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Background: The childhood patients with mixed-lineage leukemia rearrangement (MLL-r) gene have 
worse outcome than non-MLL, and thus often treated with high-risk chemotherapy regimens, so targeted 
therapy is important for this type of leukemia. This purpose of study was to explore the effects of ruxolitinib 
on the proliferation, apoptosis, and cell cycle of Nalm-6 cells.
Methods: In this study, human acute lymphoblastic leukemia (ALL) cell line Nalm-6 was used as the 
research object. By constructing an MLL overexpression vector to transfect Nalm-6 cells, exogenous JAK2/
STAT3 signal pathway inhibitor ruxolitinib was applied to observe the proliferation, apoptosis, and cell cycle 
changes of the transfected Nalm-6 cells. Western blot was performed to determine the proteins (MLL-BP, 
JAK, STAT) involved in the mechanism of action of MLL-r leukemia. CCK8 assay and flow cytometry (FCM) 
were used for testing the proliferation and apoptosis among MLL-BP transfected Nalm-6 cells.
Results: Firstly, we determine the IC50 of ruxolitinib on Nalm-6 cells. Secondly, FCM and CCK8 showed 
that ruxolitinib dosedependentlyinhibits proliferation of Nalm-6 cells by blocking the cell cycle at G0/G1 
phase. In addition, FCM showed that ruxolitinib promoted the apoptosis of MLL-BP transfected Nalm-6 
cells. Mechanistically, ruxolitinib inactivated JAK/STAT signaling pathway in MLL-BP transfected Nalm-
6 cells, mediating ruxolitinib’s inhibition of cell proliferation, and inducing apoptosis. Finally, ruxolitinib 
significantly inhibited the proliferation of MLL-r ALL cells and promoted their apoptosis.
Conclusions: These data provide compelling evidence that ruxolitinib is a promising agent against MLL-r 
leukemia cell line. However, it needs going through multiple more steps to confirm before it can be an 
option in clinical practice.
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Introduction

Rearrangements of the histone lysine [K]-MethylTransferase 
2A gene (KMT2A) gene on chromosome 11q23, as refer to 
the mixed-lineage leukemia rearrangement (MLL-r) gene, 
occurred in 10% of adult, while 5% among pediatric acute 
lymphoblastic leukemia (ALL) cases (1,2). Compared to 
non-MLL leukemia, the clinical characteristics of MLL-r-
positive ALL children distinguish them from other types 
of leukemia, mainly due to high white blood cell counts at 
initial diagnosis, and insensitivity to traditional chemotherapy 
drugs, accompanied with a low complete remission rates, 
which showing a 5-year event-free survival (EFS) of 47% and 
an overall survival (OS) of 55%, and was much lower than 
the current survival rate of childhood ALL (80–90%) (3-5). 
Patients with MLL-r are significantly worse off than most 
other leukemia patients and are therefore often treated with 
high-risk regimens. Because there is no useful and precise 
treatment for these leukemias, the current reliance on high-
intensity chemotherapy for MLL-r leukemias, while increasing 
the intensity of chemotherapy may reduce the relapse rate 
in children with MLL-r leukemia, there is a corresponding 
increase in the incidence of treatment-related leukemia 
and morbidity and mortality due to complications such as 
infection-based diseases (6). In addition, the lack of donor 
source, the high number of complications and the long-term 
use of immunosuppressive drugs prevent hematopoietic stem 
cell transplant (HSCT) from being the treatment of choice for 
MLL-r-related leukemia in children (7).

Most of the recent domestic and international studies  

(8-11) have focused on the new functions brought by the 
new fusion protein (FP) part of MLL, however, studies on 
the N-terminal protein part of MLL shared by MLL FPs are 
still lacking. Therefore, it is of more general significance to 
explore the functional studies on MLL-BP (MLL breakpoint), 
the N-terminal protein part shared by MLL. Due to some 
recurrent FPs occurred in tumor cells are critical drivers of 
carcinogenic signals, and which could be effective candidates 
for targeted therapy. For example, mutations of RAS pathway 
members are often mentioned in MLL-r leukemia, so we think 
it is more promising to find out MLL specific signal pathways 
and use targeted inhibitors (12).

The Janus kinase (JAK) family includes four intracellular 
non receptor tyrosine kinases, such as JAK1, JAK2, JAK3 and 
TYK2. After ligand binding, JAK is activated to phosphorylate 
and activate downstream signal transducers and transcriptional 
activators (STATs). Therefore, JAKs plays a crucial role 
in the regulation and homeostasis of hematopoiesis and  
immunity (13). These results have led to the development of 
drugs targeting wild-type and/or mutant JAK2. Ruxolitinib, 
which has been widely used in myeloproliferative tumors, can 
competes with ATP at the catalytic sites of JAK1 and JAK2 as 
an oral reversible class I inhibitor (14).

Based on the information above, we implied that JAK/
STAT signaling pathway might play an important role in 
MLL-r leukemia. Hence, we have used a lot of methods to 
confirm the dependence of MLL on JAK/STAT mediated 
inflammatory signals in the development of leukemia, and 
we have identified clinically feasible approaches to treat 
these leukemias. Of course, this is an early laboratory 
data showing promise in favour of use of JAK inhibitor in 
MLL-r ALL, which needs going through multiple more 
steps before it can be an option in clinical practice. We 
present this article in accordance with the MDAR reporting 
checklist (available at https://tp.amegroups.com/article/
view/10.21037/tp-23-16/rc).

Methods

Cell culture (15)

Nalm-6 is a human B cell precursor leukemia cell line, 
purchased from Guangzhou Geneo Biotechnology Co., 
Ltd. The Nalm-6 cells were cultured in vitro in RPMI 1640 
90% with fetal bovine serum (FBS) 10% medium at 95% 
humidity and 5% CO2 in a constant temperature incubator 
(37 ℃). Cell growth (density and rate) is measured by 
passaging at a ratio of 1:3, every 2 to 3 days.
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Drug concentration exploration (16)

Human ALL Nalm-6 cells are inoculated into 96-well 
plates at a density of 2,000 cells per well in a volume 
of 100 μL per well and treated with exogenously added 
JAK2/STAT3 signaling pathway inhibitor ruxolitinib for 
24 h to a final concentration of 0, 10, 50 and 100 nM,  
respectively. Then add 10 μL of CCK8 solution to each 
well and continue to incubate for 1 h. Select the wavelength 
of 450 nm, measure the light absorption value of each well 
on an enzyme-linked immunosorbent assay (ELISA), record 
the results and calculate the cell viability.

Plasmid transfection into Nalm-6 cells (17)

(I) Pass Nalm-6 cells into a 6-well plate, divided into  
4 wells, each well 3. 2×106 cells per well, 2 mL culture 
medium per well.

(II) Transfection solution configuration, each well 

corresponding to take out two 1. Add 200 μL medium 
to one tube to dilute the plasmid DNA, and mix 
gently. Add 200 μL of serum-free medium dilution 
and plasmid transfection reagent to the other tube, 
mix well, and incubate for 5 min at room temperature. 
Grouping of plasmids is shown in Table 1.

(III) Add the mixed transfection solution to each well of 
cells and gently shake well.

(IV) After 24 h, collect the cells.

Fluorescence quantitative polymerase chain reaction (PCR) 
assay (18)

(I) Total RNA extraction: Add 1 mL of Trizol reagent to 
the collected Nalm-6 cells, mix well with gun blast, 
transfer to RNase-free 1. 5 mL EP tube and lyse for 
10 min. Add 1/5 volume of chloroform to the cells, 
cap the centrifuge tube tightly, shake vigorously by 
hand for 15 s to form an emulsion, and let stand for 
5 min. Note that this step must be a low temperature 
centrifugation, otherwise the product will have a small 
amount of genomic contamination. A white precipitate 
is usually visible. Carefully discard the supernatant 
and add 1 mL of 75% ethanol prepared with diethyl 
pyrocarbonate (DEPC) water. Wash the cap and wall 
of the tube well and flick the bottom of the tube to 
suspend the precipitate and let it stand for 3–5 min. 
Centrifuge at 12,000 g for 5 min at 4 ℃ and discard 
supernatant. Open-dry the precipitate for 2–5 min at 
room temperature in a clean environment, taking care 
not to over-dry, as this may result in difficult RNA 
solubilization. Add the appropriate amount of DEPC 
water to dissolve the precipitate, if necessary, use a 
pipette to gently blow a few times, and then take a 
small amount for detection after complete dissolution, 
and store the rest at −80 ℃.

(II) Reverse transcription: use the total RNA extracted 
from Nalm-6 cells as template to obtain cDNA by 
reverse transcription. 

(III) Design and synthesize the relevant fluorescent 
quantitative PCR primers, and the primer sequences 
are shown in Table 2. Make a 5-fold dilution of the 
obtained cDNA, add it to the fluorescent quantitative 
PCR tube according to the dosage in Table 3, and mix 
well. Place the fluorescent quantitative PCR tube in 
the fluorescent quantitative PCR instrument, and set 
up the program as shown in Table 4.

Table 1 Grouping of plasmids

Plasmids
Groups

1 2 3 4

Ruxolitinib − − − +

Vector (2 μg) − + − −

FLAG-MLL-BP (2 μg) − − + +

+, means addition; −, means none. MLL-BP, mixed-lineage 
leukemia breakpoint. 

Table 2 Primers for fluorescent quantitative PCR

Primer name Primer sequences (5'-3')

MLL-BP-QF CCCATCCCTGGAGAAGGAGA

MLL-BP-QR TGGAAGCTTGTCTGCCTGAG

JAK2-QF CCAGATGGAAACTGTTCGCTCAG

JAK2-QR GAGGTTGGTACATCAGAAACACC

STAT3-QF CTTTGAGACCGAGGTGTATCACC

STAT3-QR GGTCAGCATGTTGTACCACAGG

18S-QF CCCGCAAATTACCCAATTT

18S-QR GCCCTCCAATTGTTCCTCGTTAAG

PCR, polymerase chain reaction; MLL-BP, mixed-lineage 
leukemia breakpoint; JAK, Janus kinase; STAT, signal 
transducers and activators of transcription. 
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Table 3 Reaction system for fluorescent quantitative PCR

Ingredients Dosage

2×ChamQ SYBR qPCR Master Mix 10.0 μL

Primer 1 (10 μM) 0.4 μL

Primer 2 (10 μM) 0.4 μL

50×ROX Reference Dye1 0.4 μL

cDNA 1 μg

ddH2O To 20.0 μL

PCR, polymerase chain reaction. 

Table 4 Reaction procedure for fluorescent quantitative PCR

Stage Procedure Reps Temperature (℃) Time (s)

1 Pre-mutability*1 1 95 30

2 Circular reaction*2 40 95 10

60 30

95 15

3 Dissolution curve*3 1 60 60

95 15

PCR, polymerase chain reaction; Reps, repeat sequence. 

Table 5 Primary antibody dilution ratio

Name of primary antibody Dilution ratio

GAPDH 1:1,000

Flag 1:1,000

p-STAT3 1:1,000

p-JAK2 1:1,000

STAT3 1:1,000

JAK2 1:1,000

GAPDH, glyceraldehyde-3-phosphate dehydrogenase; STAT, 
signal transducers and activators of transcription; JAK, Janus 
kinase. 

Western blot assay (19)

(I) Cells from each of the 6-well plates are transferred to 
2 mL EP tubes, centrifuged at 3,000 rpm for 5 min 
in a 4 ℃ centrifuge, and the supernatant is discarded. 
Protease inhibitor phenylmethanesulfonyl fluoride 
(PMSF) and cocktail are added before use, lyse on ice 
for 30 min, and resuspend by flicking the bottom of 

the tube for 10 min each lysis.
(II) After lysis, centrifuge at 12,000 rpm for 20 min at  

4 ℃, transfer the supernatant to a new EP tube, 
remove 30 μL of supernatant and add 7. The 
supernatant is transferred to a new EP tube, 30 μL of 
supernatant is added to 7.5 μL of 5× sodium dodecyl 
sulfate-polyacrylamide gel electrohoresis (SDS-PAGE) 
loading buffer, then boiled at 100 ℃ for 10 min, and 
then centrifuged at 12,000 rpm for 2 min.

(III) Electrophoresis: fix the prepared gel onto the 
electrophoresis tank and pour the electrophoresis 
solution into the reservoir. 

(IV) Electrotransfer :  the polyvinyl idene f luoride 
(PVDF) membrane is soaked in methanol and 
then soaked in electrotransfer solution together 
w i t h  t h e  f i l t e r  p a p e r.  Tr a n s f e r  c o n d i t i o n :  
300 mA current for 30 min.

(V) Immunoblot color development: after the end of 
membrane transfer, remove the PVDF membrane and 
soak it in Tris Buffered Saline with Tween (TBST) 
skim for closure. Phosphorylated proteins are closed 
with 1–3% BSA. The primary antibody is diluted 
with the closure solution, and the dilution is shown in  
Table 5. After preparing the primary antibody, the 
PVDF membrane is immersed in the primary antibody 
dilution and left overnight at 4 ℃ for 4–6 h. TBST is 
washed fully 5–6 times for 5 min each time. During 
the washing process, note that the membranes should 
not adhere to the dish wall nor overlap to each other. 
After washing, dilute the corresponding secondary 
antibodies with the blocking solution, immerse the 
PVDF membrane in the secondary antibody dilution 
and incubate for 2 h at room temperature in a shaker. 
Wash again TBST fully 5–6 times for 5 min each 
time. Configure the enhanced chemiluminescence 
(ECL) developing solution proportionally, add it 
dropwise on PVDF film, react for several minutes, 
blot dry with filter paper, cover with cling film, fix in 
the cassette, close the cassette and expose according 
to the actual situation. Remove the film and place it in 
the developing solution, rinse with water and fix the 
film. Rinse the film with clean water, dry and scan.

CCK8 assay (20)

The collected cells are inoculated into 96-well plates at 
a density of 2,000 cells per well in a volume of 100 μL 
per well, and incubated for 1 h after 1, 2 and 3 d. CCK8 

https://baike.baidu.com/item/glyceraldehyde/24434816?fromModule=lemma_inlink
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solution is added to each well for 10 μL. The wavelength 
of 450 nm is selected and the light absorption value of 
each well was measured on an ELISA, and the results are 
recorded to calculate the cell viability.

Flow cytometry (FCM)

The collected cells are washed twice with pre-cooled 
phosphate belanced solution (PBS),  each time by 
centrifugation at 1,000 rpm for 5 min at 4 ℃, and the 
supernatant was discarded. Refer to Souza et al.’s research 
for more details (21). 

Statistical analysis

Both nominal and numerical data are used χ2 test/
Fisher precision test and ANOVA/Student t-test. Kappa 
coefficients are used to estimate the consistency between 

qualitative data sets, and Pearson product moment 
correlation coefficients are used to estimate the linear 
relationship between quantitative data sets. GraphPad 
Prism (version 8.2.1 Windows version, GraphPad Software, 
San Diego) is used for graphical analysis. Unless otherwise 
stated, all experiments were conducted in triplicate.

Results

Ruxolitinib reduced the viability of B-ALL cell lines

In order to explore the effect for the growth of ALL cells 
of ruxolitinib, CCK8 assays were used for testing the 
proliferation of Nalm-6. We dealed with Nalm-6 with 
different concentrations of ruxolitinib, and then measured 
the viability by CCK8 assay. As shown in Figure 1A, 
ruxolitinib could obviously reduce Nalm-6 cell viability 
in a dose-dependent manner. Culturing the Nalm-6 cell 

Figure 1 Ruxolitinib inactivated JAK2/STAT3 signaling pathway. (A) CCK8 assays were performed on Nalm-6 cells after 24 h of ruxolitinib 
treatment at an ascending concentration range. Corresponding IC50 value was calculated with the appropriate software (graphpad prism). 
(B-D) PCR detect the expression of the downstream signaling, JAK2 mRNA and STAT3 mRNA in Nalm-6 cells by ruxolitinib treatment. 
(E,F) Western blot detected the downstream signaling, p-JAK2, p-STAT3 in Nalm-6 cells by ruxolitinib treatment. **, P≤0.01; ***, P≤0.001. 
MLL-BP, mixed-lineage leukemia breakpoint; OE, over-expression; PCR, polymerase chain reaction. 
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lines in the presence of ruxolitinib showed an IC50 of  
47.7 μM. Totally, the findings indicated that ruxolitinib 
reduced Nalm-6’s viability.

MLL-BP FPs drive potent activation of inflammatory 
signaling

To biochemically test that STAT3 was activated in MLL-
BP ALL, we monitored STAT3 phosphorylation using 
PCR and Western blotting for key pathway components. 
An analysis of genes, the mRNA of MLL-BP expression 
was close between Nalm-6/MLL-BP over-express (OE) 
cells and Nalm-6 cells treated with ruxolitinib (6.8 vs. 
6.4, P>0.05, Figure 1B). When refer to JAK2, which was 
associated with Nalm-6 expression by PCR assay, revealed 
that it was not significantly differentially expressed in 
Nalm-6/MLL-BP OE cells with or without the addition of 
ruxolitinib (1.1 vs. 0.9, P>0.05, Figure 1C). Also, similar to 
JAK2, compared with Nalm-6/MLL-BP OE cells, STAT3 
was not significantly in Nalm-6 cells treated with ruxolitinib 
(0.9 vs. 0.8, P>0.05, Figure 1D).

However, by Western blotting assay, we found that 
among JAK/STAT signal way, STAT3 was a critical 
downstream mediator.  This  reduct ion in STAT3 
phosphorylation, which occurred after Nalm-6/MLL-
BP OE plus ruxolitinib, suggests that STAT3 activation 
is a direct consequence of Nalm-6/MLL-BP OE protein 
expression in ALL cells (p-STAT3/STAT3: 5.3 vs. 2.8, 
P<0.05, Figure 1E,1F). Furthermore, noticeable decrease in 
phospho-JAK2 were also observed in the Nalm-6/MLL-
BP OE fusion compared to Nalm-6/MLL-BP OE plus 
ruxolitinib (p-JAK2/JAK2: 2.7 vs. 2.2, P<0.05, Figure 1E,1F).  
Taken together, these studies indicate that Nalm-6/
MLL-BP OE protein but not MLL-BP gene activate the 
transcriptional circuitry of inflammatory signaling networks.

Ruxolitinib suppressed the proliferation of Nalm-6 cells by 
arresting cell cycle at G0/G1 phase

When we used CCK8 to detect cell proliferation, we 
found that when compared with the Nalm-6/MLL-BP 
OE transfected Nalm-6 cell group, the survival of Nalm-
6 cell was significantly decreased from 113.6%±2.68% to 
31.45%±2.68% when cells were treated with ruxolitinib 
(P<0.001) (Figure 2A). To confirm if the viability decrease 
among Nalm-6 treated by ruxolitinib was because the 
decreased proliferation in cell, subsequently we study the 
effects of ruxolitinib on cell cycle distribution in Nalm-

6. As shown in Figure 2B,2C, compared with the Nalm-6/
MLL-BP OE transfected Nalm-6 cell group, the ratio of 
Nalm-6 in the G0/G1 phase was significantly increased from 
46.71%±1.95% to 63.85%±1.95% when cells were treated 
with ruxolitinib (P<0.001). These results suggest that 
ruxolitinib suppressed the proliferation of Nalm-6 cells by 
arresting cell cycle at G0/G1 phase.

Ruxolitinib promoted the apoptosis of Nalm-6 cells

Whether ruxolitinib have effect on the cell survival of 
Nalm-6, we conducted the FCM assays. Nalm-6 cells 
were treated with ruxolitinib for 24 h, and then cells were 
stained with Annexin-V and propidium iodide (PI) and 
analyzed by FCM assays. As shown in Figure 2D,2E, when 
compared to the Nalm-6/MLL-BP OE transfected Nalm-
6 cell group, the proportion of Nalm-6 cell was significantly 
increased from 4.8% to 26.8% when cells were treated with 
ruxolitinib (P<0.001). In total, these results indicated that 
ruxolitinib promoted the apoptosis of Nalm-6/MLL-BP 
OE transfected Nalm-6 cells.

Discussion

MLL-r is typically associated with activation of overlapping 
molecular pathways among ALL with poor outcomes (22-25).  
Generally, infants ALL with MLL-r have a 5-year EFS of 
20–40%, while those with wild-type MLL have a percent of 
60% or higher (26,27). Childhood ALL patients with MLL-r 
over than 1 year are better than infants, but remained not 
as good as non-MLL-r cases (28). The latest data estimates 
that the 5-year EFS for children with ALL is about 60%, 
while overall it is about 92% (29). Therefore, these patients 
are considered to be at high risk for pediatric ALL, further 
reinforcing the urgent and unmet need to identify effective 
and highly targeted therapies for this malignant tumor in 
childhood population.

More and more data indicate that proteasome inhibitors 
may be a promising drug for supplementing MLL-r 
leukemia treatment. Kamens et al. noted that the expression 
level of MLL FP in leukemia cells is not too high, and 
hypothesized that strict regulation of FP expression may 
be achieved through proteasome mechanisms. In fact, they 
demonstrated that proteasome inhibitor treatment increased 
the protein level of wild-type MLL and, to a greater extent, 
increased the protein level of the MLL FP (30). Although 
other targeted therapies, such as hypomethylating agents, 
histone deacetylase (HDAC) inhibitors and FMS-like 
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tyrosine kinase-3 (FLT-3) inhibitors, are being explored 
as treatment for MLL-r ALL, However, the translation 
potential of these targets remains to be determined by 
clinical research (31-33). Patients with MLL-r continue to 
receive extreme cytotoxic therapy associated with induction 
failure and severe debilitating effects, even if lasting 
therapeutic effects are achieved.

Although there is a strong theoretical basis for targeting 
tumor promoting fusion oncoproteins in cancer, most of 
these oncoproteins are still difficult to target as drugs. One 
way to circumvent this issue is to identify downstream 
transcriptional or signaling networks activated by these 
FPs and target them. It is worth noting that this study in 
our cell line has shown that ALL cells carrying MLL-BP 
fusion products are highly sensitive to ruxolitinib, indicating 
that these fusion products are attractive candidates for 
targeted treatment of MLL leukemia. In addition to these 
studies, our extensive characterization of the JAK/STAT 
signaling pathway helps to expand the molecular network 
of MLL-r leukemia, which will help to understand the 
hitherto unknown mechanism of MLL-r leukemia. More 

importantly, these datasets on MLL-r leukemia will help 
identify and prioritize targeted therapeutic candidates for 
the disease. We found that MLL-BP FP directly recruits 
JAK2 and effectively activates inflammatory signaling, 
which provides an attractive pathway for therapeutic 
intervention.

Recently, there have been some reports about the 
use of ruxolitinib in children with acute lymphocytic 
leukemia. It is well known that Philadelphia chromosome 
like acute lymphoblastic leukemia (Ph-like ALL) is a 
high-risk subtype of ALL with a high recurrence rate 
and poor prognosis. Functional acquisition mutations in 
JAK2 have been found in high-risk Ph-like ALL subtypes, 
occurring only in conjunction with rearrangement of 
CRLF2 (CRLF2r), which leads to overexpression of 
CRLF2. Approximately 50% of Ph-like ALL patients 
harbor CRLF2r, and roughly half of these patients also 
harbor activating point mutations in JAK1 or JAK2 (34). 
A previous study conducted preclinical in vivo drug testing 
and L-asparaginase in 2/3 CRLF2 rearranged Ph-like ALL 
xenografts, which supported evaluation of the addition 

Figure 2 Ruxolitinib reduced the viability of Nalm-6/MLL-BP OE transfected Nalm-6 cells lines. (A) CCK8 assay show that ruxolitinib 
inhibited the proliferation of Nalm-6/MLL-BP OE transfected Nalm-6 cells. (B,C) Flow cytometric analysis of cell cycle distributions of 
Nalm-6/MLL-BP OE transfected Nalm-6 cells treated by ruxolitinib. (D,E) Ruxolitinib induced the apoptosis of Nalm-6/MLL-BP OE 
transfected Nalm-6 cells. ***, P<0.001; ****, P<0.0001; and ns, P>0.05. MLL-BP, mixed-lineage leukemia breakpoint; OE, over-expression; 
OD, optical density. 
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of ruxolitinib to a conventional induction regimen for 
the treatment of CRLF2 recombinant Ph-like ALL (35).  
Lately, another clinical study showed the outcome 
concerning administration of ruxolitinib in twelve Ph-like 
ALL pediatric patients. Finally, treatment with ruxolitinib 
resulted in complete (n=7) and partial (n=2) remission 
in three patients, but no information was found, so they 
concluded that ruxolitinib could be used as an additional 
compound to activate the JAK-STAT pathway in Ph-like 
ALL patients (36). Consistent with above study, our study 
also demonstrated that aberrations activating JAK-STAT 
pathway existed in MLL-r leukemia, and the effect could be 
reversed by ruxolitinib. Our findings indicate that there are 
specific requirements for JAK2 in high-risk ALL, indicating 
that in the clinical context of the need for new treatment 
methods, such methods may have important therapeutic 
indicators.

Interestingly, the anti-leukemia effects of ruxolitinib 
were observed in MLL-r ALL cells line in our study for the 
first time, our study showed that ruxolitinib inhibited JAK/
STAT activation and significantly impaired the proliferation 
of MLL-BP FP ALL cells and blocked the cell cycle in 
G0/G1 phase, leading to an increase in apoptosis. We 
acknowledge that our study also has limitations. Firstly, we 
only explored this effect in vitro, thus, the next step for us is 
to study animal models in vivo, in order to further confirm 
the conclusion. Secondly, we explored the common part of 
MLL, but it remains unclear which partner gene of MLL-r 
leukemia patients might benefit most from these therapies. 

Conclusions

Our studies demonstrated that ruxolitinib inhibits MLL-r 
proliferation and induces apoptosis by the JAK/STAT 
pathway, revealing the effects of ruxolitinib therapy on 
MLL-r leukemia. This is an early laboratory data showing 
promise in favour of use of JAK inhibitor in MLL-r ALL. 
However, it needs going through multiple more steps to 
confirm before it can be an option in clinical practice.
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