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Single cell RNA sequencing of human
microglia uncovers a subset associated with
Alzheimer's disease
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The extent of microglial heterogeneity in humans remains a central yet poorly explored
question in light of the development of therapies targeting this cell type. Here, we investigate
the population structure of live microglia purified from human cerebral cortex samples
obtained at autopsy and during neurosurgical procedures. Using single cell RNA sequencing,
we find that some subsets are enriched for disease-related genes and RNA signatures. We
confirm the presence of four of these microglial subpopulations histologically and illustrate
the utility of our data by characterizing further microglial cluster 7, enriched for genes
depleted in the cortex of individuals with Alzheimer's disease (AD). Histologically, these
cluster 7 microglia are reduced in frequency in AD tissue, and we validate this observation in
an independent set of single nucleus data. Thus, our live human microglia identify a range of
subtypes, and we prioritize one of these as being altered in AD.
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ARTICLE

ur understanding of microglia has evolved rapidly with

respect to their ontology, role in developmental and

physiological plasticity, as well as involvement in
pathophysiology!2. Recent transcriptome-wide studies of bulk
ex vivo human microglia have consistently suggested that
microglia change with age and have transcriptomes that are
enriched for disease-related genes~>. Further, we observed that
one microglial transcriptional program in the aging dorsolateral
prefrontal cortex (DLPFC) contributes to the accumulation of tau
pathology while two others may relate to -amyloid pathology®,
highlighting the potential of different subsets of microglia being
involved in different neuropathologies. However, these analyses
used cortical-level bulk data, and the need for greater resolution
led us to characterize heterogeneity of human microglia at the
single-cell level. Recently, studies of single nucleus RNA
sequencing from human brain reported either no detectable
population structure in microglial cells”>8 or a maximum of four
transcriptionally distinct microglial subsets®. The limited power
of these studies to explore microglial heterogeneity comes from
undersampling of both microglia as a cell population as well as
the quality of their transcriptome. Here, we decided to explore
microglial heterogeneity in the aging and AD human brain by
targeting living microglial cells.

Genetic studies have highlighted a prominent role for microglia
in susceptibility to different neurodegenerative diseases, particu-
larly Alzheimer’s disease (AD)19-12, The concurrent pathologic
processes taking place in the aging and AD cortex are known to
create a diversity of contexts to which microglial cells can
potentially contribute and respond to, suggesting that there may
be a variety of microglial states with divergent homeostatic or
pathophysiological roles in the older brain. This putative diversity
of states makes targeting microglia in neurodegenerative diseases
challenging: we need to understand the unique role of each subset
in the pathogenesis and progression of age related neurodegen-
erative diseases. Then, we can carefully map which microglial
subset to modulate in which direction in order to restore tissue
homeostasis in brain aging and AD.

To explore microglial heterogeneity, we captured individual
transcriptomes from 16,242 cells. These cells were purified using
our validated experimental pipeline®, and they come from (1)
autopsy samples of the DLPFC of 14 participants in the Memory
and Aging Project (MAP), a study of cognitive aging that includes
prospective brain collection!®14 and (2) 3 temporal cortex sam-
ples from individuals undergoing surgical resection for intractable
epilepsy. These samples represent the two major types of tissue
that are commonly used to extract live human microglia. 99.1% of
these isolated cells express microglial marker genes, and our data
identified multiple different subsets, yielding a catalog of 9 human
microglial subpopulations that are present in both sets of samples.
We illustrate the utility of our population structure model and
associated analyses by assessing for enrichment in disease-related
genes in each microglial subset and by performing a validation
study using a targeted quantitative histological approach that
shows a reduction in the frequency of one of these microglial
subpopulations in individuals with AD. We then replicate this
observation by repurposing DLPFC single nucleus RNA
sequencing data generated from an independent set of MAP
subjects’. Thus, we propose a model of microglial population
structure and highlight one subtype whose frequency is
altered in AD.

Results

Nature and distribution of the single-cell RNA sequencing
data. The primary goal of this report is to derive a model of
microglial population structure with which we can generate and

test disease-related hypotheses. Figure 1 details the workflow and
the design of this study, which included a discovery dataset of
single-cell RNA sequencing (scRNA-seq) from microglia (Fig. 1a)
based on which we define the basic population structure of
microglia, in situ confirmation of our findings (Fig. 1b) and
independent replication of our observation in two independent
datasets (Fig. 1c, d).

To minimize possible sources of heterogeneity, we have
analyzed DLPFC samples obtained at autopsy from participants
of the MAP study: thus, all subjects are part of the same
prospective study of cognitive aging and are autopsied by the
same team of neuropathologists at one site. They undergo the
same, detailed, structured neuropathologic evaluation for aging-
related pathologies. Further, all samples were processed by the
same laboratory member in the same way to extract live immune
cells (Methods), as previously validated®. Supplementary Data 1
outlines the demographic, clinical and neuropathological char-
acteristics of each of the 14 profiled participants.

In parallel, we also processed another type of sample
commonly used to extract human microglia: cortex resected in
the vicinity of an epileptogenic focus during surgery for
treatment-refractory temporal lobe epilepsy. Here, we processed
fresh surgical samples from three different subjects, using the
same experimental pipeline (Supplementary Data 1 contains a
summary of the characteristics of these subjects).

The extracted live immune cells from these autopsy and
surgery samples primarily consist of myeloid cells (Supplemen-
tary Fig. la), and we observed the presence of rare non-myeloid
immune cells in some of the samples (Supplementary Fig. 1b).
These non-myeloid cells were collected to serve as a positive
control for our experimental and computational pipeline’s ability
to resolve different cell types (Supplementary Fig. 1; see
Supplementary Data 1 for sorting gate used with each sample).
The purified cell suspension from each processed sample was
profiled using the droplet-based Chromium platform from 10x
Genomics (Methods section).

A rigorous pre-processing pipeline (Methods section) yielded,
from both sets of samples, transcriptomes from a total of 16,242
individual cells with a median of 833 cells sequenced per subject
(Supplementary Data 2). The mean number of unique molecular
identifiers (UMIs) and genes detected per cell in each subject
(Supplementary Fig. 2a, b) was comparable within and between
the two sets of donors. Each subject was processed for single-cell
RNA-seq on a different day and is therefore its own batch.
Accordingly, we performed robust batch correction on our data
using a standard regression model (Methods section). Subse-
quently, we ran an iterative PCA-Louvain clustering
approach!>1¢ with stepwise cluster robustness assessment and
identified 14 distinct cell clusters with a minimum of 8 cells per
cluster (Fig. 2a). Identifying the optimal number of cell clusters
varies based on the termination criteria for clustering and the goal
of the analysis. To facilitate the repurposing of our data set, we
have made these single-cell data publicly available (see Data
availability statement). Here, we elected to pursue a relatively
conservative approach using a strict post-hoc machine learning
method (Methods section) to assess cluster distinctness and
clearly delineate the higher-order structure of human microglia.
Nonetheless, in the future, larger sample sizes will allow us to
develop a higher-resolution map that may reveal sub-cluster
architecture.

In 10 out of the 14 clusters (99.25% of all cells), we detect
known myeloid markers: CDI14 and AIFI (the gene encoding the
protein IBA1; Fig. 2a). The remaining cells are distributed among
a putative T cell cluster (cluster 11), a B cell cluster (cluster 12),
and one minor ambiguous cluster (cluster 13) expressing myeloid
markers (such as AIF1, CIQA) as well as high levels of GFAP,
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Fig. 1 Experimental setup and overview of human samples and datasets used. a \Workflow for the generation of the discovery dataset. Brain myeloid cells
were isolated from 17 donors of both sexes (for a detailed isolation protocol see Methods section, for details on the donors see Supplementary Data 1).
Autopsy samples originated from deceased aged individuals with various pathologies, while surgical biopsy samples were from young and middle-aged
individuals undergoing surgery for intractable epilepsy. The single-cell suspension preparation of sorted cells was loaded onto one lane of the Chromium
system (10x Genomics) and the resulting library was sequenced on the HiSeq4000 platform (Illumina). After quality control, the dataset consisted of
16,242 cells which were then subjected to unsupervised hierarchical clustering. b In situ confirmation of subset abundance and AD trait associations. We
performed immunohistochemistry using markers enriched in microglial subsets in order to investigate the abundance of the specific clusters in situ and
their associations to clinical and pathological traits of AD. Following image acquisition with a fluorescence microscope, automated image analysis was done
using CellProfiler. ¢ Independent replication of the basic population structure of microglia. We used a recently published human microglia single-cell RNA
sequencing dataset to confirm the basic population structure of aged human microglia2>. The two datasets were aligned using CCA. d Independent
replication of the AD trait associations. A recently published single nucleus RNA sequencing dataset® was used to confirm the AD trait associations found
in our dataset. The two datasets were aligned using CCA. DLPFC dorsolateral prefrontal cortex, TNC temporal neocortex, MCI mild cognitive impairment,
AD Alzheimer's disease, TLE temporal lobe epilepsy, CNTRL non-neurological control, tSNE t-distributed stochastic neighbor embedding, RADC Rush
Alzheimer's Disease Center, MAP Rush Memory and Aging Project, BWH Brigham and Women's Hospital, CUMC ADRC Columbia University Medical
Center Alzheimer's Disease Research Center, FFPE formalin fixed paraffin embedded, CCA canonical correlation analysis.
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MBP, and SNAP25 (Fig. 2a). The latter cluster could consist of cell
doublets, but we cannot unambiguously call them as such based
on numbers of genes or UMIs detected (Supplementary Fig. 2c,
d). Additionally, we detect 15 cells (cluster 14) that are probably
erythrocytes, based on hemoglobin expression. Among the 10
myeloid clusters, we found that cluster 10 expressed CIQA, a

M Cluster 1—MG1
Cluster 2—MG2
M Cluster 3—MG3
M Cluster 4—MG4
Cluster 5—MG5
Cluster 6—MG6
M Cluster 7—MG7
= Cluster 8—MG8
M Cluster 9—MG9
M Cluster 10—Mono
Cluster 11—TC

M Cluster 12—BC
Cluster 13—GFAP+
M Cluster 14—RBC

microglial marker, at very low levels, as well as high levels of
monocyte-enriched genes such as FCNI, VCAN, and LYZ
(Supplementary Fig. 3a), suggesting that this cluster may
represent monocytes or monocyte-derived cells. By contrast, the
remaining 9 clusters express high levels of microglia-enriched
genes, such as CIQA, CIQB, CIQC, and GPR34 (Supplementary
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Fig. 2 scRNA-seq identifies subsets of human brain myeloid cells. a Unsupervised iterative PCA-Louvain clustering with stepwise cluster robustness
assessment identified 14 different clusters of cells in our dataset. Each column represents a cell cluster. The number of cells assigned to each cluster is
noted at the bottom of each column. Each row represents the level of expression of a selected key gene. The size of the dot represents the fraction of cells
in a given cluster in which the gene was detected (>0 transcripts per million). The color of the dot represents the average expression z-score (calculated
over all 16,242 cells) of the cells within a given cluster. The bulk of the cells belong to 10 clusters (clusters 1-10) identifiable as myeloid based on their
marker gene expression (AIFT and CD14). Of these, cluster 10 has low expression of C1QA, a microglia marker, and thus probably represents monocytes. A
small proportion (<1%) of the cells are non-myeloid and belong to clusters that could be characterized by high expression of genes such as GFAP (cluster
13), CD3E (cluster 11), CD79A (cluster 12), and HBAT (cluster 14), likely representing astrocytes, T cells, B cells, and erythrocytes, respectively. The z-score
matrix is available in Supplementary Data 16. b t-SNE plot depicting the different microglial and non-microglial cell subsets. Each dot represents a cell. The
cells are color coded based on their cluster affiliation. t-SNE was run using all of the cells in the dataset. ¢ t-SNE plots showing the expression of some of
selected genes that are enriched in certain clusters. Each dot represents a cell. The normalized gene expression levels of the selected genes for each cell is
projected onto the t-SNE plots. Color gradient bar represents log2(TPM + 1) which has been normalized, so that gray equals to 10th percentile expression
value and red equals to maximum expressed value. d Constellation diagram showing the relatedness among clusters based on post-hoc classification of
cells. For every pair of clusters, a bootstrapped random forest approach was run to classify each cell 100 times, using 75% of the cells as training data for
each run. In the diagram, each node represents a cluster, scaled by the number of cells that belong to it, and each edge represents the fraction of cells that
were ambiguously assigned i.e. assigned to the same cluster in fewer than 75 runs, for a given pair of clusters. The largest cluster (cluster 1) shares
substantial ambiguously assigned cells with clusters 2 and 3, which may suggest a continuum of states among these three clusters. The other microglial
clusters share fewer ambiguously assigned cells with cluster 1, while the monocyte and non-myeloid clusters all share no ambiguously assigned cells with
any the microglial clusters. t-SNE t-distributed stochastic neighbor embedding, MG1-9 the nine microglial cell clusters, TC T cells, BC B cells, Mono
monocytes, GFAP+a GFAP-positive ambiguous cluster; RBCs red blood cells.

Fig. 3b); we therefore deem these 9 clusters to be distinct clusters
of microglial cells. Visualizing the cells in a t-SNE (t-distributed
stochastic neighbor embedding) plot further supports the
separation of the microglial and the non-microglial clusters
(Fig. 2b) and the different microglia subsets from each other
(Fig. 2c). Importantly, neither the modified gating strategy to
include the peripheral immune cells nor the different cell sorters
affected the basic population structure of microglia (Supplemen-
tary Fig. 1c-g).

We assessed inter-cluster relatedness using a post-hoc random
forest-based machine learning approach to characterize how well
individual cells could be unambiguously classified in each cluster
(see Methods section)!”18. We visualized the results of this
approach in a constellation diagram!8 (Fig. 2d, Methods section),
where the thickness of the line between two clusters is
proportional to the number of cells that are ambiguously assigned
(<75 times assigned to the same cluster out of 100 independent
runs) between a pair of clusters, using 75% of the cells as a
training set in each run. This constellation diagram shows that
the non-microglial clusters (clusters 10, 11, 12, 13, and 14) are
clearly distinct from the microglial clusters. By contrast, three of
the largest microglial clusters (accounting for 83.7% of all cells
and 84.5% of the microglia) — have a larger proportion of cells
ambiguously classified among them. This inter-relatedness
among clusters 1, 2, and 3 suggests that they comprise cells with
closely related transcriptomic signatures. Likewise, clusters 5 and
6 appear to be strongly related to one another. The remaining
microglial clusters show more distinct signatures. Interestingly,
this assessment of cluster inter-relatedness does not support the
concept of a single linear relationship among clusters; rather, it
suggests that they may differentiate radially from a common cell
fate into a number of distinct states.

We also assessed the extent of regional, intra- and inter-
individual heterogeneity in the population structure of microglia
in our data (Fig. 3 and Supplementary Figs. 4 and 5). We found
that clusters 1 and 2 are the most abundant clusters in most
individuals (Fig. 3a), and we therefore propose that clusters 1 and
2 may represent homeostatic microglial states, which fulfill
routine, housekeeping tasks of the CNS parenchyma. Next, we
found that there is inter-individual variability in the frequency of
other microglial clusters (clusters 2, 5, 6, and 7; Fig. 3b). We note
that there is some variability between the two sets of samples: the
proportion of cells assigned to clusters 5 and 6 is greater in the

surgical samples and cluster 2 is more frequent in the autopsy
samples. Larger numbers of subjects and a greater sampling of
tissue types and brain regions will be necessary to resolve whether
these differences are due to age, sample type (autopsy versus
surgery), brain regions (frontal versus temporal cortex), or the
subject’s diagnosis. Nonetheless, all of the clusters are found in
both sets of subjects (Fig. 3a and Supplementary Figs. 4 and 5).

To further address the issue of cluster robustness, we
implemented a complementary strategy: we clustered selected
samples in isolation, which also yielded significantly overlapping
cluster signatures despite the much smaller number of cells
available for analysis in each sample versus all samples
(Supplementary Fig. 6). In this single-donor analysis (see
Methods section), the median adjusted Rand index for the nine
samples with the largest number of cells is 0.6790, suggesting that
the clusters identified by this approach are robust within each
subject: while some individuals have more cells in one cluster
type, the clusters are not driven by single individuals. However, it
is important to note the loss of power to detect some of the
smaller clusters when analyzing samples separately, thus high-
lighting the value of analyzing all cells together when developing
our population structure model. Overall, the proposed microglial
cluster architecture appears to be present in all subjects.

Annotating the clusters of human microglia. We next examined
genes showing differential expression in the different microglial
subtypes. Cluster-enriched sets of transcription factors and
transcriptional regulators were found in some clusters (3, 4, 5, 6,
and 9) but not in others (1, 2, 7, and 8; Fig. 4a). A similar pattern
was observed for cell-surface markers (Fig. 4b). The lack of
detectable distinct on-off transcription factors and cell-surface
markers among clusters 1 and 2 is consistent with our hypothesis
that these clusters may represent homeostatic microglia from
which the other clusters differ by the upregulation of specific
genes. From a global perspective (Fig. 4c, d), cluster 8 has the
largest number of differentially expressed transcription factors
and cell surface molecule-encoding genes (which were down-
regulated when compared to other clusters), whereas cluster
9 shows marked upregulation of transcriptional regulators.
Cluster 3 was enriched in genes that have recently been shown to
be induced by cellular stress in other human cells'® (Supple-
mentary Fig. 7); thus this cluster could represent a subset of
distressed cells. Supporting this claim, the abundance of cluster 3
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was significantly reduced in the samples originating from surgery
when compared to the autopsy samples (Supplementary Fig. 7g),
and thus might be indicative of general cellular stress either due
to aging or postmortem delay. Accordingly, we excluded this
subset from subsequent functional annotation but report here the
cluster and the gene set (Supplementary Data 3, 4, 5, and 6) that
defines it as a specific reference signature for human microglial
cells that are potentially altered in response to cellular stress.
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For each of the remaining microglia clusters, we identified one
set of cluster-defining genes (see Methods section and Supple-
mentary Data 5) that were used in all subsequent analyses.
Examples of genes belonging to these cluster-defining gene sets
can be seen in Fig. 5a. First, we identified transcription factor
binding sites which are enriched in the promoters of differentially
expressed genes among these clusters. Using the PASTAA
software package?, we observed some of the strongest
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Fig. 3 Cluster distribution within donors and provenance of clusters. a Distribution of cells among the different cell clusters for each donor. Each column
represents a cluster, and each row represents a subject. The data are presented as the percentage of the cells in a given cluster within a given donor.
Cluster 1is the most abundant cluster in all subjects. Each cluster is color coded according to Fig. 2. b Clusters with differential proportions in the DLPFC
(AD & MCI) autopsy samples versus the TNC (TLE) surgical tissue samples. Boxplots of the distribution of proportions of the 4 clusters with statistically
significant differences between the two sample groups. The DLPFC (AD & MCI) group contains 14,142 cells from 14 donors (MCI1 GM - MCl4 GM, AD1
GM- AD10 GM), while the TNC (TLE) group contains 2103 cells from 3 donors (TLET CTX - TLE3 CTX). Significance was assessed using the (non-
parametric) Mann-Whitney test, resulting in the p-values shown for each cluster. All tests were two-sided. The boxes represent the 25th percentile,
median, and 75th percentile. The whiskers extend to the furthest value that is no more than 1.5 times the inter-quartile range (default parameter for R's
boxplot function). Source data for this figure are provided in the Source Data file. DLPFC dorsolateral prefrontal cortex, TNC temporal neocortex, MCI mild
cognitive impairment, AD Alzheimer's disease, TLE temporal lobe epilepsy, GM gray matter, CTX cortex.

a Regulators of transcription genes b Cell surface/membrane genes
KLF2 1 o o0 o o0 o ° o LYeEq 0 o o @ o O O o O
ZNF821 4 o ° (o} ° o o o 1 ° GPR85 4 O o o O o ° ° o °
OAS2 H o ° ° O ° o o ° o
0Aas3 4 o . ! o i ) ) i IFITM1 4 » : : o . ° . .
GRHL1 o * o o o . o IRAK2 4 o ° ° o o o ° 1
NR4A1 o ° ° o ° o o
. o FLT1 q o ° ° o O o} ° ° o
KLF10 q o ° o ° O o o . °
EGR2 e @ - PLXNA2 o ¢ o . « 0 0 o . .
PONA{O 0 o0 0 o0 o o o @ w1 O O O OO0 OO0
ORC6 - ° 3 ° ° ° o ° .
FENT 4 o | | ) | )\ )\ | . EMC9 - o ° ° o o ° o ° (o]
RFX2 - o o ° ° ° ° ° ° (o) SLC16A1 - o ° ° o o o o ° o
I T T T T T T T 1 I T T T T T T T 1
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
Cluster Cluster
O Detected in 100% of cells @ Mean expression Zscore > 2 O Detected in 100% of cells @ Mean expression Z-score > 2
QO Detectedin50% of cells O Mean expression Z-score = 0 O Dpetectedin50% of cells O Mean expression Z-score = 0
QO Detected in 25% of cells . Mean expression Z-score <= -2 O Detected in 25% of cells . Mean expression Z-score <= -2
c # Regulators of transcription genes . . d # Cell surface/membrane genes . .
Higher in: Higher in:
0 75 7 25 65 19 12 30 1 0 20 13 10 60 22 5 22 1
69 0 64 60 8 3 35 38 2 38 0 43 36 . 28 20 43 2
49 80 0 51 77 28 39 4 3 11 12 0 12 44 11 9 16 3
46 49 63 0 39 46 14 4 47 26 44 0 41 42 23 4
77 87 0 20 60 57 5 . 44 0 16 41 51 5
79 74 81 79 37 0 22 3 6 41 26 58 57 25 0 7 3 6
15 47 29 36 48 1 0 2 7 18 18 55 43 58 8 0 38 7
82 63 8 32 53 60 51 56 46 0 2 8
0 9 32 42 38 24 27 34 . 0o 9
1 2 3 4 5 6 7 9 1 2 3 4 5 6 7 8 9
Lower in: Lower in:

Fig. 4 Identifying potential functional marker genes for the microglial clusters. a Microglial clusters are visualized in columns, and rows represent
selected regulators of transcription that are differentially expressed in certain clusters (using the edgeR software package, adjusted p-value < 0.05, with
Benjamini-Hochberg FDR correction). As shown in the key code at the bottom of the panel, the size of each dot represents the fraction of cells in a given
cluster in which the gene was detected (>0 transcripts per million), and the color of the dot represents the mean of the expression z-score (calculated over
all 16,242 cells) for the cells belonging to that cluster, as in Fig. 2a. b Using the same outline as in a, a subset of genes encoding membrane associated
proteins that are differentially expressed across clusters are presented as these proteins are good candidates for cell-surface markers. The z-score matrix
for a and b is available in Supplementary Data 16. ¢, d Heatmaps representing the number of differentially expressed genes in each pairwise comparison
between the microglial clusters. In ¢, we limit the analysis to genes that encode transcription factors and transcriptional regulators. In d, we present the
results of an analysis limited to genes encoding membrane associated proteins. Color scale for the heatmaps is yellow equals the minimum observed value
(0), deep red equals the maximum observed value (225).
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enrichments for CREB and ATF transcription factors in cluster 5;
E2F1, CBFB and NRF1I in cluster 9; and IRF transcription factors
(IRF1, 7 and IRF8) in cluster 4 (Fig. 5b). The latter result is
consistent with the excess of interferon response genes in this
cluster (Fig. 5a and Supplementary Data 6). These results
prioritize regulators that may play an important role in each of

8

0 10
Percentage of entities

20 30 40 50

these microglial subsets. Gene set enrichment analysis?! (Fig. 5¢
and Supplementary Data 7) reveals that cluster 7 is enriched in
genes related to antigen presentation, while the closely related
clusters 5 and 6 feature genes related to anti-inflammatory
responses (IL-10, IL-4, and IL-13). Cluster 4 is enriched in genes
belonging to the interferon response signaling pathway, and
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Fig. 5 Functional annotation of the microglial clusters. a Heatmap depicting the z-scores of the top differentially expressed signature genes (using the
edgeR software package, adjusted p-value < 0.05, with Benjamini-Hochberg FDR correction, ordered by adjusted p-value) of each microglial cluster, with
representative genes highlighted on the right side of the figure. Rows represent genes, and each cluster is presented in a column. The color coding

represents the mean expression (transcripts per million) in the cluster, Z-scored over all the clusters, as shown in the color key with histogram. The z-score
matrix is available in Supplementary Data 16. b Predicted transcription factors whose binding sites are enriched among the differentially expressed genes of
each microglial cluster. In rows, the names of the transcription factors are shown. Enrichment p values were calculated with PASTAA. The columns are
colored according to the cluster identity introduced in Fig. 2. € Functional annotation of certain microglia clusters using REACTOME pathways significantly
enriched for their signature genes (top 50 differentially expressed genes). The bar graphs are color coded according to cluster identity as introduced in

Fig. 2. FDR false discovery rate.

cluster 9 is enriched in genes associated with the cell cycle,
suggesting that it may constitute a pool of proliferating microglial
cells.

We then turned to the annotation of our microglial clusters
using other signatures reported in the literature. In a recent study
of the CKp25 mouse model of primary neurodegeneration, a
microglial subset enriched in interferon response genes was
implicated in late microglial responses to this in vivo perturba-
tion, and a different subset was implicated in the early response?2.
In our data (Fig. 6a, b), the mouse early response genes were only
detected in our proliferative cluster 9, suggesting that the early
microglial response in the CKp25 mouse model may involve a
proliferative reaction. The late response signature appears more
nuanced in humans, with component genes from the mouse
study being found in either all human microglial clusters or
limited to the interferon response-enriched cluster 4 (Fig. 6a, b
and Supplementary Data 7). Similarly, a meta-analysis of all of
the currently available major RNA-seq datasets of purified mouse
microglia determined gene co-expression modules with unique
functionality?®. Here again, we find a co-expression module that
captures the putative proliferating microglia of cluster 9
(Supplementary Fig. 8a) and an interferon response module
(Supplementary Fig. 8b). The modules relating to LPS response
(Supplementary Fig. 8c) or neurodegeneration in this analysis of
murine data (Supplementary Fig. 8d) were not enriched in any of
our human clusters.

We also specifically evaluated our human clusters in regards to
a recent report of a disease-associated microglia (DAM) signature
from mouse?* (Fig. 6¢c, d and Supplementary Fig. 9). Most of the
DAM genes were detected in multiple microglial clusters (Fig. 6c,
d and Supplementary Fig. 9a) and were expressed in all of the
donors (Supplementary Fig. 9b). Correlations among DAM genes
were weak throughout the data set (Fig. 6e). We found that
cluster 7 showed the strongest enrichment for the DAM
expression profile, with clusters 4, 5, and 8 also showing some
degree of enrichment (Fig. 6¢c, d and Supplementary Data 8).
Thus, while cluster 7 may be the most murine DAM-like cluster,
the gene signature attributed to DAM in mice appears to be more
distributed among the different subsets of human microglia.

Assessing the generalizability of our microglial subsets. To
evaluate the robustness and offer a measure of replication to our
proposed human microglial population structure, we compared
our clusters to those identified in another dataset: 15 samples
from epilepsy and brain tumor resection from Freiburg using
similar analytic methods on data obtained through a different cell
isolation and cDNA library preparation protocol?.

In comparing our clusters to the clusters defined independently
in the Freiburg samples, we find that, for 8 of our clusters
(looking at columns in Fig. 6f), the cluster-specific upregulated
genes are enriched in a single cluster defined independently in the
Freiburg data set when the overlap is assessed using CCA and a
hypergeometric test (Methods section, Supplementary Data 8).
Only cluster 1 in our data appears to have been split between two

clusters in the Freiburg data, and our cluster 9 does not appear to
have a corresponding cluster in this dataset. Looking at the
Freiburg clusters (rows in Fig. 6f), clusters Clusterl and Cluster6
appear to be an amalgam of different clusters based on our data.
Overall, given the smaller number of cells sampled by the
Freiburg team, the different types of samples included in the two
independent datasets, the different experimental pipelines, and
the modest sample size of the Freiburg dataset, there is substantial
similarity in cluster definitions, highlighting the robustness of our
respective analyses. Thus, while investigators will certainly refine
microglial subclusters in the future, our proposed higher-level
architecture appears to have robust and replicable features across
different tissue source (autopsy versus surgery) and different
experimental and analytic approaches.

In situ validation of human microglial subsets. To validate our
microglial clusters in sections of frontal cortex from aging indi-
viduals (the same DLPFC region from which we extracted
microglia from autopsy tissue), we selected genes that are pro-
posed to mark different subsets of microglia; these include ISG15
for cluster 4, CD83 for clusters 5 and 6, CD74 for cluster 7 and
PCNA for cluster 9 (Fig. 7a). Cluster 7 does not have a unique
gene that is absent in all other clusters; rather, it is characterized
by a marked upregulation (on average 2-fold greater in the scRNA
sequencing dataset, Fig. 7b) of antigen processing and presenta-
tion related genes, such as CD74, when compared to the other
microglial clusters. Thus, we elected to assign CD74high cells -
those microglial cells that have expression levels of CD74 protein
greater than 2 standard deviations from the mean - as belonging
to cluster 7 (Fig. 7c). Sections from the dorsolateral prefrontal
cortex of individuals who either did (n =4) or did not (n=3)
fulfill a pathologic diagnosis for Alzheimer’s disease (see Supple-
mentary Data 9 for subject characteristics) were stained for the
presence of ISG15, CD83, CD74, or PCNA and were co-labeled
with anti-IBA1 or anti-CD45 antibodies (general markers of
myeloid cells in the brain). Quantification of the double positive
cells (for the general myeloid marker and for a marker enriched in
one of the different microglia subsets) was performed using
automated image segmentation and downstream quantitation by
the CellProfiler software (https://cellprofiler.org/). We find that
each of the four markers tags a subset of microglia. Specifically, an
average of 4.38% (standard deviation (SD) = 1.83) of CD45% cells
express ISG15, a marker of the IFN response cluster 4 (Fig. 7d). In
these subjects, we see substantial inter-individual heterogeneity in
the frequency of cluster 4. This heterogeneity is somewhat less for
the frequency of other clusters, with an average of 1.98% (SD =
2.46) of IBA1T cells being CD83* (marker for clusters 5/6, which
have similar transcriptional signatures), and 4.60% (SD = 0.33) of
microglia being IBA1t CD74high (antigen-presenting cluster 7)
(Fig. 7d). In addition, we found 4.55% (SD = 4.00) of microglial
cells to be IBAITPCNAT (proliferating cluster 9; Fig. 7d). Thus,
for a subset of clusters with available markers (Fig. 5a), we confirm
that the corresponding protein expression is restricted to a subset
of microglia in the human brain (Fig. 7d, e), and we note that
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these cells have a morphology consistent with parenchymal
ramified (CD834, CD74high and PCNA+microglia cells) and
ameboid (ISG15+) microglia (Fig. 7e). Since some clusters lack a
clearly distinguishing signature (such as clusters 1, 2, and 8) in the
future these clusters might be identified in situ by combinations of
two genes or differing expression levels of multiple genes.

b Hypergeometric p value (Bonferroni correction)
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Disease and trait associations of microglial subsets. Given that
we have too few subjects to directly evaluate the association of
microglial clusters to diseases and human traits in a robust
fashion, we performed enrichment analyses (Methods section) to
identify clusters that may be implicated in disease because they
contain an excess of disease-associated genes. To assess statistical
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Fig. 6 Annotation of the microglial clusters using published datasets. a Plot depicting the expression levels of representative genes upregulated in either
the early (green) or late (black) response of microglia in the CKp25 mouse model22. Each cluster described in the current human study is presented in one
column. The size of the dots is proportional to the number of cells expressing the given gene in the corresponding cluster. The color of the circle is
proportional to the level of differential expression of the selected gene in a given microglial subset, with increased expression denoted in red while
decreased expression is shown in blue. b We used Canonical Correlation Analysis (CCA)37 to map the mouse microglia to our single-cell microglia clusters
using a Naive Bayes classifier. The mouse microglia in the original paper were annotated as being either homeostatic (gray), or part of the late response
(black) or part of the early response (green) based on their transcriptomic signature. Next, we assessed relative enrichment of each mouse microglial type
in each of the human clusters using a hypergeometric test with Bonferroni correction, with significant results highlighted in red. The results are reported at
the top of each column; for example, we see a significant (p = 5.3 x 10~79) excess of mouse homeostatic cells in human microglial cluster 1. ¢ Plot depicting
the expression levels of representative genes related to the murine DAM phenotype?# in each microglial cluster. Each cluster is presented in one column.
Genes are either upregulated (green) or downregulated (black) in murine DAM cells. The size of the circles is proportional to the number of cells
expressing the given gene in the corresponding cluster. The color of the dots represents the mean Z score of expression. The z-score matrix for a and ¢ is
available in Supplementary Data 16. d Results of dataset integration (using CCA) between the Keren-Shaul data24 and the current dataset: the percentage
of DAM (green) or non-DAM (gray) cells assigned to each human cluster is shown. The results of the enrichment analysis (hypergegeometric test) are
shown at the top. Significant results are highlighted in red. The human microglia clusters 4, 5, and 7 showed the strongest enrichment for the signature
associated with the murine DAM phenotype. e Heatmap depicting the expression levels of the genes in the murine Disease Associated Microglia (DAM)
gene set?4. Each column represents a cell. Cells are ordered first based on cluster and then APOE expression within each cluster. The clusters are labeled at
the top of the panel. Genes (rows) are ordered based on unsupervised hierarchical clustering (dendrogram on the left side of the graph). The color code
represents Z-score of expression for each gene (i.e. normalized by row). While some of the DAM genes show some correlation in expression levels across
cells, the gene set does not appear to be as coherent as it is in mice. The z-score matrix is available in Supplementary Data 16. f We compare our clustering
results with those of an independent human microglia single-cell RNA-seq dataset2>. CCA was used for this comparison, and each cell reports the results
of an enrichment analysis for each human microglia clusters reported by Sankowski and colleagues in the microglial clusters that we have defined. The
significant correlations are color coded based on the corresponding -log10 transformed p-value (hypergeometric test) of the overlap between the
upregulated gene sets in each cluster. Overall, the independent dataset returned clusters, which are similar to the ones that we have defined. CPM counts

per million.

enrichment for disease-related genes, we used the DOSE Bio-
conductor package?®, which contains curated lists of genes that
are reported to be up- or downregulated in diseases, or positively
or negatively associated with specific pathological traits. (Fig. 8a,
b, Supplementary Fig. 10, and Supplementary Data 10). In this
analysis, cluster 4 showed enrichment for multiple sclerosis, while
5 and 6 show enrichment for a large number of diagnoses, most
prominently for neurovascular disease, encephalitis and neo-
plastic diseases but also multiple sclerosis and Alzheimer’s dis-
ease. Cluster 7 - the one most enriched for DAM genes - displays
enrichment for inflammatory demyelination, ischemia and AD.
On the other hand, peripheral myeloid cluster 10 also shows a
mixed series of association with amyloid pathology, as well as
inflammatory and proliferative diseases (Supplementary Fig. 11a).
We also see that many individual GWAS-identified risk genes for
AD, PD, MS, and ALS (Supplementary Fig. 12a through d,
respectively) are expressed in most of the clusters and are not
enriched in any particular microglial subset; however, microglial
cells belonging to cluster 4 and 7 do have a higher expression of
some of the AD susceptibility genes, such as APOE and TREM?2
respectively (Supplementary Fig. 12a). Further, cluster 4 has a
higher expression of MS susceptibility genes (such as IFITM3;
Supplementary Fig. 12¢). Interestingly, the TSPO gene, the target
for all current microglial markers used in positron emission
tomography (PET) studies, is, at the RNA level, expressed in all
clusters at a comparable level (Supplementary Fig. 12e) and may
therefore be a good proxy for total microglial count.

We also explored the relationship between the different
microglial clusters and aging-related traits (Fig. 8c and Supple-
mentary Data 11). Since many of our samples came from
autopsies of older individuals, we assessed for enrichment of gene
signatures derived from our analyses of cortical tissue RNA-seq
profiles in 541 aged individuals in each set of cluster-defining
genes?’, using a hypergeometric overlap approach taking into
account the directionality of associations28. We evaluated genes
associated with either a clinical or pathologic diagnosis of AD as
well as with the molecularly specific measures of f-amyloid and
PHEF-tau tangle accumulation and the slope of cognitive decline

before death?>30. We found that cluster 7 is the only cluster
whose genes are altered in expression in the human cortex
(DLPEC) in relation to both a pathologic diagnosis of AD and a
diagnosis of AD dementia (Fig. 8c); specifically, the cluster
7 signature is reduced in expression in AD. In these samples,
quantitative measures of the two component pathologies of AD
(amyloid or tau) are also available, and a broader set of clusters
are altered in relation to these pathologic measures, which are
common in older adults without AD. Interestingly, we begin to
see differences between the two pathologies, with clusters 2 and 5
being enriched for genes associated with B-amyloid while genes
associated with PHF-tau are enriched in clusters 1, 2, 4, 7, 8, and
9. This suggests that different subsets of microglia may be
involved in different aspects of AD. On the other hand, the
monocyte cluster genes appear to be upregulated in relation to an
increasing amyloid pathology burden (Supplementary Fig. 11d).
Finally, we also evaluated modules of co-expressed genes
defined in the aging human frontal cortex?’ that we had
previously described as being enriched in microglial genes®.
These five modules include m116, the cortical module most
enriched for microglial genes, and m5, which is associated with
both accumulation of tau pathology and the number of
morphologically activated microglia in cortical tissue®. Gene-set
enrichment analysis (Supplementary Fig. 12 and Supplementary
Data 12) shows that m5 is widely expressed across microglial
subtypes and does not align with any single microglial subset.
This result suggests that morphologically activated microglia may
exist in different transcriptomically defined states. This result is
not surprising, as only those signatures shared by a large number
of microglia will emerge in bulk tissue-level data. The important
corollary to this point is that tissue-level data, while rich in many
respects, is inadequate for the detailed investigation of the role of
microglial subsets in neurodegenerative diseases and aging.

Assessing the relation of IBA1TCD74high cells to AD. Given
that the set of genes that define the IBA1TCD74high microglial
cells of cluster 7 are enriched in AD-related genes (Fig. 8b) as well
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as the DAM signature (Fig. 6b) and that this gene set is down-
regulated in the cortex of individuals with a diagnosis of AD
(Fig. 8¢c), we expanded our in situ study to include 8 cases of AD
dementia that also fulfill a diagnosis of pathologic AD and
11 subjects that meet neither of these diagnostic criteria; all sub-
jects underwent autopsy at the New York Brain Bank and were
characterized in the same, structured manner (Supplementary
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Data 9). Adjusting for age and gender, we find that subjects with
AD (1) have a significant reduction in the frequency of IBA1+
CD74high microglial cells in the frontal cortex (p = 0.0089; Fig. 8d)
but (2) have no change in the number of total IBA1 + cells (p =
0.30; Supplementary Fig. 14a).

Finally, we repurposed a recently reported dataset of single
nucleus data from frozen samples of the same brain region
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Fig. 7 In situ confirmation of the abundance of major microglial subsets. a RNA expression levels of markers enriched in different subsets of microglia in
the scRNA-seq dataset: ISGT5 for interferon cluster 4, CD83 for the cytokine signaling enriched clusters 5 and 6, CD74 for antigen presentation related
cluster 7 and PCNA for the proliferative cluster 9. The size of the circles represent the percentage of cells per cluster in which the given gene was detected,
while the color coding represent the normalized z-scores. The z-score matrix is available in Supplementary Data 16. b Box-and-whisker plot representing
the normalized gene expression of CD74 (in TPMs) among the different microglia clusters. Note that CD74 gene expression is ~2-fold higher in cluster 7
when compared to the expression in other clusters (see Source Data file). The boxes represent the 25th percentile, median, and 75th percentile. The

whiskers extend to the furthest value that is no more than 1.5 times the inter-quartile range (default parameter for R's boxplot function). The number of
cells in each microglial cluster is also shown. ¢ Distribution of the expression levels of CD74 on microglia in situ as measured by immunofluorescence and
CellProfiler analysis. Note the second small peak at high expression values that we highlight with a red box. Source data are provided in the Source Data
file. d Black symbols represent the quantification of the ISG15+, CD83+, and PCNA+ and CD74"igh microglia in the dorsolateral prefrontal cortex of seven
individuals of mixed neuropathology (see Supplementary Data 9). The orange symbols represent the proportions for each subset observed in the single-
cell RNA sequencing data. Center line represents the mean. Source data are available in the Source Data file. @ Photomicrographs showing representative
cells expressing the markers of the different microglia subsets. The arrows point to representative cells for each marker that are shown in the higher

magnification photomicrographs in the far right column. In the micrographs showing CD74 staining, arrowhead points to a CD74 dim cell, while the arrow
points to a CD74 bright (or high) cell. The bar in the lower right corner micrograph represents 100 pm for the overview images. The bar in the lower right
corner of the higher magnification images (right most column) represents 50 pm. These experiments were performed in seven individual donors. In each
donor 15-20 images were captured in the gray matter of the DLPFC and analyzed using IHC and automated image analysis. TPM transcripts per million.

(DLPFC) of an independent set of MAP subjects’, and we used
our cluster-defining gene sets to assign each microglia in the
single nucleus dataset to one of our nine microglia clusters (see
Methods section; Supplementary Fig. 14b and Supplementary
Data 13). We find that, using our cluster-defining gene sets, these
microglial nuclei are distributed to all of our clusters, except for
the proliferative cluster 9. We then looked at the microglial nuclei
assigned to cluster 7, and we performed an analysis comparing
subjects with AD to control subjects which demonstrates that
cluster 7 is reduced in frequency in these data in the context of
AD (p =0.028; Fig. 8e), confirming our histology-based analysis.
Secondarily, we also evaluated the other clusters, but none are
significantly altered in frequency in AD in this dataset.

We also explored in situ the distribution of cluster 7 cells as it
relates to the topology generated by AD pathology in the aging
brain. For this, we assessed the abundance of cluster 7 microglia
within the perimeter of an amyloid plaque and outside of amyloid
plaques using immunohistochemistry, fluorescence microscopy
and automated image analysis using CellProfiler. These experi-
ments were performed on DLPFC tissue sections from aged
donors (for details see Supplementary Data 9). As shown in
Supplementary Fig. 15d, we did not find any association between
the topological distribution of cluster 7 and amyloid plaques. This
is in line with our indirect analysis, which found no association
between cluster 7 abundance and amyloid pathology (Fig. 8c).

Discussion
This manuscript presents a new data set based on 16,096 indi-
vidual microglial transcriptomes which, using unsupervised
clustering, we segregate into 9 clusters of microglia. Our analysis
identifies microglial subsets involved in homeostasis, prolifera-
tion, interferon response, and antigen presentation. Further, our
enrichment analyses suggest that several of these clusters are
enriched for genes involved in neurodegenerative diseases.
Additionally, the clusters showed divergent associations to the
pathological and clinical traits of AD. We have validated one
of these observations histologically and with single nucleus data
by demonstrating a reduced frequency of cluster 7 microglia in
subjects with AD. To facilitate their use, our data are searchable
at https://vmenon.shinyapps.io/microglia, and are available
through the Synapse portal (https://www.synapse.org/#!Synapse:
syn21438358). The counts matrices and the cell annotations can
be found in Supplementary Data 14 and 15, respectively.

Prior studies have shown31:32 that the total number of human
cortical microglia does not change in the context of AD or AD-
related endophenotypes that are common in older individuals;

rather, a small subset of morphologically activated microglia
increased in frequency in relation to AD. Thus, unlike many
mouse models with accelerated amyloid or tau proteinopathy,
there does not seem to be a strong proliferative component to
microglia in AD based on histological studies, and our single-cell
data are consistent with these observations. While certain murine
transcriptional programs - such as the DAM signature?* or the
interferon response signature?? — are seen in our human micro-
glia, they are distributed across different clusters, and the rele-
vance of these models with accelerated protein aggregation over
weeks to human AD which evolves over decades remains an open
question in the AD field33.

By design, we have implemented a relatively conservative
partitioning scheme to identify the higher-level architecture of
human microglial subtypes from which further sub-clusters may
be defined as sample sizes increase and other brain regions or
diseases are investigated. This study serves as a framework with
which to guide future study designs. Our report contains several
insights: first, the nine different populations of microglia are
found in both autopsy and surgical samples, and their frequencies
are generally similar across both types of samples. Thus, these two
major sources of primary, live microglia do not have large dif-
ferences arising from technical factors or circumstances sur-
rounding the agonal state for most microglial clusters; however,
there may be an effect of smaller magnitude that will be detectable
as larger datasets emerge. The clusters are also found in single
nucleus data (Supplementary Fig. 14), consistent with the fact
that our purification protocol does not appear to lose a specific
microglial subtype.

Second, the different human microglial clusters show divergent
enrichment for genes related to neurodegenerative disease and
clinicopathological traits. Importantly, the signature of the mur-
ine Disease Associated Microglia (DAM) phenotype was present
in several different human microglial subsets (clusters 4, 5, 7, and
8). Thus, the role of microglia in human disease is likely to be
more nuanced than what has been described in the mouse to date.
In particular, antigen-presenting cluster 7 stands out amongst the
other clusters since it emerges as enriched for AD genes that are
diminished in expression at the cortical tissue level in both
pathologically defined AD and AD dementia (Fig. 8c and Sup-
plementary Fig. 14b, c). This could happen if the subset of
microglia corresponding to cluster 7 were diminished in fre-
quency in the tissue in AD. This is what we found histologically:
the frequency of cluster 7 microglia, as captured by the CD74high
marker, is reduced in tissue sections from individuals with both
AD dementia and pathologic AD. This result is further validated
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Fig. 8 Disease association in human microglia clusters. a, b Scatter plots depicting brain related diseases - using gene sets from the disease ontology
database (http://disease-ontology.org/) - that are significantly enriched (adjusted p-value < 0.01, hypergeometric test with Benjamini-Hochberg correction)
in a given microglial cluster, using the cluster-defining signature gene sets of each microglia subset. Results for two different clusters are shown (cluster 4
and cluster 7); results for the other microglial clusters are included in Supplementary Fig. 10. In each plot, the y-axis reports the p-value of the enrichment
analysis while the x-axis reports the number of genes that overlap between the cluster and disease gene sets, an indication of the robustness of the
enrichment. ¢ Panel reporting the result of enrichment analyses between the genes defining the microglial clusters and those genes that are associated with
certain pathological or clinical traits found in the aging human brain (bulk DLPFC RNA sequencing data) in the ROS and MAP cohorts. Log10 adjusted
p-values (using the hypergeometric test with Benjamini-Hochberg correction) are shown for those cluster/trait combinations where they are significant, and
the saturation of each box is related to the strength of the association; red shades indicate overlap between cluster-defining genes and genes upregulated
with the trait, whereas blue shades indicate overlap between cluster-defining genes and genes downregulated with the trait. d Dot plot comparing the
frequency of IBA14+-CD74high cells within the IBA1+cells in DLPFC tissue sections from New York Brain Bank subjects with both AD dementia and a
pathological diagnosis of AD (cAD =1, pAD = 1, n=8) to that found in subjects who fulfill neither of these diagnostic criteria (cAD =0, pAD = 0; n=11).
Every dot is an individual donor (see Supplementary Data 9). Overlaid on the dot plot, data are also presented as mean values = SD. The statistical test used
was an unpaired t test with a two tailed p value. There is no difference in the frequency of IBA1* cells (Supplementary Fig. 14a). See Supplementary Data 9
for demographics of the donors and Source Data file for raw data. e Forest plot presenting the effect size of the association statistic from an analysis
comparing the frequency of a given microglial cluster in subjects with a diagnosis of AD dementia and a pathologic diagnosis of AD (cAD=1,pAD =1, n=
18) versus subjects that do not meet these diagnostic criteria (cAD = 0, pAD = 0; n = 20). The primary analysis involves cluster 7 to replicate results shown
in panel d, and we also present results for the eight other microglial clusters that we have defined in this manuscript. The per individual proportions of each
cluster is shown in Supplementary Fig. 14b. The mean of the coefficient (effect size) presented here is derived from a standard linear regression model
(dependent variable = proportion of each microglial type over the total microglial nuclei for a donor, independent variable = AD pathology/dementia
diagnosis, either O or 1, as in Fig. 8d). Bars in the forest plot represent the 95% confidence interval for the coefficient, and the p-value represents a two-sided
t-test on whether the coefficient is significantly different from O. P-values were Bonferroni corrected for multiple comparisons. Source data are provided as a
Source Data file. DEG differentially expressed genes, AD Alzheimer's disease, LOAD late onset Alzheimer's disease, MS multiple sclerosis, EAE experimental
autoimmune encephalomyelitis, cAD clinical diagnosis of AD dementia, pAD pathological diagnosis of AD.

in a repurposed single nucleus dataset of independent MAP analysis of a recent single nucleus dataset® illustrates how our
participants. The latter data also show that other microglial model derived from living microglia can inform the analysis of a
clusters are not significantly altered in this set of samples, but dataset limited by the quantity and quality of its single nucleus
other clusters such as cluster 8 that increases in frequency may data: the lower quantity of RNA per cell and smaller number of
become significant as sample sizes increase. This independent sampled cells in the single nuclear data provided only a higher-
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order perspective in the published analysis. Our higher-resolution
model enables us to more precisely map the microglial subset
implicated in AD and to guide the selection of a key marker with
which we can validate our observation histologically. It is likely
that there may be additional microglial states to discover in other
brain regions or other human samples, particularly in the context
of development, infection, and neoplasia, which we have not
sampled here.

Our study has certain limitations that result from the difficulty
in obtaining the fresh autopsy samples and the use of a multi-step
purification pipeline® to isolate live microglia from human brain
tissue. First, there may have been a survival bias among microglial
subpopulations that are successfully profiled; this can be inves-
tigated further in the future using complementary approaches
such as single nucleus RNA-sequencing. Our immuno-
fluorescence studies begin to address this point and suggest that
the frequencies of at least four of our clusters are consistent
between our scRNA-seq and tissue imaging data. Second, our
single-cell sample preparation process results in the loss of
potentially important topological information from the tissue,
and spatial transcriptomic approaches will be needed to more
comprehensively localize putative microglial subtypes in tissue.
Third, we have only sampled two cortical brain regions, and thus
profiling a larger number of brain regions and subjects with
different neurologic conditions is necessary to generate a more
widespread reference of microglial states. Finally, most of the
disease analyses reported here are indirect, relying on enrichment
analyses, and they will need to be confirmed by direct analysis of
cluster proportions in a large number of relevant samples.

Despite these limitations, our study opens several avenues of
investigation: (1) the exploration of functions conducted by dif-
ferent microglial subtypes based on our transcriptomic analyses,
(2) the generation of more complete transcriptomes, epigenomes,
and proteomes to elucidate the function of each cluster now that
we have markers with which to purify them (Fig. 2a), (3)
enhanced in silico analyses of genetic, or tissue-level tran-
scriptomic and epigenomic data to assess which microglial sub-
types are involved in traits of interest, and (4) the identification of
at least one subset of cortical microglia that may be related to AD
and should be prioritized for further validation efforts. These
avenues of investigation are crucial to developing a more com-
prehensive understanding of microglial diversity and function,
which will drive the development of targeted microglial therapies,
and this study thus provides an important step towards the
overall goal of characterizing and manipulating microglia in
human brain diseases.

Methods

Source of human brain specimens. The autopsy brain specimens originated from
brain donation programs®#3° at Rush University Medical Center/Rush Alzheimer’s
Disease Center (RADC) in Chicago, IL (Dr. Bennett) and at Columbia University
Medical Center/New York Brain Bank in New York, NY (Drs. Vonsattel and Teich)3°.
The surgically resected brain tissue specimens originated from the Brigham and
Women'’s Hospital in Boston, MA from collaborators Drs. Sarkis, Cosgrove, Helgager,
Golden, and Pennell. All brain specimens were obtained through informed consent
and/or brain donation program at the respective organizations. All procedures and
research protocols were approved by the corresponding ethical committees of our
collaborator’s institutions as well as the Institutional Review Board (IRB) of Columbia
University Medical Center (protocol AAAR4962). For a detailed description of the
brain regions sampled, age of the donors, histopathology and clinical diagnosis please
see Supplementary Data 1.

The ROS and MAP cohorts at RADC. Some of the autopsy specimens used in this
study (see Supplementary Data 1) originated from two prospective studies of aging:
the Religious Orders Study (ROS)3® and the Memory and Aging Project (MAP)34.
To enter these prospective studies, participants have to be at least 53 (ROS) or 55
(MAP) years old and non-demented at the time of enrollment. They are also
required to sign an Anatomical Gift Act agreeing to donate their brain and spinal
cord at the time of death. Each subject undergoes annual neuropsychologic

evaluations while alive and a structured, quantitative neuropathologic examination
at autopsy. A detailed description of the collected variables can be found at https://
www.radc.rush.edu/docs/var/variables.htm. Brain specimens were distributed for
this project from autopsies taking place Sunday morning to Thursday. Only
autopsies for which the post mortem delay was less than 12 h were included in
this study.

Shipping of brain specimens. After weighing, the tissue was placed in ice-cold
transportation medium (Hibernate-A medium (Gibco, A1247501) containing 1%
B27 serum-free supplement (Gibco, 17504044) and 1% GlutaMax (Gibco,
35050061)) and shipped overnight at 4 °C with priority shipping.

Microglia isolation and sorting. The isolation of microglia was performed
according to our published protocol®, with minor modifications. In case of the
cortical autopsy samples, the cortex (gray matter, GM) and the underlying white
matter (subcortical white matter) were dissected under a stereomicroscope. The
subcortical white matter samples were not used in this study. The epilepsy surgery
samples of temporal lobe were processed without dissection as in this case the
cortical white and gray matter was not always distinguishable. All procedures were
performed on ice. The dissected tissue was placed in HBSS (Lonza, 10-508F) and
weighed. Subsequently the tissue was homogenized in a 15-ml glass tissue grinder
— 0.5gm at a time. The resulting homogenate was filtered through a 70 um filter
and spun down at 300 g for 10 min. The pellet was resuspended in 2 ml staining
buffer (PBS (Lonza, 17-516 F) containing 1% FBS) per 0.5 gm of initial tissue and
incubated with anti-myelin magnetic beads (Miltenyi, 130-096-733) for 15 min
according to the manufacturer’s specification. The homogenate was than washed
once with staining buffer and the myelin was depleted using Miltenyi large
separation columns. The cell suspension was spun down and the cell suspension
was then incubated with anti-CD11b AlexaFluor488 (BioLegend, 301318) and anti-
CD45 AlexaFluor647 (BioLegend, 304018) antibodies as well as 7AAD (a dead cell
marker, BD Pharmingen, 559925) for 20 min on ice. Subsequently the cell sus-
pension was washed twice with staining buffer, filtered through a 70 um filter and
the CD11b+/CD45+/7AAD- cells or CD45+/7AAD- cells (Fig. 1a, Supplementary
Fig. 1, and Supplementary Data 1) were sorted on a BD FACS Aria II or Influx cell
sorter. Cells were sorted in the Al well of a 96 well PCR plate (Eppendorf,
951020401) containing 100 ul of PBS buffer and immediately submitted to single-
cell capture, reverse transcription and library construction. The isolation protocol
described above yields 50,000-500,000 live microglia per 0.5 g of cerebral cortical
tissue, depending on the severity of neurodegenerative disease, tissue quality
(affected by postmortem delay, storage) and handling of the tissue and cell sus-
pensions during processing. All sorting was performed using 100 um nozzle. The
sorting times varied according to the quality of the sample, but was on average
between 10 and 20 min per sample. The sorting speed was kept between 8000 and
10,000 events per second.

10x Genomics chromium single-cell 3’ library construction. Viability was
assessed by trypan blue exclusion assay, and cell density was adjusted to 175 cells
per pl. In total, 7000 cells were then loaded onto a single channel of a 10x
Chromium chip for each sample. The 10x Genomics Chromium technology
enables 3/ digital gene expression profiling of thousands of cells from a single
sample by separately indexing each cell’s transcriptome. First, thousands of cells are
partitioned into nanoliter-scale Gel Bead-In-EMulsions (GEMs). Within one GEM
all generated cDNA share a common 10x barcode. Libraries are generated and
sequenced from the cDNA, and the 10x barcodes are used to associate individual
reads back to the individual partitions. To achieve single-cell resolution, the cells
are delivered at a limiting dilution. Upon dissolution of the Single Cell 3’ Gel Bead
in a GEM, primers containing (i) an Illumina R1 sequence (read 1 sequencing
primer), (ii) a 16 nucleotide 10x Barcode, (iii) a 10 nucleotide Unique Molecular
Identifier (UMI), and (iv) a poly-dT primer sequence are released and mixed with
cell lysate and Master Mix. Incubation of the GEMs then produces barcoded, full-
length cDNA from poly-adenylated mRNA. After incubation, the GEMs are bro-
ken and the pooled fractions are recovered. Full-length, barcoded cDNA is then
amplified by PCR to generate sufficient mass for library construction. Enzymatic
fragmentation and size selection are used to optimize the cDNA amplicon size
prior to library construction. R1 (read 1 primer sequence) are added to the
molecules during GEM incubation. P5, P7, a sample index, and R2 (read 2 primer
sequence) are added during library construction via end repair, A-tailing, adapter
ligation, and PCR. The final libraries contain the P5 and P7 primers used in
Illumina bridge amplification. The described protocol produces Illumina-ready
sequencing libraries. A Single Cell 3’ Library comprises standard Illumina paired-
end constructs which begin and end with P5 and P7. The Single Cell 3/ 16 bp 10x
Barcode and 10 bp UMI are encoded in Read 1, while Read 2 is used to sequence
the cDNA fragment. Sample index sequences are incorporated as the i7 index read.
Read 1 and Read 2 are standard Illumina sequencing primer sites used in paired-
end sequencing. Sequencing the library produces a standard Illumina BCL data
output folder. The BCL data will include the paired-end Read 1 (containing the 16
bp 10x Barcode and 10 bp UMI) and Read 2 and the sample index in the i7
index read.
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Batch structure and sequencing. The fresh autopsy and surgical resection sam-
ples were processed on the day of receipt for microglia isolation, library con-
struction, and sequencing. Accordingly, each sample constitutes one batch for all
three procedures. All sequencing was performed on an Illumina HiSeq4000
machine. For specifics regarding the generated reads see Supplementary Data 2.

Single-cell RNA-seq data processing and alignment. Barcoded reads were
demultiplexed and aligned to the GRCh38 genome with Ensemble transcriptome
annotation (downloaded June 2017, GRCh38.85) using CellRanger with default
parameters. Only cells with >1000 UMIs and <10,000 UMIs were kept for clus-
tering and downstream analysis.

Batch correction. Batch identity and total UMI per cell were regressed out using
the vars.to.regress option in the Seurat ScaleData function!®37. This approach
regresses out gene expression variation due to batch identity and total UMIs
detected in each cell. Because there is a confound between library preparation batch
and sample in our study, this regression is likely to remove some degree of bio-
logical signal and perhaps reduce the observed diversity of gene expression across
donors and samples. Despite this, we chose to perform this batch correction to
eliminate any spurious clustering due to technical issues, keeping in mind that it
may mask further heterogeneity in the sampled cells. However, this provides a
conservatively pre-processed dataset that enabled us to uncover robust microglial
clusters that are found across samples: we find no residual clustering per subject,
which was our goal since each subject is his/her own batch.

Clustering using an iterative PCA-Louvain approach. Putative cell types were
identified using an iterative clustering approach. After regressing out batch and
total UMI number, all genes with variance greater than the mean were used to
cluster cells with the PCA-Louvain clustering approach, as implemented in the
Seurat R package!637-38, Clustering was repeated using all combinations of prin-
cipal components (running from 5 to 15) and resolution parameters (0.2, 0.4, 0.6,
and 0.8). For each principal component/resolution parameter pair, the overall
cluster robustness was assessed by training a random forest classifier!” on half of
the cells and predicting the cluster membership of the remaining half. Any clusters
showing a minimum prediction accuracy below 75% (over 20 iterations) were
merged. Note that this is a much stricter criterion than standard 4- or 5-fold cross-
validation, which use 75% or 80% of the samples as training data. The principal
component/resolution parameter combination that yielded the largest number of
robust clusters was then selected, and each resulting cluster from this combination
was iteratively subclustered using the same procedure, until no further robust sub-
clusters were found.

Identification of a cluster-defining gene sets. After clustering, differentially
expressed genes were identified over all pairs of clusters using the edgeR package®®
on the un-normalized count values. For downstream analysis, for a given cluster,
we ranked genes by the number of significant pairwise comparisons i.e. the number
of times a gene was deemed significantly upregulated in the cluster of interest
versus other clusters, with the important additional criterion that the gene was not
found to be downregulated with respect to any other cluster. This approach allowed
us to identify sets of genes that were higher in a given cluster with respect to other
clusters, while simultaneously not being expressed at a lower level when compared
to any other cluster. These cluster-defining lists of differentially expressed genes are
provided in Supplementary Data 5.

Constellation diagram. The constellation diagram in Fig. 2d, showing the rela-
tionship among different clusters, was generated using a cross-validation machine
learning approach, similar to that used to assess cluster robustness. For each pair of
clusters, cells were classified using 4-fold cross-validation using a random forest
classifier!” (trained on 75% of the cells). This process was repeated 100 times,
resulting in a membership score for each cell belonging to one or the other cluster
in the pair. Cells that were not unambiguously classified (>75 times out of 100) to
the same cluster were called intermediate cells. For the constellation diagram, the
edges between any two clusters represent the percentage of total cells (from the pair
of clusters) that were called intermediate, and the size of the nodes represents the
total number of cells originally assigned to that cluster.

Dot plot representations. For dot plot representations, normalized expression
values (using the Transcripts Per Million (TPM) approach) for a given gene were z-
scored over all the cells belonging to all the clusters visualized, and then per-cluster
means of the z-scored values were calculated and plotted using the color scheme
shown in each figure. Sizes of the circles represent the number of cells in the cluster
in which the gene was detected (TPM > 0).

Cluster enrichment by sample condition. For Fig. 3b, we assessed which
microglial clusters showed enrichment in either of the two sample groups: dor-
solateral prefrontal cortex (DLPFC) from deceased aged individuals with Alzhei-
mer’s disease (AD) or Mild Cognitive Impairment (MCI), and temporal neocortex
(TNC) from surgically resected tissue from younger temporal lobe epilepsy (TLE)

patients. This comparison was performed as follows: (1) for each cluster, we cal-
culated the proportion of cells that belonged to that cluster in each individual
sample; (2) we ran a non-parametric Kruskal-Wallis test with
Benjamini-Hochberg correction to identify which clusters showed differential
proportions across the three regions. The adjusted p-values that showed sig-
nificance (p < 0.05) are shown in Fig. 3b. Non-significant p-values are not indi-
cated. It is important to note that the sample groups differ along several variables,
so we cannot conclude unambiguously whether the differences in cell type pro-
portion are due to brain region, disease condition, or subject age.

Comparison to other RNA-seq data sets. As shown in Fig. 6, we compared our
putative microglial clusters to microglial subtype signatures found in three other
published data sets, as well as to a larger single-nucleus RNA-seq data set (Fig. 7).
These four data sets were Keren-Shaul et al.24 (accessible under accession code
GEO: GSE98969), Mathys et al.2% (accessible using the accession number GEO:
GSE103334), Sankowski et al.2> (available at the Gene Expression Omnibus under
accession code GSE135437), and Mathys et al.® (available at Synapse (https://www.
synapse.org/#!Synapse:syn18485175) under the doi 10.7303/syn18485175). For
each of these data sets, we integrated the single cells/nuclei identified as microglia
in that study with our data using Canonical Correlation Analysis3” (CCA). We
then mapped these cells/nuclei to our single-cell microglia clusters in CCA space
using a Naive Bayes classifier. Next, we assessed relative enrichment of each cluster
type within each of our clusters using a hypergeometric test with Bonferroni
correction. For the single-nucleus RNA-seq data from Mathys et al.?, we assessed
the difference in distribution of cluster proportions across in donors with AD
pathology and AD-dementia (1 = 18) and donors with neither AD pathology nor
AD-dementia (n = 20) using a linear model corrected for age and sex.

Comparison of single-donor clustering to full clustering. The same clustering
method was applied to subsets of the data in order to assess the robustness and
reproducibility of clustering. This included running the clustering on cells from
each donor individually. The overlap of clusters was assessed qualitatively using
heatmaps (see Supplemental Fig. 6). From a quantitative standpoint, we calculated
the Adjusted Rand Index (a standard measure to assess the similarity of two
partitionings of a given set) between the clusters derived from data subsets and the
clusters derived from the full data set. In all cases, the Adjusted Rand Index was
above 0.5, suggesting that clusters were identified robustly in subsets of the data.

Functional annotation of the different microglia subsets. A list of the top 50
genes that were enriched in the given clusters (top 50 genes for each cluster that
were found to be upregulated in the given cluster in the most number of pairwise
comparisons (Supplementary Data 5)) was submitted to the analysis of upstream
transcriptional regulation using PASTAAZ20 and pathway enrichment in REAC-
TOME?. For both analyses, the output entities (transcription factor binding site
matrices and pathways) with an FDR < 0.05 are reported in Supplementary Data 6
and 7, respectively. Representative transcription factors and pathways are shown in
Fig. 5b, c.

Disease ontology analysis. For disease ontology analysis, we used a list of all
genes in each cluster that showed statistically significant upregulation in com-
parison to at least one microglial cluster, with the constraint that the gene did not
show significant down-regulation with respect to any other microglial cluster
(Supplementary Data 5). Using these cluster-specific gene lists, we performed
disease ontology analyses using the DOSE R package?® with standard parameters
and Benjamini-Hochberg procedure (Fig. 8a, b and Supplementary Figs. 10 and
1la-c). We note that we used this strategy after considering the option of using
genes that are uniquely expressed in each cluster; we ultimately discarded this
option because the number of such genes was too small to support robust
enrichment analyses. This results from the fact that closely related groups of cells
often can only be identified uniquely by a combination of genes (as opposed to
individual genes), a finding that has been reported in multiple studies examining
neuronal subtypes using single-cell RNA-seq.

Association of clusters with ROSMAP traits. We assessed the association of
cluster signatures to a set of five cognitive and pathological traits defined in the
ROSMAP study (Fig. 8¢ and Supplementary Data 11), as follows. In these analyses,
we used the cluster-defining gene list reported in Supplementary Data 5. First, for
each ROSMAP trait, we extracted two sets of gene lists form the tissue level RNA
sequencing data from the dorsolateral prefrontal cortex available on 541 indivi-
duals from the ROSMAP cohort?’: those that showed positive association with the
trait of interest, and those that showed negative association with the trait. Finally,
we assessed the overlap of the upregulated genes for each cluster with the posi-
tively- and negatively associated genes for each trait using a standard hypergeo-
metric test. The selected traits were described in detail elsewhere>®27:3435,
Additionally, a detailed description of the used variables (amyloid, tangles, global
AD pathology burden, final consensus cognitive diagnosis, random slope of global
cognition) can be found on the searchable website https://www.radc.rush.edu/docs/
var/varIndex.htm.

16 | (2020)11:6129 | https://doi.org/10.1038/s41467-020-19737-2 | www.nature.com/naturecommunications


https://www.synapse.org/#!Synapse:syn18485175
https://www.synapse.org/#!Synapse:syn18485175
https://www.radc.rush.edu/docs/var/varIndex.htm
https://www.radc.rush.edu/docs/var/varIndex.htm
www.nature.com/naturecommunications

ARTICLE

Mapping of single-nuclei data to single-cell clusters. A recent publication’
generated single-nucleus RNA-seq data from dorsolateral prefrontal cortex in 48
donors (comprising subsets of donors with and without diagnoses of Alzheimer’s
disease) from the ROSMAP cohort (data available at Synapse (https://www.
synapse.org/#!Synapse:syn18485175) under the doi 10.7303/syn18485175). We
appended the single nuclei identified as microglia in that study to our clusters using
Canonical Correlation Analysis (CCA)%7, followed by mapping nuclei to our single-
cell microglia clusters in CCA space using a Naive Bayes classifier (Supplementary
Fig. 14b). We then assessed the difference in distribution of cluster proportions in
donors with AD pathology and AD-dementia (n = 18) and donors with neither AD
pathology nor AD-dementia (n = 20) using a linear model corrected for age and
sex (Fig. 8e).

Association of clusters with ROSMAP modules. We assessed the enrichment of
cluster signatures in previously reported microglial modules derived from bulk
data from the ROSMAP study®2”. For each cell, we calculated a hypergeometric
p-value based on the overlap of genes detected in that cell and genes belonging to
a given module from Mostafavi et al?’. For each cluster, we aggregated the p-
values from all cells, and we used a Mann-Whitney test to assess whether the
distribution of log p-values was significantly different from log(0.01). The
Mann-Whitney p-values were then Bonferroni corrected to obtain the final
association scores. As expected, the microglial clusters showed enrichment for a
subset of modules known to be enriched for microglial signatures (Supple-
mentary Fig. 13 and Supplementary Data 12), whereas the non-microglial
clusters showed much weaker associations.

In situ confirmation of microglia subset abundances. We used formalin fixed
paraffin embedded tissue sections from the prefrontal cortex (BA9) of 19 donors
from the New York Brain Bank (for donor specifics see Supplementary Data 9).
Immunohistochemistry was performed as described below. 12 um thick sections
of human prefrontal cortex were de-paraffinized with Xylene for 20 min. The
sections were put through an ethanol series (ethanol 100%, ethanol 100%,
ethanol 70% - 1 min for each) and re-hydrated in water (for 1 min). Subse-
quently, the slides were washed 3 times with phosphate buffered saline (PBS).
Antigen retrieval was achieved by putting slides in pH 6.0 citrate buffer and
using microwave for 25 min at 400 Watt. The slides were placed in tap water for
5 min, washed three times with PBS. Unspecific binding of antibodies was
blocked with 3% bovine serum albumin (BSA) in PBS containing 0.1% TritonX
for 20 min. Primary antibody was applied overnight. Subsequently the slides
were washed with PBS three times and the fluorochrome conjugated secondary
antibody was applied to the slides for one hour. The slides were again washed
three times with PBS. Endogenous autofluorescence was quenched with sudan
black for 10 min. The slides were again washed with BPS three times and
mounted with ProlongGold containing DAPI. For the amyloid staining, heat-
induced epitope retrieval was performed using citrate pH = 6 using microwave
oven (800 Watt, 30% power setting) for 25 min.

Then the sections were treated with formic acid for 2 min and blocked with
blocking medium (3% BSA) for 30 min at room temperature (RT). The slides were
incubated with primary antibodies overnight at 4 °C, followed with washes and
incubation with secondary antibodies as described above.

The primary antibodies used were rabbit anti-human Ibal (Wako; 019-19741;
at the dilution of 1:500), red fluorochrome (635) conjugated anti-Ibal (Wako; 013-
26471; 1:500), mouse anti-human CD45 (Novus; NB500-319; 1:200), rabbit anti-
human ISG15 (Proteintech; 15981-1-AP; 1:100), mouse anti-human CD83
(BioLegend; 305302; 1:100), mouse anti-human CD74 (BioLegend; 326802; 1:100),
rabbit anti-human CD74 (Sigma; HPA010592; 1:100), mouse anti-human PCNA
(Invitrogen; 13-3900; 1:100), and mouse anti-human beta-amyloid (Biolegend;
805501; 1:500). The secondary antibodies used were goat anti-mouse IgG (H+L)
highly cross-adsorbed secondary antibody conjugated to Alexa Fluor Plus 488
(ThermoFisher Scientific; A32723; 1:300) or Alexa Fluor Plus 555 (ThermoFisher
Scientific; A32727; 1:300) and goat anti-rabbit IgG (H+L) highly cross-adsorbed
secondary antibody conjugated to Alexa Fluor Plus 488 (ThermoFisher Scientific;
A32731; 1:300) or Alexa Fluor Plus 555 (ThermoFisher Scientific; A32732; 1:300).
Nuclei were counterstained with DAPI (Invitrogen; P36931).

Photomicrographs were captured with a x20 objective using Leica DMI 6000b
fluorescence microscope. In all, 20 images were obtained from each donor from the
gray matter of the prefrontal cortex. The images were then exported to Image]
image analysis software (NIH, Maryland, USA) for further processing, before being
loaded to the CellProfiler software where automated segmentation of cells and
amyloid plaques was performed, followed by quantification of subset abundances
as described in detailed below.

Automated image analysis using CellProfiler. Immunofluorescence images were
analyzed using the CellProfiler®” software to measure and classify cells according to
the expression of the selected markers. First, the software was trained to auto-
matically segment the images into: (1) cells (DAPI positive objects); (2) microglial
cells (DAPI+/IBA1+ or DAPI4+/CD45+ objects); (3) microglial subtypes (DAPI+/
IBA14-/CD83+ and DAPI4-/IBA1+/CD83—; DAPI4-/IBA1+/PCNA+ and
DAPI+/IBA1+/PCNA—; DAPI4-/CD45+/1SG15+ and DAPI+/CD45+-/I1SG15—).

The abundance of the microglia subsets was then expressed as percentage of ISG15
(cluster 4), CD83 (clusters 5/6), or PCNA (cluster 9) positive microglia over the
total microglial population. Since CD74 was generally expressed by all microglia
but was significantly upregulated in cluster 7 microglia, we elected to quantify the
CD74high microglia cells, which are defined as those microglial cells whose CD74
expression was higher than the mean CD74 expression plus two times the standard
deviation. This cut off was in line with the distribution of the CD74 expression in
microglia, as there was a second peak on the histogram that started emerging at
these intensity values (see Fig. 7c). Thus for assessing the abundance of cluster 7 we
quantified the percentage of DAPI+/IBA1+4-/CD74high cells among the DAPI+/
IBA1+cells. Similar approach was used for in situ confirmation of the abundance
of cluster 4 microglia cells (ISG15+ subpopulation). To assess the abundance of the
different microglia subsets in situ (Fig. 7d) formalin fixed paraffin embedded
DLPFC tissue sections from 7 donors (see Supplementary Data 9). To investigate
the differences in the abundance of cluster 7 microglia between AD and healthy
control donors (Fig. 8d) we have assessed the abundance of CD74high microglia
(percentage of DAPI+/IBA1+4-/CD74high cells among the DAPI+/IBA14-cells) in
19 donors (see Supplementary Data 9) with and without the clinical and patho-
logical diagnosis of AD. Similar approach was used for assessing topological dis-
tribution of cluster 7 microglia (Supplementary Fig. 15) as it relates to amyloid
plaques.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

Our single-cell based transcriptomic data from human microglia is available in the form
of a browsable platform at https://vmenon.shinyapps.io/microglia. The raw data files are
available through Synapse (https://www.synapse.org/#!Synapse:syn21438358). The raw
data of the Sankowski et al.2 study are available at the Gene Expression Omnibus under
accession code GSE135437. The raw data from Mathys et al.22 are available using the
accession number GSE103334.The raw data from Keren-Shaul et al.>* are accessible
under accession code GEO: GSE98969. The Mathys et al.” data are available at Synapse
(https://www.synapse.org/#!Synapse:syn18485175) under the doi 10.7303/syn18485175.
Source data are provided with this paper.

Code availability
All analysis R code is available as a github repository (https://github.com/vilasmenon/
Microglia_Olah_et_al_2020).
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