FA = 90° (FOV = Field of View,
TR = Repetition Time, TE = Echo Time, FA = Flip Angle)].

Preprocessing and statistical analyses were conducted on Statistical
Parametric Mapping (SPM12, Wellcome Trust Centre for
Neuroimaging, London, UK: http://www.fil.ion.ucl.ac.uk/sp) within
MATLAB 9.2 software (R2017a, Mathworks Inc., MA). Preprocessing
protocols for both whole-brain as well as the partial-brain space as
provided by the spatially-unbiased infratentorial template toolbox
(SUIT; Diedrichsen, 2006) are detailed further in the Supplemental
Information.

2.4. Dynamic causal modeling

DCM estimates the directionality of the functional dependencies
that exist across an underlying dynamical system (for a review, see
Friston et al., 2003). DCM allows for inferences to be made about the
architecture of distributed brain networks in terms of the effective
connectivity shown by the network as well as their condition-dependent
modulations (Kiebel et al., 2007). DCM is a model-driven Bayesian
approach, where network architectures of plausible models are speci-
fied a priori and are then evaluated on their ability to explain observed
neural responses with Bayesian model selection (BMS) (Stephan et al.,
2009). DCM also offers an ability to compare the strength of model
connectivity parameters using Bayesian model averaging (BMA)
(Friston et al., 2007; Stephan et al., 2010). Although group comparisons
can be conducted within either conventional statistical or Bayesian
frameworks, we implemented conventional statistics in the present
study.

2.4.1. First-level: Time series extraction
Coordinate locations of three brain regions that we have revealed

formerly to demonstrate group differences in functional connectivity
between participants with PTSD and healthy individuals during sub-
liminal, trauma-related (as compared to neutral) stimulus conditions
were selected (Terpou et al., 2019a): the PAG, the PCN, and the mPFC.
Notably, there are structural connections to facilitate, in part, inter-
nodal network dynamics between the PAG, the PCN, and the mPFC
(Linnman et al., 2012; Menant et al., 2016; Ezra et al., 2015). Whereas
time series of the PAG were extracted from subject-specific general
linear models (GLMs) computed in SUIT-space, time series of the PCN
and the mPFC were extracted from subject-specific GLMs created in
whole-brain space. Here, SUIT-space refers to the partial-brain space
implemented in the SUIT toolbox, which, through improved normal-
ization procedures, afforded a greater signal resolution and hence signal
extraction of the PAG across the included participants (Diedrichsen
et al., 2009).

First-level GLMs modeled the stimulus condition onsets and in-
cluded an artifact detection regressor and realignment parameters as
multiple regressors. Time series were extracted from a contrast that
modeled both subliminal, neutral and subliminal, trauma-related sti-
mulus conditions. Coordinates and sizes of the spheres for the time
series were as follows: PAG ([x: 0; y: −32; z: −11 (mm)]; sphere size:
6 mm), PCN ([x: 6; y: −52; z: 30 (mm)]; sphere size: 8 mm), and mPFC
([x: 0; y: 60; z: −2 (mm)]; sphere size: 8 mm). Extracted time series
were permitted to vary slightly from these coordinates and were in-
spected individually to assure that the relocated volumes-of-interest
remained in the proper anatomical location. Whereas a±2 mm var-
iation in each coordinate plane was allowed for the PAG, a± 3 mm
variation in each coordinate plane was allowed for the PCN and the
mPFC. Smaller sphere sizes and variations were used for the PAG to
account for the size of the structure and to limit the potential signal
interference of neighbouring midbrain structures. Each eigenvariate
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extracted from the PAG were examined to confirm that the signal
variation was explained mainly by the set volume-of-interest (> 75%
explained; see Supplemental Information).

2.4.2. First-level: Neural model specification
2.4.2.1. Modeling specifications. Subliminal, neutral and subliminal,
trauma-related stimulus onsets were imported from the GLMs into the
DCM framework. In line with relevant scanning parameters, slice
timing was set to 2 s. Bilinear, one-state model terms were selected,
where the models did not include stochastic effects or mean centre-
input. Each DCM modeled fMRI in the time domain, where we assessed
condition-specific, time-varying fluctuations in effective connectivity
due to our experimental context. We specified three models for every
participant (Fig. 1). Each model had a different modulatory direction,
which were used to parameterize changes in effective connectivity that
were generated by the stimulus conditions. Models included a bi-
directional, a bottom-up, and a top-down model.

2.4.2.2. Direct connections (C-matrix). C-matrices specify the direct
connections and were held constant across our models, where each
stimulus condition had a direct input into the network at the PAG. The
selection was based on the relationship between the PAG and the
superior colliculus, where the superior colliculus receives visual
information from the retina (Liddell et al., 2005; Tamietto and de
Gelder, 2010), discriminates between threat and non-threat stimuli
(Liddell et al., 2005), and innervates the PAG subsequently (Grofová
et al., 1978; Keay and Bandler, 2014). Taken together, stimulus
conditions are likely to have onset into the network at the PAG and
not at the level of the PCN or the mPFC.

2.4.2.3. Endogenous connections (A-matrix). Endogenous connections

were specified in the A-matrix and did not differ across the models or
across the stimulus conditions. Whereas endogenous connections
between the PAG and the PCN, as well as between the PAG and the
mPFC were modeled, endogenous connections between the PCN and
the mPFC were not modeled. We restricted the model space to address
specifically the key research question, which was to characterize the
directional connectivity between the PAG and the DMN (i.e., PCN,
mPFC) as a direct follow-up to the findings reported by Terpou et al.
(2019a). The PCN and the mPFC were included in the present study by
virtue of the functional connectivity each node shared with the PAG.
Hence, we did not model the endogenous connection between the PCN
and the mPFC to provide the most parsimonious model space.
Moreover, Rabellino et al. (2015) have revealed that the PCN
displays reduced functional connectivity with the DMN during
subliminal, threat-related stimulus processing in the same participant
sample and paradigm analyzed here. In turn, we omitted the
endogenous connection between the PCN and the mPFC to focus on
the network interactions yet to be characterized. Additionally,
endogenous, inhibitory self-connections were modeled for the PAG,
the PCN, and the mPFC across the models. Each model then had the
same seven endogenous connections, which included three inhibitory
self-connections, and the two bi-directional connections between the
PAG and the PCN, as well as between the PAG and the mPFC.

2.4.2.4. Modulatory connections (B-matrix). Modulatory connections
were specified in the B-matrix and were the only model parameters
that were varied across the three models (Fig. 1). Modulatory
connections exert influence over the endogenous connections, where
different B-matrices can be specified for each stimulus condition across
a given model. Each model included endogenous connections that were
modulated to have the same condition-dependent modulations across

Fig. 1. The above illustration details the three specified models. On the top, we illustrate the endogenous and the modulatory model connectivity parameters as
specified in the A-matrix and the B-matrix, respectively. On the bottom, we superimpose these model connectivity parameters (as well as the C-matrix) onto template
masks that give a relative indication of the coordinate locations that correspond to the various network nodes. Note that neither template masks nor circles represent
actual coordinate locations or sizes of the spheres used for signal extraction and are intended for graphic illustration only. On the very bottom, we provide a legend
for these model connectivity parameters.
Abbreviations: PAG: periaqueductal gray; PCN: precuneus; mPFC: medial prefrontal cortex; NW: neutral condition; TW: trauma-related condition.
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the stimulus conditions. Bi-directional models had both neutral and
trauma-related stimulus conditions modulating the endogenous
connections between the PAG and the PCN, as well as between the
PAG and the mPFC in both directions. Bottom-up models had the
stimulus conditions modulating the endogenous connections from the
PAG to the PCN, as well as from the PAG to the mPFC. Conversely, top-
down models had the stimulus conditions modulating the endogenous
connections from the PCN to the PAG, as well as from the mPFC to the
PAG.

2.4.3. Second-level: Group comparisons
2.4.3.1. Bayesian model selection. Following the specification and the
estimation of the three models across participants, a random-effects
BMS was conducted in SPM12. BMS evaluates the evidence for each
model and identifies the model that best accounts for the data, where
winning models are identified when they exhibit relatively high
exceedance probabilities. Exceedance probability is a measure of how
likely it is that a given model is more frequent than the other models at
explaining the data in the comparison test (Stephan et al., 2009).
Exceedance probabilities quantify the properties of a good model to
allow for comparisons between competing models (Stephen et al.,
2010). In BMS, each model is evaluated with respect to its accuracy
(i.e., how well the model parameters predicted the observed data) and
its complexity (i.e., how much divergence the model parameters
exerted from the model priors) (Friston et al., 2007; Stephan et al.,
2009). Highly accurate and minimally complex models have strong
model evidence and are hence more likely to be generalizable (Stephan
et al., 2010).

2.4.3.2. Bayesian model averaging. BMA was also conducted across the
models within each group, where BMA reflects the weighted average of
each model parameter across subjects and models, weighted by the
models’ posterior probabilities. Means and standard deviations of BMA
parameter estimates were recorded for every parameter, where these
values can be interpreted as the evidence for the connection strength of
a parameter. Means and standard deviations were used to conduct
independent t-tests in which we Bonferroni-corrected for multiple
comparisons (p = 0.05/17).

3. Results

3.1. Demographics and clinical measures

Independent t-tests conducted across the demographic measures did
not reveal significant group differences. As expected for clinical mea-
sures, participants with PTSD scored significantly higher on total scores
for the CAPS, MDI, CTQ, and RSDI as compared to controls (see
Table 1).

3.2. Bayesian model selection

The BMS analysis favoured bi-directional models for both groups.
Exceedance probabilities for the bi-directional models of the control
and the PTSD group were 0.935 and 0.969, respectively. These are
above common thresholds to report model superiority
(i.e., > 0.85–0.90; Stephan et al., 2009) and suggest bi-directional
modulations are favoured across the current experimental conditions.

3.3. Bayesian model averaging

3.3.1. Direct connections (C-matrix)
Subliminal, neutral and subliminal, trauma-related stimulus condi-

tions revealed greater parameter estimates for driving inputs directed to
the PAG in participants with PTSD as compared to controls (see
Table 2).

3.3.2. Endogenous connections (A-matrix)
In PTSD, stronger excitatory effective connectivity from the PAG to

the PCN, as well as from the PAG to the mPFC were demonstrated as
compared to healthy controls (see Table 2). In PTSD, stronger ex-
citatory effective connectivity from the mPFC to the PAG were also
revealed as compared to controls, where controls featured a weak in-
hibitory connection for the parameter. No differences were found across
endogenous, inhibitory self-connections for the PAG, the PCN, or the
mPFC.

3.3.3. Modulatory connections (B-matrix)
In PTSD as compared to the control group, stronger modulation to

the subliminal, neutral stimulus conditions were revealed, where neu-
tral stimulus conditions prompted greater increases in the rate of
change in effective connectivity from the PAG to the PCN. In PTSD as
compared to controls, stronger modulation to the subliminal, trauma-
related stimulus conditions were revealed as well, where trauma-re-
lated stimulus conditions led to greater increases in the rate of change
in effective connectivity from the PAG to the PCN, and from the PAG to
the mPFC (see Table 2). In controls, trauma-related stimulus conditions
prompted increases as well as decreases in the rate of change in effec-
tive connectivity from the PAG to the PCN, and from the PAG to the
mPFC, respectively.

4. Discussion

4.1. Overview

We sought to characterize the effective connectivity dynamics be-
tween the PAG and the PCN, as well as between the PAG and the mPFC
during both subliminal, neutral and subliminal, trauma-related sti-
mulus conditions in participants with PTSD as compared to healthy
individuals. Critically, we found stronger excitatory effective con-
nectivity from the PAG to the PCN, as well as between the PAG and the
mPFC bi-directionally in individuals with PTSD as compared to healthy
controls (Fig. 2A). Additionally, we revealed that the effective con-
nectivity from the PAG to the PCN, as well as from the PAG to the mPFC
were modulated more strongly in participants with PTSD as compared
to healthy controls during subliminal, trauma-related stimulus condi-
tions (Fig. 2C). Accordingly, bottom-up, or PAG-mediated functional
connectivity to the DMN contributed more to our group differences,
where subliminal, trauma-related stimulus conditions were revealed to
lead to stronger increases in the rate of change in the effective con-
nectivity. These findings may assist to explain linkages between self-
and trauma-related processing in individuals with PTSD.

4.2. Endogenous connections (A-matrix)

Endogenous connectivity from the PAG to the PCN, from the PAG to
the mPFC, as well as from the mPFC to the PAG showed greater ex-
citatory effective connectivity in participants with PTSD as compared to
controls, which we interpret here as the PAG-mediated recruitment of
the DMN.

Nicholson et al. (2018) reported similarly an increase in DMN re-
cruitment in participants with PTSD during trauma-related stimulus
conditions across a real-time neurofeedback protocol. In particular, the
DMN revealed stronger recruitment while viewing trauma-related sti-
muli as compared to viewing neutral words in participants with PTSD.
Related, Nicholson et al. revealed also the PAG to be incorporated
functionally within the salience network during the data-driven iden-
tification of the intrinsic connectivity networks. Switching between the
intrinsic connectivity networks is mediated by the salience network and
thought to be modulated by the anterior insula (Menon and Uddin,
2010; Seeley et al., 2007; Sridharan et al., 2008). In PTSD, Harricharan
et al. (2016) have reported greater resting-state functional connectivity
between the anterior insula and the PAG as compared to healthy
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Table 1
Clinical and Demographic Information.

Measure PTSD (n = 26)
M ± SD

Healthy Controls (n = 20)
M ± SD

χ2

p
t-Test
p

Years of Age 38.8 ± 12.2 32.5 ± 11.6 – 0.088
Sex (n) Male = 11, Female = 15 Male = 10, Female = 10 0.604 –
Employment Status (n) Employed = 18, Unemployed = 7 Employed = 17, Unemployed = 3 0.297 –
CAPS Total 70.6 ± 11.9 0.94 ± 2.9 – <0.001
CTQ – Emotional Abuse 14.5 ± 6.1 6.8 ± 3.1 – <0.001
CTQ – Physical Abuse 10.1 ± 6.4 5.7 ± 1.6 – 0.004
CTQ – Sexual Abuse 13.4 ± 7.8 5.3 ± 1.1 – <0.001
CTQ – Emotional Neglect 13.5 ± 5.9 8.8 ± 4.2 – 0.004
CTQ – Physical Neglect 10.2 ± 4.7 6.8 ± 2.7 – 0.006
MDI Total 58.8 ± 21.6 33.7 ± 3.8 – <0.001
MDI – Depersonalization 7.8 ± 4.1 – – –
MDI – Derealization 9.5 ± 4.5 – – –
MDI – Dep./Der. 8.7 ± 4.1 – – –
BDI 24.0 ± 6.7 – – –
CADSS Total 4.3 ± 2.6 – – –
STAI Total 6.2 ± 2.5 – – –
RSDI Total 4.1 ± 1.8 – – –
RSDI – Distress 2.2 ± 0.9 1.0 ± 0.0 – <0.001
RSDI – Reliving 2.0 ± 1.0 1.0 ± 0.0 – 0.001
RSDI – Avoidance Thoughts 1.9 ± 0.8 1.1 ± 0.3 – 0.001
Axis-I Comorbidities (current [past]) frequency Major Depressive Disorder (8[9])

Dysthymic Disorder (0[3])
Agoraphobia w/o PD (3)
Social Phobia (4)
Specific Phobia (2)
OCD (1[1])
Eating Disorders (1[1])
Somatoform Disorder (6)
Lifetime Alcohol Abuse or Dependence [16]

Table 1: Age, sex, trait scores (CAPS Total, CTQ, MDI (Total, Dep, Der, Dep/Der), BDI, CADSS, STAI, RSDI (Total, Distress, Reliving, Avoidance Thoughts), as well as
the comorbidities for participants with PTSD and healthy individuals as mean values plus/minus standard deviations.
Abbreviations: CAPS: Clinician Administered PTSD Scale; CTQ: Childhood Trauma Questionnaire; MDI: Multiscale Dissociation Inventory [Dep: Depersonalization
Subscale; Der: Derealization Subscale; Dep/Der: Depersonalization and Derealization Subscales Averaged]; BDI: Beck’s Depression Inventory; CADSS: Clinician
Administered Dissociative States Scale; STAI: State-Trait Anxiety Inventory; RSDI: Responses to Script Driven Imagery; PD: Panic Disorder; OCD: Obsessive-
Compulsive Disorder.

Table 2
Mean/Standard Deviation of BMA Parameter Estimates

Matrices (Condition) Model Parameters Mean (in HZ) Standard Deviation Effect Size t-Tests (df = 44)

Controls PTSD Controls PTSD Cohen’s d t-statistic p-value

C(NW) PAG −0.1371 −0.2863 0.0469 0.0472 3.1732 113.612 < 0.001
C(TW) PAG −0.2433 −0.3223 0.0490 0.0493 1.6134 30.729 < 0.001
A PAG → PAG −0.0362 −0.0377 0.0275 0.0240 0.0582 0.0389 0.844

PCN → PCN −0.0155 −0.0119 0.0281 0.0242 −0.1376 0.2175 0.643
mPFC → mPFC −0.0223 −0.0104 0.0278 0.0248 −0.4524 2.3432 0.133
PAG → PCN 0.0016 0.0362 0.0222 0.0211 −1.5981 29.055 < 0.001
PAG → mPFC 0.0116 0.0352 0.0251 0.0225 −0.9916 44.237 < 0.001
PCN → PAG 0.0261 0.0422 0.0261 0.0228 −0.6585 5.0324 0.031
mPFC → PAG −0.0004 0.0251 0.0256 0.0227 −1.0547 13.131 0.002

B(NW) PAG → PCN 0.2135 0.4256 0.1768 0.1641 −1.2447 17.670 < 0.001
PAG → mPFC 0.1435 0.2297 0.1944 0.1788 −0.4619 2.4358 0.126
PCN → PAG 0.1204 0.1789 0.2124 0.1863 −0.2934 0.9869 0.326
mPFC → PAG 0.1021 0.1335 0.2096 0.1831 −0.1599 0.2951 0.589

B(TW) PAG → PCN 0.3287 0.5069 0.1774 0.1591 −1.0591 12.833 <0.001
PAG → mPFC −0.0236 0.1841 0.1941 0.1756 −1.1236 14.419 <0.001
PCN → PAG −0.0361 0.1381 0.2101 0.1862 −0.8791 8.8502 0.005
mPFC → PAG −0.0402 0.0623 0.2112 0.1824 −0.5208 3.1119 0.085

Table 2: Means and standard deviation values for BMA model parameters are represented for each group. For endogenous connections, whereas positive parameter
values indicate that an increase in activity in the one region results in an increase in the rate of change in the activity of the connected region, negative parameter
values indicate that an increase in activity of the one region results in a decrease in the rate of change in activity of the connected region. Bold font represents
significance at p ≤ 0.0029.
Abbreviations: PTSD: posttraumatic stress disorder; C(NW): neutral stimulus condition direct connections; C(TW): trauma-related stimulus condition direct con-
nections; A: endogenous connections; B(NW): neutral stimulus condition modulatory connections; B(TW): trauma-related stimulus condition modulatory connec-
tions; PAG: periaqueductal gray; PCN: precuneus; mPFC: medial prefrontal cortex.
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individuals. Furthermore, Daniels et al. (2010) revealed that the in-
trinsic connectivity networks feature a dysregulated equilibrium in
PTSD, where individuals do not inhibit appropriately the DMN during a
working memory task. Accordingly, the PAG may be contributing to the
aberrant recruitment of the DMN in traumatized individuals. Here, we
found that the PAG demonstrates greater bottom-up, excitatory effec-
tive connectivity during subliminal, trauma-related stimulus conditions
in participants with PTSD as compared to healthy individuals. These
findings are in keeping with Nicholson et al. (2017), where stronger
bottom-up, excitatory effective connectivity from the PAG to the mPFC
were displayed during rest in participants with PTSD who presented
with typical symptom patterns as compared to participants with PTSD
who presented with more dissociative symptom patterns. These dy-
namics provide an early signal that PAG-mediated recruitment of the
DMN – shown here during subliminal, trauma-related stimulus condi-
tions – may support, in part, the apparent links between self- and
trauma-related processing.

4.3. Modulatory connections (B-matrix)

4.3.1. Subliminal, trauma-related stimulus conditions
Subliminal, trauma-related stimulus conditions modulated effective

connectivity more strongly in participants with PTSD as compared to
healthy controls, where greater increases in effective connectivity from
the PAG to the PCN, as well as from the PAG to the mPFC were re-
vealed. Trauma-related stimulus conditions are used often to re-estab-
lish certain elements of a trauma memory (Elsesser et al., 2005;
Liberzon et al., 1999; Halligan et al., 2006), where the PCN and the
mPFC are thought to contribute to self-related (as well as visual

imagery) processes and memory-related construction, respectively (for
a review, see Cabeza and St Jacques, 2007; Svoboda et al., 2006). In
PTSD as compared to controls, the PCN and the mPFC display stronger
and lesser activity during trauma-related stimulus conditions, respec-
tively (for a review, see Sartory et al., 2013; Thome et al., 2019). En-
hanced activity in the PCN (as well as the posterior parietal cortices
more generally) support reliving experiences during trauma-related
stimulus processing in participants with PTSD (for a review, see Brewin,
2015). Reliving experiences are thought to re-establish the physiolo-
gical, or visceral conditions encountered by the traumatized individual
during trauma-related encoding (Rubin et al., 2004). Physiological
changes are coordinated, in part, by the PAG (Brandão et al., 2008),
where these changes may be provoked during trauma-related stimulus
conditions in PTSD.

Subliminal stimulus conditions are used principally to evoke re-
sponses across subcortical systems, which may help explain why the
PAG showed stronger excitatory effective connectivity to the PCN, as
well as to the mPFC in participants with PTSD. Moreover, effective
connectivity from the PAG to the PCN, as well as from the PAG to the
mPFC were modulated more strongly in PTSD as compared to controls
during trauma-related stimulus conditions. Subliminal, trauma-related
stimulus conditions may then lead to PAG-mediated functional con-
nectivity to the DMN in participants with PTSD. Indeed, Nicholson et al.
(2017) have demonstrated similarly stronger bottom-up, or PAG-
mediated effective connectivity to the mPFC in participants with PTSD
who presented with common symptom patterns as compared to parti-
cipants with PTSD who presented with more dissociative symptom
patterns; however, these results were shown during rest, where in-
dividuals with PTSD demonstrate reduced DMN functional

Fig. 2. Top and bottom images illustrate the group-specific effective connectivity dynamics for the control and the PTSD group, respectively. Asterisks denote the
particular parameter surpassed significance in group comparisons. Network nodes are included in the circles and the lines represent the connections between the
nodes. Solid and dashed lines indicate an endogenous and a modulatory connection, respectively. Yellow, blue, and red lines indicate a direct, an inhibitory (or
decrease), or an excitatory (or increase) connection, respectively. The size of the line gives a relative indication of the strength of the underlying model connectivity
parameter.
Abbreviations: PAG: periaqueductal gray; PCN: precuneus; mPFC: medial prefrontal cortex; NW: neutral stimulus condition; TW: trauma-related stimulus condition;
PTSD: posttraumatic stress disorder.
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connectivity. Here, trauma-related stimulus conditions appear to drive
stronger bottom-up, or PAG-mediated effective connectivity, where
these patterns may serve to re-establish varying physiological sensa-
tions related to the trauma(s). Following the re-established trauma-re-
lated sensations, traumatized individuals may bring online reliving
sensations, which are mediated largely by the DMN and instantiated by
increased visual imagery processes and a putative bias to engage with a
trauma-related memory from a self-related perspective in PTSD, in
particular, whilst the memory remains unprocessed (van der Kolk,
2015).

4.3.2. Subliminal, neutral stimulus conditions
Subliminal, neutral stimulus conditions also modulated the effective

connectivity from the PAG to the PCN more strongly in participants
with PTSD as compared to controls. Stronger condition-dependent
modulations to the neutral stimulus conditions may support an atten-
tion threat bias in participants with PTSD. Traumatized individuals
generally exhibit stronger startle responses and emotion dysregulation
during trauma-related stimulus conditions (Fani et al., 2012a,b; Naim
et al., 2015), but these responses are documented as well under neutral
stimulus conditions (Felmingham et al., 2003; Pineles et al., 2009; Litz
et al., 2000; for a review, see Weber 2008). Attention threat biases are
often indexed indirectly via autonomic responses (e.g., heart rate, blood
pressure, skin conductance), which are mediated, in part, by the PAG
(for a review, see Terpou et al., 2019c). Moreover, subliminal stimulus
conditions are used to elicit activity across evolutionarily conserved,
fast-responding midbrain systems (Liddell et al., 2005). In PTSD, neu-
tral stimulus conditions may have then been misidentified to be
threatening, which can assist to explain the stronger modulations to
neutral stimulus conditions revealed here.

4.4. Limitations and future directions

Our sample size was relatively small, thus precluding the authors to
investigate the differences between participants with PTSD who meet or
do not meet criteria for the dissociative subtype of the disorder. In
PTSD, the dissociative subtype differs from the typical symptom pattern
in both its clinical and neural characteristics (Lanius et al., 2010;
Steuwe et al., 2012; Wolf et al., 2012), where the mPFC is involved
considerably in differentiating between these diagnoses (Nicholson
et al., 2019). Secondly, neutral and trauma-related words were not
matched for frequency in the English language, which may have in-
troduced novelty effects for the trauma-related words in the event that
the words were less common as compared to the neutral words. Thirdly,
we did not remove effects related to cardiac or respiratory activity by
adjusting data to a contrast during eigenvariate extraction. Hence,
DCMs may have been required to explain noise or confounds in the data
via task-related processes, which would have reduced the accuracy of
the model parameter estimates. Fourthly, subliminal stimulus durations
were in keeping with standard procedures (Felmingham et al., 2008;
Williams et al., 2006; Rabellino et al., 2016); however, we did not
verify whether every individual perceived each stimulus subliminally.
Lastly, we remind readers that our findings were generated from the
same participant sample and paradigm as analyzed by Terpou et al.
(2019a). Consequentially, we urge caution during the generalization of
these findings to other samples and paradigms. We encourage future
researchers to examine the network interactions across the DMN, where
fully-connected models may uncover different effective connectivity
dynamics during rest, as well as during similar threat- or trauma-related
stimulus conditions in participants with PTSD.

4.5. Conclusion

Here, we explored the effective connectivity dynamics between the
PAG and the PCN, as well as between the PAG and the mPFC during
subliminal, neutral, as well as subliminal, trauma-related stimulus

conditions in participants with PTSD as compared to healthy in-
dividuals. In PTSD, we revealed the PAG to display stronger bottom-up,
excitatory effective connectivity to the PCN and to the mPFC, where
effective connectivity between these model parameters were also
modulated more strongly during subliminal, trauma-related stimulus
conditions as compared to controls. It remains unclear whether these
effective connectivity dynamics occur during other experimental con-
texts; however, we present evidence to understand further the phe-
nomenological disturbances towards self-related processes that are re-
ported by participants with PTSD during trauma-related processing.
Future research evaluating the effective connectivity between the PAG
and the DMN during rest are warranted critically. We discuss these
findings in regard to the different elements expressed during trauma-
related reliving, where the PAG and the DMN are thought to mediate
physiological sensations related to trauma and self-related perspectives,
respectively. We find evidence that the former drives the latter, which
does beg intrigue into whether other network-related alterations in
traumatized individuals are driven by subcortical systems that remain
poorly described in the PTSD literature.
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