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Abstract

Lipid droplets (LDs) are dynamic cytoplasmic organelles containing neutral lipids and bounded by a phospholipid
monolayer. Previous studies have suggested that LDs can undergo constitutive homotypic fusion, a process linked to the
inhibitory effects of fatty acids on glucose transporter trafficking. Using strict quantitative criteria for LD fusion together
with refined light microscopic methods and real-time analysis, we now show that LDs in diverse cell types show low
constitutive fusogenic activity under normal growth conditions. To investigate the possible modulation of LD fusion, we
screened for agents that can trigger fusion. A number of pharmacological agents caused homotypic fusion of lipid droplets
in a variety of cell types. This provided a novel cell system to study rapid regulated fusion between homotypic phospholipid
monolayers. LD fusion involved an initial step in which the two adjacent membranes became continuous (,10 s), followed
by the slower merging (100 s) of the neutral lipid cores to produce a single spherical LD. These fusion events were
accompanied by changes to the LD surface organization. Measurements of LDs undergoing homotypic fusion showed that
fused LDs maintained their initial volume, with a corresponding decrease in surface area suggesting rapid removal of
membrane from the fused LD. This study provides estimates for the level of constitutive LD fusion in cells and questions the
role of LD fusion in vivo. In addition, it highlights the extent of LD restructuring which occurs when homotypic LD fusion is
triggered in a variety of cell types.
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Introduction

Cells store excess fatty acids as neutral lipids such as

triglycerides (TG) and cholesteryl esters in unique structures called

lipid droplets (also termed lipid bodies). Lipid droplets (LDs) are

proposed to form from the cytoplasmic leaflet of the endoplasmic

reticulum, and eventually bud to generate discrete organelles

bounded by a phospholipid monolayer and containing the cellular

machinery required to regulate the deposition and catabolism of

neutral lipids [1,2,3]. LDs have recently been ascribed many of the

functional characteristics of bona fide cellular organelles including

microtubule-based motility [4,5,6,7,8], fusion [9,10,11] and

interaction with other organelles including the ER [12],

peroxisomes [13], endosomes [14], mitochondria [15] and

caveolae [5,16].

One of the characteristic features of LDs is their specific size and

distribution, which can vary considerably between different cell

types. LDs can enlarge through both addition of neutral lipids to

pre-existing LDs [17,18] or through microtubule-dependent fusion

[9,10]. However, when fatty acid levels are elevated LDs

frequently form as clusters of similarly sized organelles [5,19],

and in model cell lines such as 3T3-L1 adipocytes large numbers

of LDs pack closely together [20], suggesting that unregulated

fusion of LDs does not readily occur. The size of LDs relates to

both the amount of stored neutral lipid, which is the net result of

TG synthesis (lipogenesis) and hydrolysis (lipolysis), and the

regulation of lipolysis by external factors. Recent studies imply

that LD size and distribution can change in states of lipid related

disease. Troyer syndrome, a neurological disease, is associated

with a truncated form of the ubiquitin ligase binding protein

Spartin (also called SPG20). Overexpression of Spartin induced

LD clustering in the perinuclear region whereas knockdown of

Spartin increased both the number and size of oleic acid induced

LDs [21]. Other types of motor neuron disorders, as well as

Berardinelli-Seip congenital lipodystrophy, arise from mutant

forms of Seipin (Fld1p), a protein which when deleted in yeast

caused fusion of LDs and increased levels of neutral lipids [22].

The neutral lipid storage disease Chanarin-Dorfman syndrome

(CDS), which is characterised by the accumulation of LDs in many

tissues, is linked to mutations in comparative gene identification-58

(CGI-58). CGI-58 interacts with adipose triglyceride lipase

(ATGL), the rate-limiting enzyme for TAG catabolism, and

increases its lipase activity [23]. Knockdown of CGI-58 in

preadipocytes significantly increased the number of LDs [24]
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whereas knock-down of ATGL caused a marked increase in

average LD size [25,26]. Similarly, highly enlarged LDs are

present in drosophila nurse cell clones with a mutant form of

Widerborst, a negative regulator of PI3K/PTEN/Akt associated

with diabetes, obesity and some cancers [27]. Together these

studies imply constant and tightly controlled regulation of LD size

under normal conditions across many cell types, which may break

down in disease states.

In view of the number of published studies linking LD size to

different functional states, we have investigated the properties of

LDs in fibroblasts and in adipocytes by quantitative real-time

microscopy. Using the same conditions used in previous studies

but refined microscopic techniques we now show that LDs in

diverse cell types exhibit low fusogenic activity under normal

growth conditions. By screening a variety of pharmacological

agents for their ability to alter LD homeostasis we have identified a

number of reagents with similar chemical structures that stimulate

homotypic fusion of LDs, possibly by localised membrane

disruption. This allowed us to validate our refined light

microscopic methods to study LD fusion and to carry out a

detailed study of the fusion process in living cells. These studies

provide new insights into the dynamic regulation of this crucial

lipid storage organelle while providing new methods for their study

in different pathophysiological states.

Materials and Methods

Cell culture
3T3-L1 fibroblasts (American Type Culture Collection, Rock-

ville, MD) were maintained in Dulbecco’s modified Eagle’s

medium supplemented with 10% (v/v) fetal calf serum (Hyclone/

Invitrogen) and 2 mM L-glutamine (Invitrogen), differentiated

using insulin, dexamethasone, biotin, and isobutyl-methylxanthine

as described previously [28] and used between days 6–12 post-

differentiation. Where required, adipocytes were detached from

the dishes using 0.05% trypsin and electroporated at 960 mF,

0.16 kV (BioRad Gene Pulser II and Capacitance Extender Plus)

for ,20 ms with 100 mg of DNA on day 8 post-differentiation.

NIH-3T3 and BHK-21 cells (American Type Culture Collection,

Rockville, MD) were maintained in Dulbecco’s modified Eagle’s

medium supplemented with 10% (v/v) fetal calf serum and 2 mM

L-glutamine. Transfection of NIH-3T3s was performed using

Lipofectamine Plus (Gibco/Invitrogen) according to the manu-

facturer’s instructions.

Antibodies, plasmids and reagents
Rabbit anti-Phospho PKA Substrate (RRXS/T) (catalog

no. 9624) was obtained from Cell Signaling Technology, rabbit

anti-perilipin A (catalog no. P1998) and mouse anti-a-tubulin

clone DM 1A (catalog no. T9026) were obtained from Sigma.

Alexa488- and Alexa594-conjugated secondary antibodies were

obtained from Molecular Probes Inc. (Eugene, OR). Perilipin A-

YFP was kindly provided by Dr J. Granneman, Wayne State

University School of Medicine, Michigan, U.S.A. Bodipy 493/

503 and Nile Red were obtained from Molecular Probes and

prepared as saturated solutions in ethanol (working dilution,

1:200) and acetone (working dilution, 1:2000), respectively. Oleic

acid was obtained from Calbiochem and conjugated to fatty-acid

free bovine serum albumin prior to use. Forskolin and ML-7 were

obtained from Merck and reconstituted according to manufac-

turer’s instructions. TrypLExpress was obtained from Invitrogen.

All other reagents were obtained from Sigma unless stated

otherwise.

Indirect immunofluorescence microscopy and Real-time
video microscopy

Indirect immunofluorescence microscopy was performed as

described previously [4]. The data were processed using the LSM

510 Meta software (Zeiss), and images were assembled using

Photoshop CS3 (Adobe Systems, Mountain View, CA). Cells for

real-time microscopy were plated onto glass bottomed tissue

culture dishes (MatTek Corp.) or 25 mm round glass coverslips

and transferred into CO2-independent medium (Invitrogen)

supplemented with 0.1% fatty-acid free BSA (Calbiochem).

NIH-3T3 cells were incubated for 2 h or overnight in 50 mg/ml

oleic acid prior to imaging. When used Bodipy 493/503 was

diluted 1:4000 directly to the imaging medium 10 min prior to

commencement of imaging. Reagents were diluted in 1 ml

medium and added to 3 ml medium covering cells prior to

imaging at a final concentration of 50 mM. Cells were used for

real-time data collection for a maximum of 1 hr.

For 4D imaging, time series were collected at 37uC using

Axiovert 200 M SP LSM 510 META or 710 META confocal laser

scanning inverted microscopes equipped with a 63x oil immersion

objective (numerical aperture, NA = 1.4) and a heated stage which

held the glass bottomed tissue culture dishes (MatTek Corp.)

containing the cells. Z-stack confocal images were taken at 30 s

intervals using AIM v3.2 or Zen 2009 software (Zeiss). 4D image

analysis of LD motility and clustering in MEF and NIH-3T3

fibroblasts was performed on 30–200 LDs from at least 4 cells from

two experiments. 4D image analysis of LD fusion in NIH-3T3s

was performed on 50–230 LDs from 5 or more cells across at least

3 replicates using Imaris v7 software to track individual LDs over

time. LDs were tracked using the ‘surface’ tool in Imaris with

smooth area detail level of 0.1–0.5 mm, size of largest sphere was

0.5–1.5 mm (dependent on average LD size, ,0.7 mm for NIH-

3T3), background subtraction thresholding (local contrast) of 20–

40 mm (,20 mm for MEFs, ,30 mm for NIH-3T3), default

number of voxels, and tracking was performed using a Brownian

motion algorithm with a maximum track distance of 20 mm and a

maximum gap size of 2 mm. Analysis of 4D images to determine

LD surface area and volume is described in detail below (Statistical

and mathematical analysis).

2D time series images were collected at 37uC using Personal

Deltavision software with an Olympus IX81 inverted microscope

fitted with a Roper Cool Snap HQ2 monochrome camera, Axyos

technologies heated block which held 22 mm round glass

coverslips on which the cells were grown and 100x (NA = 1.4) or

60x (NA = 1.42) oil immersion objectives. Image analysis of LD

number following treatment with reagents in NIH-3T3s was

performed on 10 or more cells over 4 experiments and LD size was

measured for the largest LD per cell from 15 cells each from 5

experiments. At least 3 live-cell imaging experiments were

performed using each fusogenic reagent. Analysis of LD fusion

events triggered by increasing concentrations of H-89 was

performed on 3 or more cells for each concentration in two cell

types. Alternatively, cells were imaged using an Olympus IX71

inverted microscope fitted with Imago Super VGA 12bit CCD

SensiCam (T.I.L.L Photonics), Axyos technologies heated block

which held 22 mm round glass coverslips on which the cells were

grown and 100x oil immersion objective (NA = 1.4). Time series

images were collected using a 470 nm excitation laser filter with an

exposure time of 80–100 ms or by bright field microscopy. Image

analysis of one and two stage fusion events was performed on 70 or

more fusion events from more than 20 cells. Where relevant

deconvolution was performed using Personal Deltavision software

with the default autoregression algorithm over 10 iterations. All

images were converted to 8-bit TIFF files and further analyzed

Lipid Droplet Fusion
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using ImageJ software (National Institutes of Health, Bethesda,

MD) or Imaris v7 software. QuickTime videos were assembled

using ImageJ 1.37p or Imaris v7, and still images were compiled

using Adobe Photoshop CS3.

Mathematical and Statistical Analysis
Analysis of the volume and surface area associated with LD

fusion was conducted on fusion events which were defined either

as two droplets in one frame becoming one droplet in the

subsequent frame in all dimensions (rendered 3D or ortho slice of

the LDs at their largest apparent diameter) or where the surfaces

of the two initial droplets became continuous in the resulting

droplet (i.e. using perilipin A-YFP). In both cases, the resulting

droplet had to remain a single entity in every following frame. As

analysis of confocal z-stack images demonstrated that the lipid

droplets were spherical, surface area (S.A. = 2pr2) and volume

(V = 4/3pr3) were calculated from the radii of individual droplets,

as measured in the x–y plane bisecting the largest apparent

diameter of the LD. Subsequently volumes and surface areas of the

two initial droplets were compared by linear regression to those of

the final droplet. To analyze lipid droplet fusion under various

treatments, live cells were imaged and a student’s t-test (paired)

was used to compare average lipid droplet number per cell

between the first and last frames (4–5 videos/treatment).

In fixed cells, measurement of the lipid droplet radii through

one x–y plane was used to derive lipid droplet dimensions from

micrographs. Between 500–1200 lipid droplets were analysed in

.200 cells from randomly chosen fields and differences compared

using an unpaired student t-test (two tailed, unequal variance).

Analysis of LD number was performed using a particle analysis

tool in Image J to identify LDs with a circularity of 0.8–1.

Western blotting
SDS-PAGE and Western blot analysis was carried out

essentially as described previously [4]. Briefly cells were lysed in

10 mM Tris/150 mM NaCl/5 mM EDTA, pH 7.4, containing

phosphatase and proteinase inhibitors (Roche), and solubilised in

Laemmli sample buffer containing 25 mM DTT. Immunolabeled

proteins were visualized using HRP-conjugated secondary anti-

bodies and developed using the Supersignal ECL reagent (Pierce/

Quantum Scientific).

Results

Analysis of constitutive LD fusion: a quantitative 3D
characterization

Despite many reports of LD clustering and studies of LD

dynamics in a variety of cell types, few observations of LD fusion

have been reported [9,10,11,18,29,30]. To examine LD dynamics

and interactions we first utilised mouse embryonic fibroblasts

(MEFs), which are characterized by extremely thin cytoplasmic

regions and so are conducive to live cell imaging. The cells were

incubated with 50 mg/ml oleic acid for 2 hr prior to imaging to

increase the size and number of LDs, and treated with Bodipy 493/

503 to label the neutral lipid components throughout the core of the

droplet. Z-stack images of live cells were acquired every 30 s over a

30 min period using time-lapse confocal fluorescence microscopy.

Previous studies have shown that LDs undergo microtubule-based

motility [4,5,6,31] although the degree of LD movement varies with

cell type (for review see [32]). Tracking of individual LDs in MEFs

showed an average track length of 9.5 mm63.3 mm but an average

displacement of only 2.2 mm60.3 mm (Fig. 1a, Video S1),

indicating that LDs in MEFs exhibit very little directional

movement. LDs were highly clustered with an average of 65% of

LDs in close proximity (within 300 nm) to another LD. LDs are

commonly visualised by staining the neutral lipid core with

fluorescent dye that allows clusters of LDs to be readily resolved

into individual components when imaged through the x–y axis. The

resolution of individual LDs could be further enhanced by

deconvolution (Fig. 1b). However, the resolution of individual

LDs within a cluster was lost when z-stack images were collapsed (in

the z axis) or surface rendered. These techniques generally resulted

in clusters of LDs appearing as large irregular structures and LDs in

close proximity to one another to appearing as a single entity

(Fig. 1c). In order to analyse LD dynamics in Bodipy-stained cells, a

combination of 2D and 3D visualisation was used. Despite the

extensive LD clustering observed in MEFs no LDs appeared to

undergo fusion in the observed time frame.

Studies by Bostrom and colleagues reported constitutive LD

fusion in NIH-3T3 fibroblasts [10]. To determine if the difference

in reported LD fusion in NIH-3T3s and the lack of observed LD

fusion in MEFs could be related to a difference in LD motility or

clustering, analysis of LD dynamics in NIH-3T3s was performed

as described above (using conditions identical to those reported by

Bostrom et al [10]). LDs in NIH-3T3 fibroblasts were found to

travel an average of 6.660.4 mm with an average displacement of

2.960.4 mm, similar to LD motility observed in MEFs. NIH-3T3

cells also showed a similar level of LD clustering as seen in MEFs

with an average of 52% of LDs in close proximity to one another

(Fig. 1d). To examine the dynamics of LD fusion, z-stack images of

live cells were acquired over 5 min periods using time-lapse

confocal fluorescence microscopy and subsequently collapsed (in

the z plane) or surface rendered to produce 2D and 3D images,

respectively. Analysis of LD interactions was performed using the

criteria for fusion as outlined by Bostrom et al [10] (two initial

droplets are not more than 3.5 mm apart, the volume of the

resulting droplet must not exceed the combined volume of the two

initial droplets by more than 50% and must be present in the

timepoint following fusion without a change in volume). Many of

the LDs were closely associated with other LDs during the capture

time and 2.160.9% of the total number of LDs appeared to fuse

as defined by the above criteria. However, analysis in the z-plane

of the apparently fused LDs revealed irregular profiles, not readily

discernible in the x–y plane, which were not consistent with the

more spherical profile of unfused droplets (Fig. 1e, left panel) or

droplets formed when fusion was triggered (see below for examples

of triggered fusion). Further analysis of each ‘fused’ droplet

observed in the 3D rendered cells showed that 69.9% of ‘fused’

droplets were clearly separate entities when viewed in unrendered

x–y planes through a z-stack. In addition, although we were able

to observe a ‘waist-like’ structure between LDs prior to fusion in

3D rendered cells, these structures were not apparent when the

LDs were analysed in single x–y planes (Fig. 1f). In light of the

discrepancies between ‘fused’ droplets when visualised in different

planes, and in comparison to unequivocal fusion events observed

when the cells were treated with a variety of agents (see below) we

established the following criteria to define LD fusion in this system;

[1] fused LDs persist as a single entity for the remainder of the

capture time (which must be no less than half the image capture

time, here 2.5 min), as expected for a stable fusion event, [2] over

that period no discontinuity between fused LDs is observed in

either the x–y or the x-z-axis and [3] the resulting droplet becomes

increasingly spherical as fusion progresses (irregularities in LD

shape do not persist for more than 2 min). Using these criteria, in

our hands no unequivocal fusion events were observed in NIH-

3T3 cells imaged over 5–30 min, suggesting that constitutive

homotypic LD fusion is a rare event and is likely to be tightly

regulated.

Lipid Droplet Fusion
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Screening for agents with lipid droplet fusion activity
To begin to examine the dynamic regulation of LDs we

screened a number of inhibitors of protein kinases (eg. protein

kinase A, PKA; extracellular signal-regulated kinase, ERK) or

upstream receptors (b-adrenergic receptors, b-ARs) for their

effects on LD size and number in NIH-3T3 fibroblasts (Table 1).

To screen for LD fusion, NIH-3T3s were incubated in 50 mg/ml

oleic acid overnight to generate large numbers of mature LDs,

Figure 1. Imaging lipid droplet fusion in NIH-3T3 cells. (a) Bodipy493/503 stained MEFs were imaged using time-lapse fluorescent z-stack
confocal microscopy for 30 min. Tracking of the LDs using Imaris software demonstrated that the LDs underwent little directional motility. Tracks are
shown through time from blue to white. Bar = 5 mm. (b) Images of Bodipy493/503 stained NIH-3T3s were deconvolved to increase the resolution of
individual LDs. Bar = 10 mm. (c) 3D rendering of Bodipy493/503 stained LDs in close proximity can produce a single entity (arrows). Bar = 1 mm. (d)
50% of the LDs in NIH-3T3s are found in clusters (arrows). Bar = 10 mm. (e) Examples of juxtaposed LDs (yellow) which appear to fuse and have a
spherical profile as viewed in the x–y plane of rendered LDs but have a highly irregular profile in the x–z plane. Bar = 1.5 mm. (f) The appearance of a
‘waist-like’ structure between two rendered LDs in the x–z and x–y planes is absent when viewed in a single unrendered x–y plane. Bar = 1 mm.
N = nuclei.
doi:10.1371/journal.pone.0015030.g001
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treated with reagents for 1 hr, fixed and stained with Bodipy493/

503. Randomly selected micrographs were deconvolved and the

cells analysed for LD number and size.

The initial reagent screen revealed that treatment with H-89,

ML-7, propranolol and SR 59230A resulted in a significant

reduction in LD number with a concurrent increase in average LD

size, indicative of LD fusion (Figure 2a, b). To confirm that the LD

remodelling seen in the fixed cells was the result of LD fusion,

rather than increased lipid accumulation in LDs or inhibition of

LD fission or catabolism, time-lapse z-stack imaging of live cells

was performed. No detectable alteration in the structure of LDs,

including fission or fusion events, was observed in NIH-3T3 cells

stained with Bodipy493/503 during prolonged imaging (up to

30 min) under control conditions (Fig. 2c). However, treatment

with 50 mM H-89 (Figure 2d, Video S2), 50 mM ML-7, 50 mM SR

59230A and 200 mM propranolol triggered fusion of adjacent LDs

as defined by the above criteria, where the LD contents merged to

form a single droplet with a spherical profile in all planes, as well as

cell rounding (data not shown). Fusion was only observed in cells

treated with reagents at well above physiologically relevant

concentrations ($50 mM). Treatment of NIH-3T3 and baby

hamster kidney (BHK-21) cells with increasing concentrations of

H-89 showed inhibition of phospho-PKA substrate phosphoryla-

tion was at least partly achieved with 10 mM H-89 whereas

homotypic LD fusion only occurred at concentrations of 50 mM or

above (Figure S1a). Furthermore, the rate of LD fusion appeared

to be concentration dependent as 100 mM H-89 triggered a 6-fold

increase in the number of fusion events over cells treated with

50 mM H-89 (Figure S1b). In addition, LD fusion events were not

observed in cells treated with less than 200 mM propranolol (data

not shown) despite inhibition of both the b1- and b2-ARs being

achieved at much lower concentrations [33]. Together these data

suggest that LD fusion was triggered by some other property of the

reagents, for example biophysical properties, rather than simply

the inhibition of their respective targets. Despite the ambiguity

surrounding the mechanism of action of these drugs, we have

identified H-89, ML-7, propranolol and SR 59230A as effective

triggers of homotypic LD fusion.

To fully validate homotypic fusion of LDs (where the surfaces of

the initial droplets become continuous and the contents merge)

from possible docking events (where the LDs are in close contact

but do not become one droplet), Perilipin A-YFP (Plin A-YFP) was

used as a marker of the LD surface. A monolayer marker produces

more reliable results than staining the LD core with a fluorescent

dye, particularly as imaging through the LD in single x–y planes

allows demonstration of the continuation of the membranes during

LD fusion. When expressed in NIH-3T3 cells Plin A-YFP localised

to the surface of all detectable LDs as judged by Nile Red staining

(Fig. 2e) and a net increase in number and mean LD size was

observed (data not shown), consistent with previous studies [34].

However, overexpression of Plin A-YFP did not cause LD fusion

within the timeframes studied here, as judged by phase contrast

microscopy and by the use of the Bodipy dye (data not shown).

Simultaneous phase-contrast and fluorescent imaging showed

adjacent cells with and without expression of Plin A-YFP

underwent LD fusion with similar kinetics when treated with

50 mM H-89 (Data not shown), demonstrating that expression of

Plin A-YFP had no observable influence on LD fusion. Further

analysis of fusion between Plin A-YFP-labelled LDs showed

continuation of the LD membrane following fusion.

Stimulated fusion of lipid droplets in adipocytes
We next investigated the characteristics of chemical-induced LD

fusion in 3T3-L1 adipocytes. Unlike fibroblasts, which contain tens

of small LDs (,1 mm diameter), 3T3-L1 adipocytes contain a

number of large, perinuclear LDs (5–10 mm diameter), which

makes them ideal for detailed analysis of the dynamics of

monolayer-monolayer fusion, as occurs between fusing LDs. Live

cell imaging was performed to determine if the fusogenic reagents

identified in the fibroblast screen could trigger LD fusion in 3T3-

L1 adipocytes. Analysis of brightfield time-lapse images of 3T3-L1

adipocytes showed low motility and no fusion events under control

conditions (Fig. 3a). However, treatment with 50 mM H-89 (Video

S3), ML-7 (Fig. 3a) or SR 59230A (Video S4) triggered the rapid

fusion of adjacent LDs (Fig. 3a). Further analysis of 3T3-L1

adipocytes treated with H-89 showed that LD fusion was triggered

in all cells observed. LD fusion appeared temporally regulated,

with fusion occurring 16.662.6 min after the addition of H-89

and reaching an apparently stable state (no further fusion events)

after 42.463.1 min. Detailed analysis was also performed on both

single slice and z-stack real-time images of 3T3-L1 adipocytes

expressing Plin A-YFP. In control cells Plin A-YFP labelled LDs

showed very little motility and no detectable fusion within a

45 min time period (Fig. 3b). In contrast, over the same time

period treatment with 200 mM propranolol resulted in multiple

LD fusion events in over 80% of cells analysed (Fig. 3b, Video S5,

detail Video S6). Fusion triggered by propranolol was temporally

regulated, similar to that observed in H-89 treated cells. Individual

fusion events occurred rapidly initiating approximately 45 min

after addition of propranolol, before the LDs again entered an

apparently stable state. Fusion triggered by SR 59230A (50 mM), a

selective b3-AR antagonist, also followed a similar pattern with

fusion ceasing 34.664.1 min after initiation. Imaging of Plin A-

YFP labelled LDs in a single x–y slice clearly showed continuation

of the membrane during fusion triggered by SR 59230A (Fig. 3c).

In addition to triggering LD fusion, treatment with H-89, ML-7,

propranolol and SR 59230A all induced cell rounding. To

determine if cell rounding itself, through loss of adhesion to the

substratum or disruption of the cytoskeleton, could trigger LD

fusion 3T3-L1 adipocytes were treated with nocodazole to disrupt

the microtubule network, cytochalasin D to disrupt the actin

network or trypsin to detach cells from the substratum. Treatment

Table 1. Agents screened for lipid droplet fusion activity.

Reagent Targets

H-89 PKA, S6K1, ROCK-II, MSK-1, PKBa, AMPK, PKG, CaCMK-II,
MLCK, ERK1/2, PRK2, RSK1/2, PKD1

ML-7 MLCK, MSK-1

Propranolol B-adrenergic receptors

SR 59230A B3-adrenergic receptor

U0126 MEK, PRAK, SAPK2a/2b

KT5720 PKA, PDK-1, MEK, MSK-1, PKBa

BIM-I PKC isoforms

Primary targets highlighted in bold. PKA, cAMP-dependent protein kinase; S6K1,
p70 ribosomal protein S6 kinase 1; ROCK-II, Rho-dependent protein kinase II;
MSK-1, mitogen- and stress-activated protein kinase 1; PKBa, protein kinase B a;
AMPK, AMP-activated protein kinase; PKG, cGMP -dependent protein kinase;
CaCMK-II, calcium/calmodulin-dependent protein kinase II; MLCK, myosin light
chain kinase; ERK1/2, extracellular-signal-related kinase 1/2; PRK2, protein
kinase C-related protein kinase 2; RSK1/2, p90 ribosomal protein S6 kinase;
PKD1, serine-threonine protein kinase D1; MEK, MAPK kinase (also called MKK);
PRAK, p38-regulated/activated kinase; SAPK2a, stress-activated protein kinase
2a (also called p38); SAPK2b, stress activated protein kinase 2b (also called
p38b2); PDK-1, 3-phosphoinositide-dependent protein kinase 1; PKC, protein
kinase C; BIM-I, bisindolylmaleimide I.
doi:10.1371/journal.pone.0015030.t001
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of 3T3-L1 adipocytes with nocodazole disrupted the microtubule

cytoskeleton but did not alter LD morphology (Figure S2a) or

increase LD volume (Figure S2b). No LD fusion was observed in

time-lapse images of 3T3-L1 adipocytes treated with the above

reagents for up to 30 min (data not shown). In addition, the

microtubule network was not required for LD fusion to occur.

Disruption of the microtubule network with nocodazole did not

prevent LD fusion in cells subsequently treated with 200 mM

propranolol (Figure S2). Together this data suggests that LD fusion

is not a direct result of cell rounding.

Taken together the results suggest that defined chemicals can

trigger LD fusion in a specific fashion but that this effect is likely to

be unrelated to their properties as kinase inhibitors. This ability of

these fusogenic chemicals to trigger LD fusion in 3T3-L1

adipocytes was subsequently used as a model system with which

to study the dynamics of LD fusion in vivo.

Lipid droplet fusion occurs in two stages
Real-time fluorescence microscopy of live cells was undertaken to

examine the characteristics of homotypic LD fusion. 3T3-L1

adipocytes with and without ectopic expression of Plin A-YFP were

used as model systems in which to analyse individual fusion events

triggered by the addition of H-89 or SR 59230A. Detailed analysis

of fusion by fluorescence microscopy in Plin A-YFP expressing cells

and by brightfield microscopy in untransfected cells revealed two

populations of fusing LDs; those in which fusion was completed and

the resulting droplet was spherical within 10 s (1 frame) (72.9% and

75.3% of total fusion events in untransfected and transfected cells,

respectively) and those where fusion appeared to occur in two

stages: an initial rapid fusion of the surfaces of the two LDs to form a

continuous membrane within 10 s (1 frame), followed by a slower

merging of the contents and the reformation of a single round LD

which occurred over 10 s to 17.5 min (27% and 24.7% of total

fusion events in untransfected and transfected cells, respectively)

(Fig. 4a, Video S7). In both transfected and untransfected cells, the

majority of two-stage fusion events reformed spherical droplets

within 100 s of initial fusion of the membranes (90% in

untransfected cells, 67% in Plin A-YFP expressing cells), although

a small number of droplets in the Plin A-YFP expressing cells took

up to 17.5 min to regain a spherical shape, as judged by the

circularity of the LD surface in a single x–y plane.

Lipid droplet surface rearrangement occurs both prior to
and following lipid droplet fusion

Under control conditions Plin A-YFP in fibroblasts and

adipocytes uniformly localised to the LD surface and formed a

continuous ring in a single x–y slice (Fig. 4b). Following treatment

with fusogenic reagents a marked redistribution of Plin A-YFP over

the surface of the LDs was observed, with the formation of dense

patches of Plin A-YFP prior to LD fusion (Fig. 4b, Video S8), or the

directional redistribution of Plin A-YFP on LDs that did not

subsequently undergo fusion for the duration of imaging (30 min)

(Fig. 4c). Post-fusion, Plin A-YFP was observed to redistribute into

large, discrete structures on the surface of the fused LD, often

appearing fixed at the site of fusion (Fig. 4d). Prolonged imaging of

fused droplets showed that these dense Plin A-YFP structures

persisted for over 30 min. Despite the redistribution of Plin A-YFP

on the LD surface, the LD itself remained intact and spherical, as

determined by 3D rendering of fixed cells and visualisation of the

lipid core by Nile Red staining (Fig. 4e).

Volume but not surface area is conserved during lipid
droplet fusion

LDs assume a spherical shape in 3T3-L1 adipocytes consistent

with a low surface area to volume ratio, as seen in 3-dimensional

rendering of z-stack confocal images (Fig. 5a). Fusion of two

spheres must result in a sphere with either the same volume or the

same surface area as the two initial spheres. To determine whether

surface area (membrane) or volume was conserved during LD

fusion, we analysed the change in volume and surface area of

resulting fused LDs relative to the two donor LDs. We measured

the volumes and surface areas of 60 pairs of donor LDs in live cells

and used these values to predict the volume of the resulting LD,

assuming either volume or surface area conservation. To

determine how closely the predicted volumes matched the actual

volumes, the two sets of predicted volumes were plotted against the

measured volumes of the resulting LDs (Fig. 5b). In the case where

the volumes of the two donor LDs were conserved, we showed a

linear relationship between the predicted and measured volumes

with a slope of 1, demonstrating that the predicted volumes of the

resulting LDs closely match the actual volumes. However, where

the surface areas of the donor LDs were conserved, the slope of the

trend line was 0.71, showing that the predicted volumes of the

resulting LDs were larger than the actual volumes. Together, this

demonstrated that the volume of the two donor LDs was

conserved during fusion (Fig. 5b). Modelling of fusion between

LDs of a range of sizes indicated that the fused LDs achieved a

minimal volume with a resulting loss of up to 22% of the combined

starting surface area, within 30sec of the fusion event (Fig. 5c). As

LDs are constrained within a limiting phospholipid monolayer

these data suggest that either phospholipids are rapidly removed

from the LD following fusion, or that significant compaction of the

LD phospholipid monolayer can occur.

Discussion

The processes governing LD biology are currently under intense

scrutiny as many metabolic diseases have been associated with

changes in LD distribution, function and size. The formation of

LDs in some cell types, especially macrophages, liver and muscle,

is associated with the progression of increasingly common

metabolic diseases such as insulin resistance, type II diabetes and

cardiovascular disease. In order to elucidate the mechanisms

behind changes in LD morphology in disease states it is necessary

to develop a more complete understanding of the fundamental

biology of LDs. Of particular interest is the regulation of LD size.

It is well documented that an increase in fatty acids leads to the

formation of tightly packed clusters of similarly sized LDs

[5,11,18,19] which are able to function as discrete organelles

[6]. However, fusion of LDs has been observed very rarely

[18,29,30], with few exceptions [9,10,11]. This suggests that if

Figure 2. Lipid droplet fusion can be triggered specifically by chemicals. (a) Representative images NIH-3T3 cells treated with a variety of
chemical reagents and stained with Bodipy493/503. Bar = 10 mm, N = nucleus. The chemical structure of each reagent appears beside the image. (b)
Random micrographs from each reagent treatment were analysed for both LD size and number. Fusogenic reagents caused a decrease in LD number
concurrent with an increase in LD radius. Error bars represent the S.E.M of at least 12 cells from 3 or more replicates, *p,0.0005, **p,0.005,
***p,0.05. (c) Prolonged imaging of LDs using Bodipy493/503 in NIH-3T3 cells failed to detect LD fusion. Bar = 5 mm, N = nucleus (d) Time-lapse
imaging of NIH-3T3 cells stained with Bodipy493/503 demonstrated that multiple fusion events were triggered by addition of 50 mM H-89. Coloured
arrows indicate fusing pairs of LDs. Bar = 10 mm (e) Plin A-YFP was expressed in NIH-3T3 cells and the LDs detected using Nile Red. Bar = 10 mm.
doi:10.1371/journal.pone.0015030.g002
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fusion of mature LDs were to occur, it would be an infrequent and

highly regulated event. As LD size (volume) is very consistent

within a specific cell type, fusion would have to be balanced by

rapid removal of neutral lipids from the newly formed droplet or

as yet unobserved subsequent fission events (which would require

additional monolayer formation). Although homotypic LD fusion

has been observed in 3T3-L1 cells undergoing differentiation [35],

this process is likely to be tightly controlled as the large LDs

present in mature differentiated 3T3-L1 adipocytes pack tightly

together without resulting in constitutive LD fusion. Regulated

fusion of LDs has been shown to occur in Drosophila S2 cells

lacking Cct1 or Cct2, proteins involved in phospholipid synthesis.

Figure 3. Fusion can be triggered in 3T3-L1 adipocytes. (a) 3T3-L1 adipocytes were replated and imaged in real-time using bright field
microscopy for a total of 30 min. No LD fusion events were observed when cells were treated with vehicle (DMSO). However, addition of 50 mM SR
59230A, 50 mM H-89 or 50 mM ML-7 triggered fusion of LDs (arrows in blow-up) and cell rounding. Bar = 20 mm. (b) Perilipin A-YFP was transiently
expressed in 3T3-L1 adipocytes and imaged by real-time microscopy in the absence or presence of 200 mM propranolol. Z-stack confocal microscopy
images were acquired every 30 s over 45 min and rendered to produce a 3D image of the cell. There was no significant motility or detectable fusion
of labelled LDs in control cells. Following treatment with 200 mM propranolol, multiple LD fusion events were observed in over 80% of the cells
expressing perilipin A-YFP. Many LDs underwent multiple fusion events, highlighted in the sequential fusion of three LDs (insert). Bar = 10 mm,
insert = 2 mm. (c) 3T3-L1 cells transiently expressing Plin A-YFP were imaged in a single plane during treatment with 50 mM SR 59230A. The
membranes of the two fusing LDs became continuous within 10 s and the LD cores had merged within 30 s. Bar = 20 mm, blow-up = 10 mm.
doi:10.1371/journal.pone.0015030.g003
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Knockdown of other genes involved in phospholipid biosynthesis

(CK, HLH106, SCAP and FAS) also resulted in an increase in LD

size concurrent with a decrease in LD number, presumably due to

LD fusion [11]. From studies in COS7 cells, treatment with fatty

acid or palmitate induces LD formation which is associated with

an increase in the amount of phosphatidylcholine (PC) (as well as

TG and diacylglycerol) in the LD fraction [18]. As PC is limiting

in Cct1 knockdown cells, it has been suggested that a decrease in

PC, along with an increase in the relative amount of phosphati-

dylethanolamine may promote LD fusion to decrease the surface

area to volume ratio, limiting the requirement for PC for

membrane synthesis [11].

Although unregulated LD fusion has not been readily observed

in most cell types, recent studies by Bostrom et al [9,10] show

constitutive fusion of approximately 15% of the total LDs in NIH-

3T3 cells at any given time. These fusion events have been shown

to be microtubule dependent and mediated by SNARE proteins

[9,10]. Although this study showed a striking difference in the

apparent size and distribution of the LDs in SNAP23 knockdown

cells compared to control conditions [9], our results suggest that

this treatment may alter clustering or docking of LDs rather than

fusion. The methods described here can now be applied to the

question of SNARE-mediated LD regulation and to the study of

other proteins proposed to regulate homotypic fusion of LDs.

As no examples of unequivocal LD fusion were observed under

control conditions, we screened for reagents that may modulate

LD fusion. Here we have shown that a variety of pharmacological

reagents at used at high concentrations can trigger homotypic LD

fusion in both fibroblasts and adipocytes. Treatment with 50 mM

H-89, 50 mM ML-7, 50 mM SR 59230A and 200 mM propranolol

each triggered rapid fusion of adjacent LDs. Each of these reagents

have different documented primary targets and a number of listed

off-target effects [36,37,38,39]. Comparison of the structures of the

fusogenic reagents to those which did not trigger fusion revealed

the presence of a naphthalene group (two benzene rings joined in

the ortho position) in three of the four fusogenic reagents; H-89,

ML-7 and propranolol. The presence of a naphthalene group in a

molecule creates a highly hydrophobic region which has been

shown to insert into the hydrophobic core of a lipid bilayer

[40,41,42]. A study of the mechanism of action of propranolol on

artificial membranes showed that propranolol disrupts the outer

phospholipid monolayer of liposome bilayers prior to the

formation of ‘worm-like micelles’ [43]. In addition, treatment of

liposomes with low concentrations of propranolol resulted in

Figure 4. Lipid droplet fusion occurs in two stages and the lipid droplet surface is disrupted upon treatment with fusogenic
reagents. (a) 3T3-L1 adipocytes expressing perilipin A-YFP were imaged in real-time for a total of 30 min. Analysis of single fusion events in 3T3-L1
adipocytes treated with 50 mM SR 59230A showed that the initial fusion (defined by the continuity of the LD membranes) was completed within 1
frame (30 s) whereas the reformation of a spherical structure could take several minutes. Bar = 10 mm. (b) H-89 (50 mM final concentration) was added
directly to the medium whilst imaging (Bar = 20 mm). Prior to any LD fusion being observed, Plin A-YFP redistributed into dense patches on the LD
surface (arrows). Bar = 10 mm. (c) In adipocytes treated with SR 59230A the directional loss of Plin A-YFP across the surface of the LDs was observed.
Bar = 10 mm. (d) An example of the appearance of a discrete, intensely fluorescent structure at the site of LD fusion. Bar = 10 mm. (e) 3D rendering of z-
stack images show the LD core (stained with Nile Red) remains spherical although the surface has been disrupted (as seen by Plin A-YFP labelling).
Bar = 5 mm.
doi:10.1371/journal.pone.0015030.g004
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stabilisation of the liposomes, suggested to be the effect of

interactions between the propranolol and proteins on the liposome

surface. Treatment of the same liposomes with high concentrations

of propranolol destabilised the liposomal membranes causing them

to lyse [44]. This may explain the observation that fusion occurs in

3T3-L1 adipocytes treated with 200 mM propranolol but not

100 nM propranolol (data not shown). Together this data leads to

the possibility that some of the fusogenic reagents found in our

screen trigger LD fusion at high concentrations at least in part

through insertion into, and local disruption of, the LD phospho-

lipid monolayer. This hypothesis is in agreement with the

observation that triggered LD fusion only occurs between adjacent

LDs, rather than trafficking of LDs towards one another prior to

fusion as would be expected for functionally regulated LD fusion.

However, a similar mechanism of local membrane disruption may

be utilised by the cell on a small scale to allow homotypic fusion to

occur in specialised scenarios, such as the reformation of large LDs

from microLDs produced during stimulated lipolysis in adipocytes.

Figure 5. Modelling and analysis of individual lipid droplet fusion events. Sequential confocal images taken through the z-axis and
subsequent 3D rendering of the z-stack clearly show the spherical shape adopted by perilipin A-YFP containing LDs in 3T3-L1 adipocytes. Bar = 2 mm.
(b) LD volumes were calculated following 60 individual fusion events and plotted against the predicted volume, assuming either conserved volume
(dark grey circles) or conserved surface area (light grey squares) of the initial LD. The data were analysed by linear regression and the best fit in each
case designated by a solid line. The equation of the trend line, and R-squared value is displayed adjacent to each data set. Analysis clearly
demonstrated that the best fit was attained when the volume was conserved (slope of the line = 1). (c) Schematic modelling of LD fusion
demonstrates the excess surface area generated by fusion when volume is conserved.
doi:10.1371/journal.pone.0015030.g005
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Importantly, although we were not able to discern the mechanism

of action of the fusogenic reagents, this study demonstrates that

LD fusion can occur and we were able to use this system to

perform detailed analysis of the unique dynamics arising from

fusion between monolayer membranes within the cell.

Using the fusogenic reagents found in our screen allowed us to

characterise LD fusion. In the majority of treated cells the LDs

underwent rapid homotypic fusion with adjacent LDs, reaching an

apparently stable state approximately 30 min after fusion was first

observed. This temporal regulation may be the result of saturation

of a system or pathway in the fusion process, or the resulting

droplets being too far apart to undergo further fusion events.

Approximately a quarter of the fusion events recorded progressed

via a two-step process where the initial membrane fusion was

observed within 10 s, followed by the gradual merging of the LD

contents over 10 s to 17.5 min. Addition of fusogenic reagents also

induced LD surface rearrangement prior to and following LD

fusion, which may be further indication that the fusogenic reagents

trigger fusion by disrupting the LD membrane. Plin A-YFP on the

LD surface was seen to form dense patches upon the addition of

fusogenic reagents, leaving areas of the surface without Plin A-

YFP. Furthermore, following fusion Plin A-YFP often decorated

the site where fusion had occurred with stable, large and intensely

fluorescent patches. One possibility is that these intense patches of

Plin A-YFP labelling denote flaps of excess membrane generated

through LD fusion. Modelling of LD fusion based on measure-

ments of LD size during fusion showed that the volume of the two

initial droplets was conserved in the final fused droplet, which can

be predicted to generate excess membrane. Regulated LD fusion

in control cells could therefore provide membrane phospholipids if

required for other cellular processes. This would also generate

larger LDs, which have a more efficient surface area to volume

ratio for lipid storage. Although constitutive LD fusion in basal

cells will remain controversial, we have shown that LD fusion can

occur in both fibroblasts and adipocytes though in our hands this

occurs only when triggered by the addition of fusogenic reagents

and is likely to be the result of LD surface disruption. However, the

possibility remains that under specific conditions cellular processes

may disrupt the LD surface in order to facilitate regulated fusion.

This raises the possibility that tightly regulated partial fusion with

bilayered organelles could also occur [45] We propose that this

mechanism could allow precise regulation of the ‘hemifusion’

between LDs and other organelles, as has been suggested to occur

between LDs and early endosomes [14], facilitating the direct

transfer of LD-associated proteins or lipid components for either

oxidation in mitochondria, efflux from the cell surface, conversion

to phospholipids in the ER or the transfer of fatty acids from the

late endosomes/lysosomes. Spatiotemporal regulation of LD

fusion suggests a mechanism by which monolayer-monolayer

and monolayer-bilayer interactions could be controlled and

represents a unique and powerful model system with which to

study membrane interactions in vivo.

Supporting Information

Figure S1 The fusogenic effect of H-89 is concentration
dependent. (a) BHK cells were treated with increasing

concentrations of H-89 and subsequently stimulated with

Forskolin and IBMX for 30 min. Whole cell lysates were western

blotted for phospho-PKA substrates and tubulin. Representative of

3 experiments. (b) Time-lapse imaging of NIH-3T3s stained with

Bodipy493/503 (Bar = 5 mm) showed a 6-fold increase in the

number of fusion events per cell in cells treated with 100 mM H-89

over cells treated with 50 mM H-89. Error bars represent the

S.E.M of at least 10 cells per condition from two experiments.

*p,0.05.

(TIF)

Figure S2 Cell rounding does not trigger LD fusion. (a)

3T3-L1 adipocytes were treated for 30 min with 44 mM

nocodazole and either fixed directly in ice-cold methanol for

3 min, or further treated with 200 mM propranolol for 1 hr prior

to fixation. Cells were labelled for a-tubulin and perilipin A, and

the nuclei detected using DAPI. Bar = 20 mm (b) Cells treated as in

(a) were fixed in 4% PFA, labelled for perilipin A and stained with

DAPI. The average volume of LDs/cell is the percentage change

relative to the control volume in two different experiments. Error

bars represent the S.D. of 500–1200 cells from at least 3 replicates.

*p,0.001.

(TIF)

Video S1 Mouse embryonic fibroblast treated with oleic acid

overnight and stained with Bodipy493/503. Z-stack confocal

image taken at 1 frame per 30 s, volume rendered. Coloured lines

indicate LD movement over time.

(MOV)

Video S2 NIH-3T3 treated with oleic acid overnight and stained

with Bodipy493/503. Z-stack confocal image taken at 1 frame per

minute, volume rendered. Treatment with 50 mM H-89 triggered

fusion of adjacent LDs (examples circled).

(MOV)

Video S3 3T3-L1 adipocytes imaged by brightfield microscopy

at 1 frame per 10 s. Treatment with 50 mM H-89 triggered

dramatic fusion of adjacent LDs.

(MOV)

Video S4 3T3-L1 adipocytes imaged by brightfield microscopy

at 1 frame per 10 s. Treatment with 50 mM SR 59230A triggered

extensive fusion of adjacent LDs (examples circled).

(MOV)

Video S5 3T3-L1 adipocyte expressing Plin-YFP imaged at 1

frame per minute. Z-stack confocal image, rendered. Treatment

with 200 mM propranolol triggered fusion of adjacent LDs.

(MOV)

Video S6 Detail of LD fusion taken from Video S7 shows

sequential fusion of adjacent LDs.

(MOV)

Video S7 Expression of Plin A-YFP in a 3T3-L1 adipocyte

showed continuation of the LD membranes during fusion

triggered by treatment with 50 mM SR 59230A. Fluorescent

image taken at 1 frame per 10 s.

(MOV)

Video S8 Plin A-YFP redistributed on the LD surface in a 3T3-

L1 adipocyte both prior to, and following LD fusion triggered by

treatment with 50 mM SR 59230A. Fluorescent image taken at 1

frame per 10 s.

(MOV)
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