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Bipolar disorder (BD) is a complex psychiatric disorder with strong heritability. Identification of new BD risk genes will help determine the
mechanism underlying disease pathogenesis. In the present study, we carried out whole genome sequencing for a Chinese BD family
with three affected members and three unaffected members, and identified multiple candidate causal variations, including a frameshift
mutation in the GOLGB1 gene. Since a GOLGB1 missense mutation was also found in another BD pedigree, we carried out functional
studies by downregulating Golgb1 expression in the brain of neonatal mice. Golgb1 deficiency had no effect on anxiety, memory, and
social behaviors in young adult mice. However, we found that young adult mice with Golgb1 deficiency exhibited elevated locomotor
activity and decreased depressive behaviors in the tail suspension test and the sucrose preference test, but increased depressive
behaviors in the forced swim test, resembling the dual character of BD patients with both mania and depression. Moreover, Golgb1
downregulation reduced PSD93 levels and Akt phosphorylation in the brain. Together, our results indicate that GOLGB1 is a strong BD risk
gene candidate whose deficiency may result in BD phenotypes possibly through affecting PSD93 and PI3K/Akt signaling.
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INTRODUCTION
Bipolar disorder (BP) is a complicated neuropsychiatric disorder
that shows mood changes between mania and depression. BD can
be classified into type I and type II, for which type I BD is
characterized by the presence of a syndromal, manic episode, and
type II BD is characterized by the presence of a syndromal,
hypomanic episode, and a major depressive episode [1, 2].
BD affects nearly 2% of the world’s adult population and has a

heritability of about 60–85% [3–5]. Genetic studies, such as
genetic linkage studies, candidate gene studies, and genome-
wide association studies (GWAS), have identified multiple BD
susceptibility loci [6–9]. Although some of them, such as BDNF,
ANK3, and CACNA1C, may be common susceptibility loci for BD,
most identified loci are rare, implicating a polygenic contribution
of common and rare variations to BD susceptibility [3, 10]. Since,
so far, identified loci only explain a portion of BD occurrence,
further investigation in affected pedigrees may identify additional
genetic loci that contribute to BD susceptibility.
In the present study, we carried out whole genome sequencing

(WGS) to identify rare susceptibility variations for BD in a Chinese
BD pedigree. We identified multiple variations, including a
nonsense mutation in the GOLGB1 gene in affected family
members but not in unaffected family members. The GOLGB1
gene encodes GOLGB1/Giantin, a protein belonging to the golgin
family members that reside in the Golgi stack and modulate
vesicle trafficking [11]. Although GOLGB1 has been proposed to
regulate protein glycosylation [12], ciliogenesis [13, 14], and

osteogenesis and/or chondrogenesis [12, 15], the exact function of
GOLGB1 has yet to be further elucidated. Since a missense
mutation in the GOLGB1 gene was also found in affected but not
unaffected members in another BD pedigree [4], we studied mice
with reduced Golgb1 expression in the brain. The results showed
that Golgb1 deficiency resulted in some behavior abnormalities
resembling those found in BD patients, suggesting that GOLGB1
dysregulation may contribute to certain BD phenotypes.

RESULTS
We carried out WGS for three affected and three unaffected
members in a Chinese BD family (Fig. 1). WGS analysis revealed a
total of 5,472,225 single-nucleotide variations (SNVs) and
1,251,821 small insertions and deletions (INDELs) present in cases
and controls combined. Among them, we filtered 940 SNVs and
142 INDELs that were potentially deleterious. Given the inheritance
pattern of the pedigree, autosomal dominant genetic modifiers
seem to be responsible for disease pathogenesis in this family.
Therefore, from filtered variations, we further screened variations
that were heterozygous in all three BD patients but not mutated in
healthy members within this family as candidate causal variations.
We found 23 SNVs and 3 INDELs, each of which located in one
individual gene, as candidate causal variations (Table 1).
For the 26 genes carrying SNVs or INDELS potentially associated

with BD, we performed PubMed (https://pubmed.ncbi.nlm.nih.gov/)
literature research using each gene name and “bipolar” as keywords
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(as of 08/11/2022). We found that NEU1 [16], TBC1D16 [17], and
GOLGB1 [4] have previously been linked to BD (Table 1). Interestingly,
one previous study identified a missense mutation in the GOLGB1
gene (c.983 T > C, p.V328A, in exon 9, NM_004487) in affected
members but not unaffected members in a Caucasian BD family [4].
Here we identified a frameshift INDEL in the GOLGB1 gene
(c.8743delC, p.H2915fs, in exon 15, NM_004487) in affected members

but not in unaffected members in this Chinese BD family. Therefore,
we targeted GOLGB1 for further analysis.
The human GOLGB1 gene is a big gene on chromosome 3 and

has 27 exons with multiple splicing variants. Focusing on the two
mutations potentially associated with BD, we sequenced entire
exons 9 and 15 of GOLGB1 in 182 sporadic BD patients and 146
controls. However, we did not identify the two or other mutations
in the studied subjects, suggesting that the two mutations are rare.
Because our identified GOLGB1 INDEL leads to a predicted early

stop of the coding sequence and truncation of the protein, we
also studied whether GOLGB1 deficiency causes BD-like pheno-
types in animals. We first packaged AAVs that express different
mouse Golgb1 shRNAs and tested their efficiency in down-
regulating Golgb1 in mouse primary neurons. We found that all
three tested Golgb1 shRNAs significantly reduced mouse Golgb1
mRNA levels, with shGOLGB1 #2 showing the most effect on
reducing Golgb1 compared to the other two (Fig. 2A).
Next, we delivered AAVs expressing shGOLGB1 #2 or scrambled

controls into the brain of P0 mice via bilateral intracerebroven-
tricular (i.c.v.) injection. GFP fluorescence represented the
localization of AAVs and indicated that AAVs infected mostly
hippocampal and cortical regions (Fig. 2B). We confirmed that
shGOLGB1 #2 expression significantly reduced Golgb1 expression
in mouse hippocampal tissues (Fig. 2C). Furthermore, GFP was

Fig. 1 Pedigree of a Chinese family with three members
diagnosed with BD. In this pedigree, family relationships are
indicated by lines. Squares indicate males. Circles indicate females.
Filled symbols indicate affected members (with BD). Unfilled
symbols indicate unaffected/healthy members.

Table 1. Potential gene variations associated with bipolar disorder identified by WGS.

Potential
casual genes

Mutation types Transcript Exon Coding Protein Association with BD in
other studies

RAB3GAP1 SNV-missense NM_001172435 25 C2821G P941A -

GPD2 SNV-missense NM_001083112 9 A1096G I366V -

CCR4 SNV-missense NM_005508 2 G424A A142T -

SCN10A SNV-missense NM_006514 13 C2015T T672I -

GOLIM4 SNV-missense NM_014498 4 A334G S112G -

ADH5 SNV-missense NM_000671 4 C328T L110F -

PELO SNV-missense NM_015946 2 A716G K239R -

TTC37 SNV-missense NM_014639 11 G829A G277S -

NEU1 SNV-missense NM_000434 4 C640T R214C [16]

MDN1 SNV-missense NM_014611 63 C10551A D3517E -

SPAG1 SNV-missense NM_172218 9 C844T R282C -

APTX SNV-missense NM_175073 9 C952A R318S -

AKNA SNV-missense NM_030767 3 G577C V193L -

COG6 SNV-missense NM_020751 12 A1145G K382R -

MAP3K9 SNV-missense NM_033141 13 A2936G N979S -

YLPM1 SNV-missense NM_019589 5 T3638C M1213T -

PKD1L2* SNV-unknown unknown 16 unknown unknown -

CCDC40 SNV-missense NM_017950 20 C3355T P1119S -

TBCD SNV-missense NM_005993 20 C1810T P604S -

CYB5A SNV-missense NM_148923 1 G25T V9L -

ELANE SNV-missense NM_001972 2 C100T R34W -

DOT1L SNV-missense NM_032482 20 T2250G C750W -

TMPRSS15 SNV-missense NM_002772 4 G428T G143V -

GOLGB1 INDEL-frameshift
deletion

NM_004487 15 8743delC H2915fs [4]

EYS INDEL-nonframeshift
deletion

NM_001292009 19 2953_2961del TDG985_987del -

TBC1D16 INDEL-frameshift
deletion

NM_019020 5 1015delC H339fs [17]

*The representative PKD1L2 transcript (NM_052892) is present in some human individuals but absent from the reference genome. Therefore, the effects of the
identified SNV on its coding and protein sequences are unknown.
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found to colocalize with the neuron marker NeuN (Fig. 2D) but not
with the microglia marker Iba1 (Fig. 2E) or the astrocyte marker
GFAP (Fig. 2F), suggesting that AAVs mostly infected neurons, i.e.,
Golgb1 was mostly downregulated in neurons.
We next investigated whether Golgb1 knockdown (KD) affects

mouse behaviors. Two months after AAV infection, both male and
female mice were subjected to various behavioral tests. Since both
sexes are affected in this BD family, we combined data from mice
with both sexes for comparisons. In the open field test, we found

that Golgb1 KD mice were more active than control mice, as they
exhibited significantly increased total travel distance and numbers
of center entries (Fig. 3A). In the tail suspension test, we found that
Golgb1 KD mice had less immobility time than control mice
(Fig. 3B), implying a decrease of depression in Golgb1 KD mice.
Consistently, Golgb1 KD mice had increased sucrose preference
indicative of decreased depression compared control mice in the
two-bottle choice sucrose preference test (Fig. 3C). Surprisingly, in
the forced swim test, Golgb1 KD mice showed significantly

Fig. 2 Downregulation efficiency and expression localization of AAV-GOLGB1 shRNAs. A Mouse primary neurons were infected with AAVs
expressing different mouse Golgb1 shRNAs (shGOLBG1 #1, #2, and #3) or a scrambled control shRNA. The mRNA levels of mouse Golgb1 were
determined by qRT-PCR and normalized to those of β-actin for comparison. n= 6; *p < 0.05, ***p < 0.001; two-tailed Student’s t-test.
B Representative image of the GFP expression (in green) in mice injected with AAVs. The nuclei were counterstained with DAPI (in blue). Scale
bar: 1 mm. C RNAs were extracted from hippocampal tissues of mice injected with AAVs expressing shGOLGB1 or a scrambled control shRNA.
The mRNA levels of mouse Golgb1 were determined by qRT-PCR and normalized to those of β-actin for comparison. n= 11 for shGOLGB1
mice, n= 6 for scrambled control mice; *p < 0.05; two-tailed Student’s t-test. D–F The brain of mice injected with GFP (in green)-containing
AAVs expressing shGOLGB1 or a scrambled control shRNA were sectioned. Brain sections were immunostained with the neuron marker NeuN
(D, in red), the microglia marker Iba1 (E, in red), and the astrocyte marker GFAP (F, in red), and counterstained with DAPI (in blue). Scale bars:
30 μm. The hippocampal regions were observed under a confocal microscope.
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elevated immobility time, implying increased depression com-
pared to controls (Fig. 3D). Together, these behaviors may
resemble those found in BD patients, who exhibit mood change
between mania and depression.
We also examined anxiety-like behaviors in Golgb1 KD mice. In

the open field test, although Golgb1 KD mice exhibited increased
numbers of center entries, their time spent in the center square
was not different from that of controls (Fig. 3A). In the light/dark
box test, both Golgb1 KD and control mice showed comparable
time spent in the light box and similar light box entry numbers
(Fig. 4A). In the elevated O-maze test (Fig. 4B) and the elevated
plus-maze test (Fig. 4C), both Golgb1 KD and control mice had
comparable time spent in the open arm and similar open arm
entry numbers. Together, these results suggest that Golgb1
downregulation has no effect on anxiety-like behaviors in mice.
In the Y-maze test, Golgb1 KD mice showed no differences in

their spontaneous alternation percentage compared to controls
(Fig. 4D). In the novel object recognition test, Golgb1 KD mice also
showed no differences in their discrimination on the novel and
familiar objects compared to controls (Fig. 4E). In the three-
chamber social interaction test, Golgb1 KD mice showed no
differences in their social interaction behaviors compared to
control mice (Fig. 4F). These results suggest that Golgb1 down-
regulation does not impair memory and social behaviors in mice.
Finally, to explore the potential molecular mechanism under-

lying BD pathogenesis caused by GOLGB1 deficiency, we checked
several proteins whose alternations have been linked to BD. The
results showed that Golgb1 downregulation resulted in reductions

in PSD93 and Akt phosphorylation protein levels in the cortex and
hippocampus (Fig. 5A, B). However, Golgb1 downregulation had
no effect on mRNA levels of PSD93 and PSD95 (Fig. 5C),
suggesting that PSD93 protein reduction upon Golgb1 down-
regulation is not attributed to its gene expression alternation.

DISCUSSION
BD has been demonstrated to have a strong heritability [1, 18, 19].
However, although multiple genes have been identified as
susceptibility loci for BD, they only account for a portion of BD
occurrence. Additional studies in affected pedigrees shall help
identify new disease-causing mutations and provide new insight
into disease mechanisms.
In the present study, we carried out WGS for a Chinese BD

family that shows an autosomal dominant mode of inheritance.
From filtered variants, we identified 23 SNVs and three INDELs as
candidate causal variations, as they were potentially malignant
and heterozygous in all affected members but not mutated in
unaffected members within this family. Among the 26 genes
carrying SNVs or INDELS potentially associated with BD, we found
that GOLGB1, NEU1, and TBC1D16 were previously linked to BD to
some extent.
The GOLGB1 gene encodes GOLGB1/Giantin, a protein belong-

ing to the golgin family that resides and modulates the vesicle
trafficking network within the Golgi stack [11]. The exact function
of GOLGB1 remains largely unclear, though several studies found
that GOLGB1 could regulate protein glycosylation [12] and

Fig. 3 Downregulation of Golgb1 causes BD-like behaviors in mice. Mice of both sexes injected with AAVs expressing shGOLGB1 or a
scrambled control shRNA were subjected to behavioral tests at 2 months of age. A In the open field test, mice were studied for their total
travel distance, their numbers of center entries, and their duration time in the center. B In the tail suspension test, mice were studied for their
immobility duration during the tail suspension. C In the 2-bottle choice sucrose preference test, mice were studied for their preference for
sucrose. D In the forced swim test, mice were studied for their immobility duration in water. n= 27 (13 females and 14 males) for shGOLGB1
mice, n= 19 (ten females and nine males) for scrambled control mice; ns not significant, *p < 0.05, **p < 0.01, ***p < 0.001; two-tailed Student’s
t-test.
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modulate ciliogenesis by controlling dynein-2 localization [13, 14].
In addition, homozygous loss of function mutation of Golgb1 leads
to several osteochondrodysplasia and late embryonic lethality in
rats but only cleft palate in mice [12, 15], suggesting that GOLGB1
may regulate osteogenesis and/or chondrogenesis. Herein, we
identified a frameshift INDEL in the GOLGB1 gene in this Chinese
BD family. Previously a GOLGB1 missense mutation was also
identified in a Caucasian BD family [4]. Therefore, we further
studied the potential contribution of GOLGB1 deficiency to BD. We
did not identify the two mutations or any other mutations in
exons 9 and 15 of the GOLGB1 gene in 182 sporadic BD patients
and 146 controls, implying that BD-associated GOLGB1 mutations
may be rare. We then used AAV infection to downregulate Golgb1
expression in the mouse brain. Although mice with Golgb1
downregulation were morphologically normal, they exhibited
elevated locomotor activity in the open field test and anti-
depressive activities in the tail suspension test and the 2-bottle

choice sucrose preference test, but depressive behavior in the
forced swim test. These behaviors resemble the dual character of
BD patients with both mania and depression.
PSD93 is a scaffold protein in the post-synaptic density of

excitatory neurons and regulates synaptic plasticity. Mutations
affecting DLG2, the gene encoding PSD93, have been associated
with a series of neurodevelopmental psychiatric disorders,
including schizophrenia and potentially BD [20, 21]. Dysregulation
of the PI3K/Akt signaling pathway has been found and proposed
as an important cause of BD [22]. Here we found that down-
regulation of Golgb1 in the brain also reduced PSD93 protein
levels and Akt phosphorylation. Therefore, our results suggest that
GOLGB1 deficiency may cause the occurrence of certain BD
phenotypes, possibly through altering multiple pathways such as
PSD93 and PI3K/Akt signaling.
Interestingly, we also identified candidate causal variations in

another two Golgi-related genes, GOLIM4 and COG6. GOLIM4

Fig. 4 Downregulation of Golgb1 has no effects on anxiety, memory, and social behaviors in mice. Mice of both sexes injected with AAVs
expressing shGOLGB1 or a scrambled control shRNA were subjected to behavioral tests at 2 months of age. A In the light/dark box test, mice
were studied for their time spent in the light box and entry numbers to the light box. (B, C) In the elevated O-maze test (B) and the elevated
plus-maze test (C), mice were studied for their time spent in the open arms and open arm entry numbers. D In the Y-maze test, mice were
studied for their spontaneous alternation percentage. E In the novel object recognition test, mice were studied for their discrimination index
for the novel over familiar objects. F In the three-chamber social interaction test, mice were first studied for their duration in the left (L), central
(C), and right (R) chambers during habituation (left panel). Mice were then tested for their time spent interacting with a strange mouse (S1)
and with an empty cage (E) (middle panel). Finally, mice were tested for their time spent interacting with the familiar S1 mouse and with a
new strange mouse (S2) (right panel). n= 27 (13 females and 14 males) for shGOLGB1 mice, n= 19 (ten females and nine males) for scrambled
control mice. ns not significant; two-tailed Student’s t-test.
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encodes Golgi integral membrane protein 4 (GOLIM4) that may
function in protein cargo transport through the Golgi apparatus
and endosome-Golgi retrieval [23, 24]. The COG6 protein encoded
by COG6 is a member of the conserved oligomeric Golgi (COG)
complex that plays an important role in Golgi trafficking and
glycosylation enzyme positioning [25]. Biallelic mutations of COG6
lead to congenital disorders of glycosylation, with features such as
liver abnormality, microcephaly, and developmental disability [25].
Identification of candidate causal variations in multiple Golgi-
related genes raises a possibility that compromised Golgi
functions contribute to BD pathogenesis; and this deserves further
scrutiny.
The NEU1 gene encodes neuraminidase 1 (NEU1) that cleaves

terminal sialic acid residues on glycoproteins and glycolipids.
Mutations in NEU1 lead to sialidosis, a lysosomal storage disease
that can either occur at an early age with marked severity
(dysmorphic type) or be late-onset with mild phenotypes (cherry
red spot-myoclonus syndrome or normosomatic type). NEU1 was
found to secret into exosomes upon inflammatory stimulus and
exovesicular NEU1 was found to clear cell surface polysialic acid
rapidly and thus lead to BDNF release [16, 26]. Since BDNF has
been associated with BD [27–29], NEU1 alternation could
potentially participate in BD as well.
The TBC1D16 protein encoded by TCB1D16 is a member of the

Tre2/Bub2/Cdc16 (TBC) domain-containing family proteins.
TBC1D16 has GTPase activator activity and is involved in receptor
recycling regulation [30]. One study found that BD patients with a
history of suicidal behavior had decreased overall methylation
in intron 3 of the TBC1D16 gene compared to controls,
though whether and how TBC1D16 expression is altered in BD is
unknown [17].

In summary, herein, we have identified several candidate causal
variations in a Chinese BD family. Through combining functional
investigation, we have demonstrated that GOLGB1 is a strong BD
risk gene candidate whose deficiency may result in BD
phenotypes possibly by affecting PSD93 and PI3K/Akt signaling.
Further corroboration in large patient cohorts and additional
functional studies shall help conclude the causality of GOLGB1 and
other risk gene variations identified in this family.

MATERIALS AND METHODS
Human samples
Three BD patients who met the ICD-10 criteria of bipolar disorders in a
Chinese family, including the grandfather, the father, and the daughter
were diagnosed by two senior psychiatrists, and treated at Xiamen City
Xianyue Hospital (Fig. 1). Other family members recruited in this study,
including the mother, the uncle, and the grandmother were reportedly
healthy. Details of the clinical features of the three affected members used
in this study are compiled in Supplementary Table 1. Moreover,
182 sporadic BD patients and 146 healthy controls were recruited and
tested for GOLGB1 mutations. This study was approved by the Medical
Ethics Committee of Xiamen City Xianyue Hospital. Informed consent was
obtained from participants.

Whole genome sequencing (WGS)
WGS was carried out at Novogene Bioinformatics Technology Co., Ltd
(Beijing, China). Briefly, genomic DNA was extracted from peripheral
blood and fragmented to an average size of ~350 bp. DNA library was
created using established Illumina paired-end protocols and subjected
to WGS using the Illumina Novaseq 6000 platform (Illumina Inc., San
Diego, CA, USA) to generate 150-bp paired-end reads with a minimum
coverage of 10× for ~98.5% of the genome (average sequencing depth
over 30×).

Fig. 5 Downregulation of Golgb1 reduces PSD93 protein levels and Akt phosphorylation. A, B Cortical (Cor) and hippocampal (Hip) tissues
from mice injected with AAVs expressing shGOLGB1 or a scrambled control shRNA were collected. Equal amounts of protein lysates were
subjected to western blot to study indicated proteins (A). Protein levels of PSD93 were quantified and normalized to those of GAPDH for
comparison. n= 8 for shGOLGB1 mice, n= 5 for scrambled control mice. Protein levels of phosphorylated Akt (pAkt) were quantified and
normalized to those of Akt for comparison. n= 6 for each group (B). *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001; two-tailed Student’s t-
test. C RNAs were extracted from cortical and hippocampal tissues of treated mice. The mRNA levels of PSD93 and PSD95 were determined by
qRT-PCR and normalized to those of β-actin for comparison. n= 11 for shGOLGB1 mice, n= 8 for scrambled control mice. ns: not significant,
two-tailed Student’s t-test.
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WGS data analysis
After sequencing, raw reads were filtered by in-house quality control
software to remove low-quality reads. Clean reads were aligned to the
reference human genome (hs37d5) using the Burrows–Wheeler Aligner
[31], and duplicate reads were marked using sambamba tools [32].
SNVs and INDELs were called with samtools to generate gVCF [33]. The

raw calls of SNVs and INDELs were further filtered with the following
inclusion thresholds: (1) read depth >4; (2) root mean square mapping
quality of covering reads >30; and (3) the variant quality score >20.
Annotation was performed using ANNOVAR (2017June8) [34]. Annota-

tions included minor allele frequencies from public control data sets as
well as deleteriousness and conservation scores, enabling further filtering
and assessment of the likely pathogenicity of variations.
To filter rare variations, we first selected variations with a MAF less than

0.01 in 1000 genomic data (1000g_all) [35], esp6500siv2_all [9], gnomAD data
(gnomAD_ALL and gnomAD_EAS) [10], and in-house Novo-Zhonghua exome
database from Novogene. After discarding synonymous SNVs and small
fragment nonframeshift (<10 bp) INDELs in the repeat region defined by
RepeatMasker, we analyzed only nonsynonymous SNVs and INDELs occurring
in exons or splice sites (splicing junction 10 bp). Variations were screened
according to scores of SIFT [36], Polyphen [37], MutationTaster [38], and
CADD [39] softwares. Potentially deleterious variations were reserved if the
scores of more than half of these four softwares support the harmfulness of
variations [40]. To better predict the harmfulness of variation, the American
College of Medical Genetics and Genomics (ACMG) classification system was
also used, which classifies variations into pathogenic, likely pathogenic,
uncertain significance, likely benign, and benign [41].
To identify loci linked to BD, we performed an independent genome-

wide scan for linkage in this family. This linkage analysis using merlin tools
and the Perl, combined with the family high throughput sequencing data
and the HapMap database of Chinese population (CHB) allele frequency,
using the known SNP as a marker linkage analysis to get the chain
candidate area.
The relationship between proband and parents was estimated using the

pairwise identity-by-descent (IBD) calculation in PLINK [42]. The IBD sharing
between the proband and parents in all trios is between 45 and 55%.
Given the inheritance pattern of the pedigree, dominant genetic

modifiers seem to be responsible for disease pathogenesis in this family.
Therefore, from filtered rare variations, we identified variations that were
heterozygous in all three patients but not mutated in unaffected family
members as candidate causal variations.

GOLGB1 sequencing
Genomic DNAs were extracted from BD patients and controls and used as
PCR templates to amplify exons 9 and 15 of the GOLGB1 gene (NM_004487).
Primer pairs used were: Exon9_forward (5′-AGAAGGGCTTTCTCTCTAGCATA-3′)
and Exon9_reverse (5′-TGGTTCAATTGGTTTGAGTACAGAT-3′), and Exon15_for-
ward (5′-GGAAGAAACTGGGTGAAGGGTA-3′) and Exon15_reverse (5′-GTGGAC
TGTTAGGTGCTGGTTTC-3′). PCR products were then subjected to Sanger
sequencing.

Mice
C57BL/6J wild-type mice were housed under Specific-Pathogen-Free
conditions at Xiamen University Laboratory Animal Center. Mice were
kept on an 8:00–20:00 light/dark cycle with free access to phytoestrogen-
free chow and water. Animal procedures were carried out in accordance
with the guidelines of the National Institutes of Health Guide for the Care
and Use of Laboratory Animals and were approved by the Animal Ethics
Committee of Xiamen University.

Mouse primary neuron culture
Primary neurons were derived from postnatal day 0 (P0) mouse brains as
described previously [43]. Briefly, hippocampal and cortical tissues were
removed from the P0 mouse brain and then dissociated with 0.25% trypsin
and DNase I (0.2 kU/mL, Worthington) at 37 °C for 15min. Neurons were
cultured in a neurobasal medium (Gibco) supplemented with 2% B27
(Thermo Fisher Scientific).

Adeno-associated virus (AAV) infection
AAV2/9 (serotype 2/9) viruses carrying mouse Golgb1 shRNAs or scrambled
control shRNA were packaged by OBIO Technology (Shanghai, China).
There were three Golgb1 shRNAs used: shGOLGB1 #1: 5′-GAGGAGAA
AGCTGGAGGAA-3′, shGOLGB1 #2: 5′-ACTGCCATGGAATCGAATAAT-3′, and

shGOLGB1 #3: 5′-GTTTCACGGGTCACCTATAAA-3′. The scrambled control
shRNA sequence is: 5′-CCTAAGGTTAAGTCGCCCTCG-3′. Cultured mouse
primary neurons were infected with AAV for 3 days in vitro (DIV) and
analyzed at 10 DIV.
For in vivo injection, one microliter of AAV containing shGOLGB1 #2 or

scrambled control shRNA (5 × 1012 V.G./ml) was slowly injected into lateral
ventricles (2 mm distance from ventral to skin and 2/5 from lambda suture
to the eye) of P0 C57BL/6J mice under hypothermic anesthesia. After
injection, mice were put on a warming pad for body temperature recovery.

Animal behavioral tests
Treated mice at 2 months of age, including ten female and nine male mice
injected with AAVs expressing scrambled control shRNA and 13 female and
14 male mice injected with AAVs expressing shGOLGB1 #2 were subjected
to various behavioral tests. All behavioral analyses were carried out in a
double-blinded manner. Habituation was done in the testing room for more
than 30min at the beginning of each test day. All tests were carried out by
researchers blinded to mouse genotype. Data were recorded and analyzed
using the Smart 3.0 video tracking system (Panlab, Harvard Apparatus).
Procedures for the open field test, the tail suspension test, the elevated
plus-maze test, the three-chamber social interaction test, the Y-maze test,
and the novel object recognition test were reported previously [43, 44].
Procedures for other behavioral tests were as the following.
For the two-bottle choice sucrose preference test, mice were first

acclimatized to two identical bottles, one filled with water and the other
one filled with water containing 1% sucrose, for 36 h. Mice were then
fasted overnight without food and water for 12 h. After fasting, mice were
presented with water and 1% sucrose again. The two bottles were weighed
and exchanged positions every 12 h three times. Sucrose preference was
determined as the ratio of total sucrose to water consumption.
For the forced swim test, mice were placed in the water with a

temperature of 25 °C in a cylinder (21 cm in diameter and 30 cm in height)
for 7 min. Total immobility duration during the last 6 min was recorded for
comparison.
The dark/light box consisted of one black/dark (15 cm3 × 20 cm3 × 25 cm3)

and one light (30 cm3 × 20 cm3 × 25 cm3) plexiglass compartment that were
connected by a tunnel. Mice were placed into the light box and allowed to
move freely for 10min. The time spent in the light box and the number of
entries into the light box were recorded for comparison.
Elevated O-maze consisted of an elevated circular platform with two

opposite quadrants enclosed and two open. Animals were placed in the
center of one open arm and let explore open and closed arms for 5min. The
time spent in open arms and numbers of open arm entries were analyzed.

Western blot
Samples were lysed in TEN buffer containing 50mM Tris-HCl, pH 8.0, 150mM
NaCl, 2mM EDTA, and 1% NP-40, supplemented with protease inhibitors and
phosphatase inhibitors. Protein concentration was determined by BCA assay
(BCA Protein Assay Kit, Thermo Fisher Scientific). Equal amounts of protein
samples were subjected to SDS-polyacrylamide gel electrophoresis and PVDF
membrane transfer. Proteins were identified by incubating with indicated
primary antibodies and then with appropriate HRP-conjugated secondary
antibodies. Protein band intensities were determined using the Image J
software [45]. Antibodies used were: anti-GAPDH (Abways, ab0037), anti-
PSD93 (Abcam, ab151721), anti-PSD95 (Cell Signaling Technology, 3450 S),
anti-Akt (Cell Signaling Technology, 9272 S), anti-phosphorylated Akt (Cell
Signaling Technology, 9271 S), and HRP-conjugated secondary antibodies
(Thermo Fisher Scientific, 31430 and 31460).

Quantitative real-time PCR (qRT-PCR)
Total RNAs were isolated using TRIzol reagent (Life Technologies). After
reverse-transcription using Superscript III transcriptase (Invitrogen), sam-
ples were analyzed on a LightCycler® 480 Real-Time PCR System (Roche
Applied Science, Basel, Switzerland). PCR primers used are the following:

mGOLGB1-F, 5′-GCCTTCACTAAGAGCATGTCAT-3′;
mGOLGB1-R, 5′-GCTGATCCTTTAGAGCAATGCAG-3′;
mPSD93-F, 5′-AAACGCTCCCTGTATGTCAGA-3′;
mPSD93-R, 5’-CCCCATCTAGTGTGACCCTTC-3’;
mPSD95-F, 5′-TGAGATCAGTCATAGCAGCTACT-3′;
mPSD95-R, 5′-CTTCCTCCCCTAGCAGGTCC-3′;
mActin-F, 5′-GGCTGTATTCCCCTCCATCG-3′;
mActin-R, 5′-CCAGTTGGTAACAATGCCATGT-3′.
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Immunostaining
Brain samples of mice were fixed in 4% paraformaldehyde, sequentially
dehydrated in 20, 25, and 30% sucrose solution, frozen in OCT compound,
and then prepared as 15-μm slices. Slices were incubated with indicated
primary antibodies overnight at 4 °C, followed by incubation with appropriate
secondary antibodies conjugated with fluorescence and DAPI for 60min at
room temperature. The fluorescence microscope images were acquired by
an A1R (Nikon) confocal microscope. Antibodies used were: anti-NeuN (Cell
Signaling Technology, 94403 S), anti-GFAP (Proteintech, 16825-1-AP), anti-
Iba1 (Wako, 019–19741), and Alexa fluor 594-conjugated goat anti-rabbit IgG
(H C L) secondary antibody (Thermo Fisher Scientific, A-11012).

Statistical analyses
Statistical analyses were performed using GraphPad Prism 8.3 software
(GraphPad Software). Sample sizes were determined based on the
assumption of a normal distribution and similar variability between
experimental groups. No animals or samples were excluded from or
randomized in the analyses. The normality distribution was corroborated
using the Kolmogorov–Smirnov test. Two-tailed Student’s t-test was used
for the comparison of two independent groups. The variances were similar
between groups. Data represent mean ± standard error of the mean (SEM).
p < 0.05 was considered to be statistically significant.

DATA AVAILABILITY
The data sets generated in this study are available from the corresponding author
upon reasonable request.
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