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Abstract: Cannabis use has been growing recently and it is legally consumed in many countries.
Cannabis has a variety of phytochemicals including cannabinoids, which might impair the periph-
eral systems responses affecting inflammatory and immunological pathways. However, the exact
signaling pathways that induce these effects need further understanding. The objective of this study
is to investigate the serum proteomic profiling in patients diagnosed with cannabis use disorder
(CUD) as compared with healthy control subjects. The novelty of our study is to highlight the
differentially changes proteins in the serum of CUD patients. Certain proteins can be targeted in the
future to attenuate the toxicological effects of cannabis. Blood samples were collected from 20 male
individuals: 10 healthy controls and 10 CUD patients. An untargeted proteomic technique employing
two-dimensional difference in gel electrophoresis coupled with mass spectrometry was employed
in this study to assess the differentially expressed proteins. The proteomic analysis identified a
total of 121 proteins that showed significant changes in protein expression between CUD patients
(experimental group) and healthy individuals (control group). For instance, the serum expression
of inactive tyrosine protein kinase PEAK1 and tumor necrosis factor alpha-induced protein 3 were
increased in CUD group. In contrast, the serum expression of transthyretin and serotransferrin
were reduced in CUD group. Among these proteins, 55 proteins were significantly upregulated and
66 proteins significantly downregulated in CUD patients as compared with healthy control group.
Ingenuity pathway analysis (IPA) found that these differentially expressed proteins are linked to
p38MAPK, interleukin 12 complex, nuclear factor-κB, and other signaling pathways. Our work
indicates that the differentially expressed serum proteins between CUD and control groups are
correlated to liver X receptor/retinoid X receptor (RXR), farnesoid X receptor/RXR activation, and
acute phase response signaling.

Keywords: serum proteomes; cannabis use disorder; proteomic profiling; LXR/RXR activation;
FXR/RXR activation; acute phase responses; inflammation; atherosclerosis signaling
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1. Introduction

Cannabis sativa L. and Cannabis indica L. contain a variety of secondary metabolites.
Cannabis plants species differ based on many factors, including the quantity of cannabi-
noids. Some of them are psychoactive and induce hallucinating effects such as delta-9-
tetrahydrocannabinol (THC) while the others are non-psychoactive such as cannabidiol
(CBD) [1]. The complexity of cannabis makes its use censorious because cannabis users
may develop unexpected side effects, including central nervous system (CNS) side effects
due to certain chemical ingredients. Therefore, exposure to cannabis means that the users
will expose to several cannabinoids (~60) that are associated with pharmacological effects.
In addition, the duration of exposure is a critical factor that significantly affects the quantity
of these cannabinoids in the body.

Despite the presence of multiple compounds, cannabinoids family are the most abun-
dant phytochemicals present in the cannabis plants [1]. Psychoactive effects resulted from
cannabis exposure have been linked to THC [2]. This compound can modulate the pro-
cessing of visual and auditory hallucination effects [3]. However, regulatory agencies
have approved few cannabinoids to be used for certain indications. For instance, the
U.S. Food and Drug Administration (FDA) has approved products containing CBD for
seizures associated with Dravet syndrome and Lennox–Gastaut syndrome in one-year-old
and older patients reported previously in clinical studies [4,5]. Moreover, FDA-approved
synthetic products containing THC for the treatment of vomiting and nausea caused by
chemotherapy treatments in patients who lack the response to conventional antiemetic
treatments [6]. In addition, they can be prescribed to manage anorexia-associated with
weight loss in patients diagnosed with acquired immunodeficiency syndrome [7].

Cannabis use disorder (CUD) is widespread across numerous countries [8]. The
hallucination effects of cannabis use leads to drug abuse [9]. Governments and regulatory
agencies set guidelines and policies to minimize the undesirable effects of cannabis [10,11].
As some countries have legalized the use of marijuana, smoking products containing
marijuana are legally marketed nowadays.

Studies have documented toxicological effects in different models exposed to cannabis
ingredients [12–16]. A recent study reported that high-grade atrioventricular block was
developed in a young male following chronic exposure to marijuana [14]. Moreover, a
recent case series study concluded that vaping cannabis oil was associated with acute
respiratory depression [15]. It is important to consider that tachycardia and neurotoxicity
were reported after acute inhalation of cannabis in humans [16]. Fivefold increase in blood
carboxyhemoglobin levels were found in subjects who smoked marijuana for at least five
years as compared with those who smoke tobacco cigarettes [13]. This study also noted
that the burden of tar and carbon monoxide in the respiratory system has increased in
marijuana smokers as compared with those who smoked a similar quantity of tobacco.
On the other hand, CBD showed the ability to regulate immunological responses using
in vivo and in vitro assays [17]. Moreover, CBD exhibits antioxidant and anti-inflammatory
properties [18–20]. These anti-inflammatory effects were also found in non-psychoactive
cannabinoids [20].

Several reports have determined the serum proteomic profiling of humans exposed
to amphetamine analogs [21,22]. A recent study from our group identified differentially
expressed proteins in the serum of individuals with amphetamine use disorder compared
with a healthy control group [23]. Moreover, prior clinical proteomic studies utilized serum
samples to determine the levels of proteins in patients who had developed neurodegener-
ative diseases [24,25], neurodevelopmental disorders [26–28], major depressive disorder,
and bipolar disorders [29,30]. In the present study, we investigate the expression changes
of CUD patients’ serum proteins compared with healthy controls, using an untargeted
proteomic approach employing two-dimensional (2D) alteration in gel electrophoresis
(2D-DIGE) coupled with mass spectroscopy (MS).
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2. Results
2.1. Demographic Information

Demographic and clinical information of all participants included in our study has
been collected. This information includes marital and employment status, age, gender,
history of cannabis use disorder, and route of cannabis administration (Table 1).

Table 1. Clinical and demographic information of the CUD and control groups recruited in the
present study. HIV: Human immunodeficiency virus; HPC: Hepatitis C virus; TB: Tuberculosis.

CUD Group Control Group

Number of patients 10 10
Gender 10 Male, 0 Female 10 Male, 0 Female

Age in years (Mean ± SD) 24.7 ± 3.63 30.4 ± 4.36
Infectious diseases (HIV, HCV, TB) Negative Negative

Cannabis dosage form Smoking None
Cannabis use history

2–5 years 4 Patients None
6–10 years 3 Patients None
≥11 years 3 Patients None

2.2. Identification of Differentially Expressed Proteins and 2D-DIGE Analysis

The current study assessed the difference in protein expression among 10 cannabis-
exposed individuals and 10 controls (20 samples from 10 gels) using 2D-DIGE analysis
technique before statistical analysis is performed with Progenesis software. Fluorescent pro-
tein profiles of a 2D-DIGE of control samples labelled with Cy3 are presented in Figure 1A.
The CUD samples were labeled with Cy5 (Figure 1B), pooled internal control labeled
with Cy2 (Figure 1C), and overlap of 2D-DIGE gels of samples labeled with Cy3/Cy5
(Figure 1D). A total of 1700 spots were identified on the gels, 156 were significantly differ-
ent (ANOVA, p ≤ 0.05; fold-change ≥ 1.5) between the CUD and control groups (Figure 2).
For alignment and further analysis, the spot patterns were reproducible across all 10 gels.
The internal standard Cy2-labeled was included to perform normalization among the
whole gels set in addition to the quantitative of the protein levels differential analysis. A
total of 156 spots displayed a statistical significance among the two groups. These spots
were manually excised from the preparative gel and underwent protein identification
using MS.

Peptide mass fingerprints (PMFs) identified 121 out of 156 protein spots that were ex-
cised from preparative gel, MALDI-TOF. MS found 85 spots to be unique protein sequences.
These sequences were matched to the SWISS-PROT database by Mascot search engine with
high confidence scores (Table 2, Supplementary Table S2). The sequence coverage ranged
from 4% to 85%. In few cases, the same protein variants were found at several locations on
the gel (Table 2, Figure 2). Among the 121 proteins identified, 55 were upregulated and
66 were downregulated in the samples of CUD patients compared with that in the control
subjects (Table 2, Figure 3). The significantly upregulated proteins included Apolipoprotein
A-I (up 3.8-fold, p = 0.01), Alpha-1-antichymotrypsin (up 2.7-fold, p = 0.02), U3 small
nucleolar RNA-associated protein 15 homolog (up 2.6-fold, p = 0.03), Zinc finger protein
550 (up 2.4-fold, p = 0.04), Haptoglobin-related protein (up 2.4-fold, p = 0.01), Spectrin
beta chain, non-erythrocytic 4 (up 2.3-fold, p = 0.01), Keratin, type I cytoskeletal 10 (up
2.2-fold, p = 0.007), Dedicator of cytokinesis protein 9 (up 2.1-fold, p = 0.02), Haptoglobin
(up 2.4-fold, p = 0.01), and Serine/threonine-protein phosphatase 2A regulatory subunit B”
subunit gamma (up 2.0 fold, p = 0.05); a complete list is provided in Table 2. By contrast, the
significantly downregulated proteins in CUD subjects included Hemoglobin subunit beta
(down 5.0-fold, p = 0.05), Alpha-1-acid glycoprotein 2 (down 3.7-fold, p = 0.04), Rab GTPase-
activating protein 1-like (down 2.9-fold, p = 0.02), and Ubiquitin domain-containing protein
1 (down 2.6-fold, p = 0.04) (Table 2, Supplementary Table S2). Among identified proteins:
Inactive tyrosine protein kinase PEAK1, Transthyretin; Serotransferrin; Keratin, type I
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cytoskeletal 10; Apolipoprotein A-I; Ficolin-3; Vitamin D-binding protein; Haptoglobin;
Keratin, type II cytoskeletal 1; Albumin; Alpha-1-antitrypsin; Retinol-binding protein 4,
Outer dense fiber protein 2; Dynein heavy chain 3, axonemal; Parvalbumin alpha; Rab
GTPase-activating protein 1-like; Structural maintenance of chromosomes protein 1A and
Zinc finger protein 175 were found in ≥1 spot on the gels, which could be explained by
post-translational modifications, cleavage by enzymes, or different protein species presence.
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identified to be differentially abundant (defined as fold-change >1.5, p < 0.05) between the two 
groups (controls and CUD). These were successfully identified with matrix-assisted laser desorp-
tion/ionization time of flight (MALDI-TOF) mass spectrometry (MS). MW, protein molecular 
weight; pI, isoelectric point. 
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Figure 2. Fluorescence labeled (CyDyes)-2D-DIGE numbered spots indicate those proteins that
were identified to be differentially abundant (defined as fold-change >1.5, p < 0.05) between the
two groups (controls and CUD). These were successfully identified with matrix-assisted laser desorp-
tion/ionization time of flight (MALDI-TOF) mass spectrometry (MS). MW, protein molecular weight;
pI, isoelectric point.
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Table 2. Identified proteins with changes in abundance between CUD and control samples. The table displays average ratio
values for control and treated samples with their corresponding levels of fold changes and p-values for one-way ANOVA
(p-value < 0.05) using 2D-DIGE. Analysis type: MALDI-TOF; database: SwissProt; taxonomy: Homo sapiens. a Protein
accession number for SWISSPROT Database. b p-Value (ANOVA). c Ratio between the groups d Protein expression between
the groups.

Sl No: Spot
No a

Accession
No Protein Name Mascot ID p-Value b

(ANOVA)
Ratio

CB/C c Exp d

Upregulated Proteins

84 990 Q5BJF6 Outer dense fiber protein 2 ODFP2_HUMAN 0.05 2 UP

10 1470 P02647 Apolipoprotein A-I APOA1_HUMAN 0.01 3.8 UP

25 185 P01011 Alpha-1-antichymotrypsin AACT_HUMAN 0.02 2.7 UP

79 1627 P02647 Apolipoprotein A-I APOA1_HUMAN 0.04 2.6 UP

70 1180 Q8TED0
U3 small nucleolar

RNA-associated protein
15 homolog

UTP15_HUMAN 0.03 2.6 UP

16 1322 P00739 Haptoglobin-related protein HPTR_HUMAN 0.01 2.4 UP

81 993 Q7Z398 Zinc finger protein 550 ZN550_HUMAN 0.04 2.4 UP

8 1226 Q9H254 Spectrin beta chain,
non-erythrocytic 4 SPTN4_HUMAN 0.01 2.3 UP

5 1797 P13645 Keratin, type I cytoskeletal 10 K1C10_HUMAN 0.007 2.2 UP

42 1260 P02647 Apolipoprotein A-I APOA1_HUMAN 0.04 2.1 UP

20 1427 Q9BZ29 Dedicator of cytokinesis
protein 9 DOCK9_HUMAN 0.02 2.1 UP

58 886 P00738 Haptoglobin HPT_HUMAN 0.02 2.1 UP

112 676 P02749 Beta-2-glycoprotein 1 APOH_HUMAN 0.05 2 UP

40 1475 Q3L8U1 Chromodomain-helicase-DNA-
binding protein 9 CHD9_HUMAN 0.04 2.0 UP

30 334 P02790 Hemopexin HEMO_HUMAN 0.04 2 UP

46 1705 O15226 NF-kappa-B-repressing factor NKRF_HUMAN 0.0 2 UP

41 1295 Q969Q6
Serine/threonine-protein

phosphatase 2A regulatory
subunit B” subunit gamma

P2R3C_HUMAN 0.05 2.0 UP

93 1908 P02647 Apolipoprotein A-I APOA1_HUMAN 0.03 1.9 UP

64 903 O95389 Cellular communication
network factor 6 WISP3_HUMAN 0.03 1.9 UP

77 953 P00738 Haptoglobin HPT_HUMAN 0.04 1.9 UP

99 796 P00738 Haptoglobin HPT_HUMAN 0.02 1.9 UP

9 1487 P01834 Immunoglobulin kappa
constant IGKC_HUMAN 0.01 1.9 UP

36 1231 P13645 Keratin, type I cytoskeletal 10 K1C10_HUMAN 0.04 1.9 UP

100 987 Q709C8 Vacuolar protein
sorting-associated protein 13C VP13C_HUMAN 0.03 1.9 UP

92 981 P06727 Apolipoprotein A-IV APOA4_HUMAN 0.04 1.8 UP

96 623 Q92608 Dedicator of cytokinesis
protein 2 DOCK2_HUMAN 0.02 1.8 UP

21 1120 O75648 Mitochondrial tRNA-specific
2-thiouridylase 1 MTU1_HUMAN 0.02 1.8 UP

6 1937 Q5T6V5 Queuosine salvage protein CI064_HUMAN 0.008 1.8 UP

2 1792 P02766 Transthyretin TTHY_HUMAN 0.005 1.8 UP

76 1865 P02766 Transthyretin TTHY_HUMAN 0.04 1.8 UP

59 457 Q96M63 Coiled-coil domain-containing
protein 114 CC114_HUMAN 0.05 1.7 UP
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Table 2. Cont.

Sl No: Spot
No a

Accession
No Protein Name Mascot ID p-Value b

(ANOVA)
Ratio

CB/C c Exp d

61 1305 Q12852 Mitogen-activated protein
kinase kinase kinase 12 M3K12_HUMAN 0.03 1.7 UP

83 974 P35558 Phosphoenolpyruvate
carboxykinase, cytosolic [GTP] PCKGC_HUMAN 0.05 1.7 UP

115 714 Q02156 Protein kinase C epsilon type KPCE_HUMAN 0.04 1.7 UP

22 1759 P02766 Transthyretin TTHY_HUMAN 0.02 1.7 UP

67 1067 Q9NQW7 Xaa-Pro aminopeptidase 1 XPP1_HUMAN 0.03 1.7 UP

80 1659 P02647 Apolipoprotein A-I APOA1_HUMAN 0.04 1.6 UP

57 1446 Q9BV73 Centrosome-associated protein
CEP250 CP250_HUMAN 0.03 1.6 UP

12 1136 O75636 Ficolin-3 FCN3_HUMAN 0.02 1.6 UP

51 1277 O75636 Ficolin-3 FCN3_HUMAN 0.05 1.6 UP

47 1132 Q92896 Golgi apparatus protein 1 GSLG1_HUMAN 0.05 1.6 UP

118 797 P00738 Haptoglobin HPT_HUMAN 0.04 1.6 UP

44 1962 P13645 Keratin, type I cytoskeletal 10 K1C10_HUMAN 0.04 1.6 UP

23 1193 P04264 Keratin, type II cytoskeletal 1 K2C1_HUMAN 0.02 1.6 UP

87 955 Q5BJF6 Outer dense fiber protein 2 ODFP2_HUMAN 0.05 1.6 UP

39 1784 P02753 Retinol-binding protein 4 RET4_HUMAN 0.04 1.6 UP

56 1669 P02753 Retinol-binding protein 4 RET4_HUMAN 0.02 1.6 UP

35 1473 Q9HBT8 Zinc finger protein 286A Z286A_HUMAN 0.04 1.6 UP

55 1138 Q6ZN19 Zinc finger protein 841 ZN841_HUMAN 0.02 1.6 UP

105 788 A8TX70 Collagen alpha-5(VI) chain CO6A5_HUMAN 0.04 1.5 UP

97 771 Q96EH8 E3 ubiquitin-protein
ligase NEURL3 LINCR_HUMAN 0.05 1.5 UP

85 1211 P04264 Keratin, type II cytoskeletal 1 K2C1_HUMAN 0.05 1.5 UP

90 913 P02538 Keratin, type II cytoskeletal 6A K2C6A_HUMAN 0.04 1.5 UP

89 1039 P78332 RNA-binding protein 6 RBM6_HUMAN 0.05 1.5 UP

32 1563 P18206 Vinculin VINC_HUMAN 0.04 1.5 UP

Downregulated Proteins

88 2217 P68871 Hemoglobin subunit beta HBB_HUMAN 0.05 −5.0 DOWN

94 2323 P02042 Hemoglobin subunit delta HBD_HUMAN 0.03 −4.2 DOWN

82 562 P19652 Alpha-1-acid glycoprotein 2 A1AG2_HUMAN 0.04 −3.7 DOWN

95 481 Q5R372 Rab GTPase-activating protein
1-like RBG1L_HUMAN 0.02 −2.9 DOWN

34 1448 Q6ZNG0 Zinc finger protein 620 ZN620_HUMAN 0.04 −2.6 DOWN

45 456 Q9HAC8 Ubiquitin domain-containing
protein 1 UBTD1_HUMAN 0.04 −2.6 DOWN

31 450 P01009 Alpha-1-antitrypsin A1AT_HUMAN 0.04 −2.5 DOWN

18 385 P02787 Serotransferrin TRFE_HUMAN 0.02 −2.4 DOWN

7 1082 O43300
Leucine-rich repeat

transmembrane neuronal
protein 2

LRRT2_HUMAN 0.009 −2.3 DOWN

11 382 P02787 Serotransferrin TRFE_HUMAN 0.01 −2.2 DOWN

33 853 P00738 Haptoglobin HPT_HUMAN 0.04 −2.2 DOWN

4 860 P02787 Serotransferrin TRFE_HUMAN 0.006 −1.9 DOWN

14 865 P00738 Haptoglobin HPT_HUMAN 0.01 −1.9 DOWN
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Table 2. Cont.

Sl No: Spot
No a

Accession
No Protein Name Mascot ID p-Value b

(ANOVA)
Ratio

CB/C c Exp d

17 857 Q07065 Cytoskeleton-associated
protein 4 CKAP4_HUMAN 0.01 −1.9 DOWN

27 235 P17039 Zinc finger protein 30 ZNF30_HUMAN 0.026 −1.9 DOWN

38 497 P01009 Alpha-1-antitrypsin A1AT_HUMAN 0.04 −1.9 DOWN

48 1877 P20472 Parvalbumin alpha PRVA_HUMAN 0.05 −1.9 DOWN

62 1394 Q14204 Cytoplasmic dynein 1 heavy
chain 1 DYHC1_HUMAN 0.03 −1.9 DOWN

73 1106 Q8TD57 Dynein heavy chain 3,
axonemal DYH3_HUMAN 0.04 −1.9 DOWN

13 7 P02774 Vitamin D-binding protein VTDB_HUMAN 0.02 −1.8 DOWN

72 388 P00751 Complement factor B CFAB_HUMAN 0.03 −1.8 DOWN

3 202 P21580 Tumor necrosis factor
alpha-induced protein 3 TNAP3_HUMAN 0.005 −1.7 DOWN

29 661 P01009 Alpha-1-antitrypsin A1AT_HUMAN 0.04 −1.7 DOWN

43 636 Q99661 Kinesin-like protein KIF2C KIF2C_HUMAN 0.04 −1.7 DOWN

52 354 O60384 Putative zinc finger protein 861 YS022_HUMAN 0.05 −1.7 DOWN

53 650 P01009 Alpha-1-antitrypsin A1AT_HUMAN 0.05 −1.7 DOWN

68 423 Q5R372 Rab GTPase-activating protein
1-like RBG1L_HUMAN 0.03 −1.7 DOWN

71 805 P04637 Cellular tumor antigen p53 P53_HUMAN 0.03 −1.7 DOWN

98 341 Q9P219 Protein Daple DAPLE_HUMAN 0.05 −1.7 DOWN

104 1465 P17017 Zinc finger protein 14 ZNF14_HUMAN 0.03 −1.7 DOWN

15 864 P01024 Complement C3 CO3_HUMAN 0.01 −1.6 DOWN

24 108 O75121 Microfibrillar-associated protein
3-like MFA3L_HUMAN 0.02 −1.6 DOWN

26 266 P02768 Albumin ALBU_HUMAN 0.03 −1.6 DOWN

28 357 P08631 Tyrosine protein kinase HCK HCK_HUMAN 0.03 −1.6 DOWN

37 548 P02765 Alpha-2-HS-glycoprotein FETUA_HUMAN 0.04 −1.6 DOWN

54 1037 Q14683 Structural maintenance of
chromosomes protein 1A SMC1A_HUMAN 0.05 −1.6 DOWN

66 1083 Q9UKX3 Myosin-13 MYH13_HUMAN 0.03 −1.6 DOWN

74 579 P02768 Albumin ALBU_HUMAN 0.04 −1.6 DOWN

86 1054 Q9H792 Inactive tyrosine protein
kinase PEAK1 SG269_HUMAN 0.05 −1.6 DOWN

102 702 Q9UM13 Anaphase-promoting complex
subunit 10 APC10_HUMAN 0.03 −1.6 DOWN

103 533 P02774 Vitamin D-binding protein VTDB_HUMAN 0.03 −1.6 DOWN

108 633 P02768 Albumin ALBU_HUMAN 0.05 −1.6 DOWN

114 537 P02768 Albumin ALBU_HUMAN 0.05 −1.6 DOWN

120 550 Q8TE73 Dynein heavy chain 5,
axonemal DYH5_HUMAN 0.05 −1.6 DOWN

1 253 Q9H792 Inactive tyrosine protein
kinase PEAK1 SG269_HUMAN 0.004 −1.5 DOWN

19 820 Q14585 Zinc finger protein 345 ZN345_HUMAN 0.02 −1.5 DOWN

49 504 Q08999 Retinoblastoma-like protein 2 RBL2_HUMAN 0.05 −1.5 DOWN

50 1484 P02768 Albumin ALBU_HUMAN 0.05 −1.5 DOWN

60 522 Q9Y473 Zinc finger protein 175 ZN175_HUMAN 0.03 −1.5 DOWN

63 48 P49792 E3 SUMO-protein
ligase RanBP2 RBP2_HUMAN 0.03 −1.5 DOWN
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Table 2. Cont.

Sl No: Spot
No a

Accession
No Protein Name Mascot ID p-Value b

(ANOVA)
Ratio

CB/C c Exp d

65 28 Q14624 Inter-alpha-trypsin inhibitor
heavy chain H4 ITIH4_HUMAN 0.03 −1.5 DOWN

69 1213 Q14683 Structural maintenance of
chromosomes protein 1A SMC1A_HUMAN 0.03 −1.5 DOWN

75 215 Q9Y4I1 Unconventional myosin-Va MYO5A_HUMAN 0.04 −1.5 DOWN

78 528 P02768 Albumin ALBU_HUMAN 0.04 −1.5 DOWN

91 604 Q6AW86 Zinc finger protein 324B Z324B_HUMAN 0.04 −1.5 DOWN

101 732 P25311 Zinc-alpha-2-glycoprotein ZA2G_HUMAN 0.03 −1.5 DOWN

106 584 Q8TD57 Dynein heavy chain 3,
axonemal DYH3_HUMAN 0.04 −1.5 DOWN

107 1688 P20472 Parvalbumin alpha PRVA_HUMAN 0.04 −1.5 DOWN

109 709 Q9NZM1 Myoferlin MYOF_HUMAN 0.05 −1.5 DOWN

110 198 P02768 Albumin ALBU_HUMAN 0.05 −1.5 DOWN

111 743 P01009 Alpha-1-antitrypsin A1AT_HUMAN 0.05 −1.5 DOWN

113 556 P20929 Nebulin NEBU_HUMAN 0.05 −1.5 DOWN

116 588 Q96SZ6
Mitochondrial tRNA

methylthiotransferase
CDK5RAP1

CK5P1_HUMAN 0.04 −1.5 DOWN

117 275 Q9Y473 Zinc finger protein 175 ZN175_HUMAN 0.05 −1.5 DOWN

119 768 O76041 Nebulette NEBL_HUMAN 0.04 −1.5 DOWN

121 549 P51508 Zinc finger protein 81 ZNF81_HUMAN 0.03 −1.5 DOWN
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2.3. Principal Component Analysis

To determine and visualize the CUD and control subjects’ samples, the principal
component analysis of the Progenesis SameSpots software was used. The analysis was
made on all 121 spots that exhibited statistically significant changes in abundance identified
by MS. The analysis shows that the two groups clustered distinctly based on different
proteins with score of 64% (Figure 4).
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2.4. Protein–Protein Interaction Networks

Using Ingenuity Pathway Analysis (IPA), the protein–protein interaction analysis was
completed for all 121 regulated proteins. The analysis demonstrated that 35 proteins inter-
acted directly/indirectly via protein networks (Figure 5A). The software calculates the best
fit score obtained from the input data set of proteins and the biological functions database
in order to generate a protein–protein interactions network. The generated network is favor-
ably enriched for proteins with extensive and specific interactions. The interacting proteins
are characterized as nodes and their biological relationships as a line. Based on the resulted
data, four interaction networks were recognized for the proteins exhibiting variance expres-
sion profiles. The highest scoring network (score = 52) (Figure 5, Supplementary Figure S1)
incorporated 25 proteins. The proposed highest interaction network pathway was related
to free radical scavenging, cellular compromise, and inflammatory response. Alone the top
pathways are presented (Figure 5A). Canonical pathways that enriched in current dataset
are presented in Figure 5B. The canonical pathways are sorted down to decreasing log
(p-value) of enrichment. The most interesting enriched canonical pathways included liver
X receptors/retinoid X receptor (LXR/RXR) activation (11% overlap, p-value: 3.7 × 10−16),
farnesoid X receptors/retinoid X receptor activation (10.7% overlap, p-value: 5.78 × 10−16),
acute phase response signaling (7.4% overlap, p-value: 7.15 × 10−14), atherosclerosis signal-
ing (5.6% overlap, p-value: 3.87 × 10−7), and production of nitric oxide (NO) and reactive
oxygen species (ROS) in macrophages (4.3% overlap, p-value: 4.24 × 10−7). More details
about the identified canonical pathways are shown in supplementary files (Supplementary
Figure S1).
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2.5. Subcellular and Functional Characterization of the Differentially Expressed Proteins

Following MS analysis, all 121 identified proteins between the CUD and control
samples were subjected to the PANTHER classification system (http://www.pantherdb.
org, accessed on 1 February 2021). The classification was performed according to their
molecular function (Figure 6A), biological process (Figure 6B), and cellular component
(Figure 6C). The main functional categories recognized were binding proteins (47%),
catalytic activity (30%), and molecular function regulatory proteins (21%). Further, the
identified proteins were located in the organelle region (35%), extracellular space (24%),
followed by cytoplasmic and cytoskeletal regions, and each of these two account for (19%).
The majority of the identified protein was involved in cellular process, metabolic process
and biological regulations.
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2.6. Immunoblotting Confirmation of Changes in Selected Proteins

Immunoblot assay confirmed the expression of the selected proteins that were differ-
entially abundant by 2D-DIGE analysis (Figure 7). The proteins selected for confirmation
were serotransferrin and retinol-binding protein 4. Immunoblots revealed that the serum
protein expression of serotransferrin and retinol-binding protein 4 were decreased and
increased, respectively, in CUD group as compared with control group (p ≤ 0.05). To
normalize the immunoblot data, β-actin was used in the present study as a housekeeping
protein (Figure 7A,B).

http://www.pantherdb.org
http://www.pantherdb.org
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3. Discussion
3.1. Ingenuity Pathway Analysis
3.1.1. LXR/RXR Activation

IPA analysis showed that LXR/RXR is activated in humans chronically exposed to
cannabis. Our prior proteomic study showed that LXR/RXR activation is observed in hu-
mans exposed to amphetamine for chronic period of time [23]. This indicates that LXR/RXR
activation is highly sensitive following exposure to amphetamine and cannabinoids. A
microarray study performed IPA analysis showing that THC could induce alterations on
the genes, including the LXR/RXR gene, highly affected by lipopolysaccharide in BV-2 mi-
croglia cells [31]. This may suggest that LXR/RXR is highly sensitive to THC. Importantly,
LXR/RXR activation is linked to signaling pathways, including apolipoproteins such as
apolipoprotein AI, for cholesterol metabolism [32]. In the present study, we reported that
the serum expression of apolipoprotein AI was increased in patients diagnosed with CUD
as compared to healthy control group. This suggests that cannabis-modulated apolipopro-
tein AI and LXR/RXR may be involved in the metabolism of cholesterol. In addition, LXR
activation plays a crucial role in the inhibition of inflammatory responses [33], indicating
that LXR/RXR is one of the pathways mediated by cannabinoids to inhibit the formation
of inflammatory reactions. For instance, LXR/RXR, PPARα/RXRα, and STAT3 signaling
pathways are essential pathways to inhibit the inflammatory reactions [34]. A prior study
demonstrated that LXR could play a significant role in induction protective effects against
immunological responses-induced by Mycobacterium tuberculosis in mice [35]. Therefore,
LXR/RXR activation is an efficient therapeutic target to modulate cholesterol metabolism,



Molecules 2021, 26, 5311 13 of 25

transport and absorption, inflammatory responses, and immunological reactions. Studies
are warranted to explore the beneficial effects of targeting LXR/RXR by cannabinoids to
modulate the inflammation, immunological reactions, and cholesterol transport. Further
research may investigate the effects of cannabinoids on the diseases through acting on
LXR/RXR.

3.1.2. FXR/RXR Activation

IPA analysis showed that FXR/RXR is activated in humans chronically exposed to
cannabis. This is in agreement with our previous work showing that FXR/RXR activation
is documented in patients diagnosed with amphetamine use disorder [23]. Therefore,
FXR/RXR activation can play a critical role in the toxicological effects of abused drugs
such as amphetamine and cannabis. The FXR is a bile acid binding site and has a role in
the metabolism of lipids and glucose [36]. Our findings reported upregulatory effects on
the serum expression of apolipoprotein AI in CUD patients as compared to healthy control
group. A previous work highlighted that FXR activation might be a potential strategy for
the treatment of hypertriglyceridemia and type 2 diabetes mellitus (T2DM) [37]. This study
demonstrated that activation of FXR was associated with reduce plasma concentrations of
triglyceride, fasting glucose, and insulin in T2DM rat models. In addition, treatment with
a FXR agonist, chenodeoxycholic acid, could reverse the reduction of FXR expression in
the liver of T2DM rat models. These findings were supported by another study reporting
that hyperlipidemia and hyperglycemia were improved following activation of FXR in
diabetic mice models [38]. It is highly recommended to explore the role of cannabinoids on
modulating hyperglycemia and hyperlipidemia through modulating FXR/RXR pathways
in humans. Further work should study the effects of cannabinoids on the diseases through
acting on FXR/RXR.

3.1.3. Acute Phase Response Signaling

In our IPA analysis, we found that acute phase response signaling is stimulated in
cannabis users. The acute phase proteins, including haptoglobin, alpha-1-antitrypsin,
and complement factors, are proteins that are changed in response to the inflammatory
cytokines [39,40]. Acute phase responses are correlated to various diseases, including
immunological diseases [41]. The acute phase response signaling was the most interesting
enriched canonical pathway involved in patients with amphetamine use disorder as shown
in our previous proteomic study [23]. Interestingly, THC exposure was found to increase the
mortality in mice infected with Legionella pneumophila at least in part by altering the acute
phase responses of proinflammatory cytokines, an effect was not observed with cannabinol
and cannabidiol as well as a synthetic cannabinoid, CP 55,940 [42]. This suggests that
psychoactive cannabinoids might be more likely to modulate the acute phase responses
of inflammatory biomarkers. However, cannabidiol and its synthetic analogs have been
reported to exert anti-inflammatory and antioxidant effects [18]. CBD is a negative allosteric
modulator of cannabinoid receptor 1 (CB1) [43]; moreover, CBD was reported to behave
inverse agonist properties to CB2 receptor indicating that CBD-mediated anti-inflammatory
effects through modulating CB1 and 2 receptors [44]. The anti-inflammatory properties
were also documented with psychoactive cannabinoids [20]. Therefore, it is critical to
elucidate the role of psychoactive and non-psychoactive compounds in modulating acute
phase proteins.

3.1.4. Atherosclerosis Signaling

In our study, atherosclerosis signaling has been found to be modulated in CUD pa-
tients. Atherosclerosis signaling was one of the top canonical pathways that are involved
in protein–protein interactions in amphetamine use disorder patients [23]. Note that
apolipoprotein AI and inflammatory pathways interact with atherosclerosis signaling [45].
A previous review work discussed that THC might attenuate the plaques, generated from
atherosclerosis, through modulating CB2 receptors [46]. Additionally, activation of CB1 re-
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ceptors in the brain might be a therapeutic strategy to prevent ischemic stroke. Importantly,
2-arachidonoylglycerol (2-AG) and palmitoylethanolamide (PEA) are endocannabinoids
that were found to attenuate the acute complication of atherosclerosis such as myocardial
ischaemia in isolated rat hearts [47]. These effects were determined by measuring the
activities of cardiac creatine kinase (CK) and lactate dehydrogenase. The beneficial effects
of 2-AG and PEA on myocardial ischemia were abolished following exposure to a CB2
receptor antagonist, SR144528, indicating that the endocannabinoids might play a vital role
in preventing the acute complications of atherosclerosis through acting on CB2 receptors.
The significant role of CB2 receptors in preventing the myocardial ischemia was further
supported by a study showing that a CB1/2 receptors agonist (WIN55212) was able to
reduce the infraction size, an effect abolished with a selective CB2 receptor antagonist
(AM630) but not with a selective CB1 antagonist (AM251). Moreover, treatment with
a low dose of THC could reduce the progression of atherosclerosis in apolipoprotein E
knockout mouse model [48]. This effect was abolished following exposure to a CB2 recep-
tor antagonist. However, smoking cannabis with uncontrolled quantity of cannabinoids
may induce adverse effects on the cardiovascular system [49]. These findings provide
information about the potential therapeutic values of using cannabinoids for the treatments
of atherosclerosis-related diseases.

3.1.5. Production of Nitric Oxide (NO) and Reactive Oxygen Species (ROS)
in Macrophages

In our IPA analysis, we reported that NO and ROS production is significantly changed
in CUD patients. Studies found that both ROS pathways/production are modulated follow-
ing exposure to abused drugs [18,50,51]. These data are in agreement with our proteomic
work demonstrating that production NO and ROS in macrophages was one of the top
canonical pathways that are involved in protein–protein interactions in amphetamine use
disorder patients [23]. Importantly, both CB1 and CB2 receptors are key proteins in regulat-
ing the productions of ROS and inflammatory cytokines by macrophages [52]. Interestingly,
it was shown that activation of CB1 receptor mediated proinflammatory responses by
macrophages via increased ROS production in part by inducing p38-mitogen-activated pro-
tein kinase phosphorylation [52]. This effect was attenuated through activating Ras-related
protein 1, an effect mediated by CB2 receptor pathway. It is found that CBD exhibited
potential antioxidant effects through direct and indirect pathways [18]. These pathways
include modulating proteins such as CB1 and 2 receptors, antioxidant enzymes, adenosine
A2A receptors, and other proteins. Therefore, it is recommended to test the effectiveness of
CBD against many diseases associated with oxidative stress. CBD has better safety profile
against psychoactive cannabinoids such as THC. Additionally, both THC and CBD could
induce neuroprotective effects due to their potential antioxidant properties [53]. Alterna-
tively, a synthetic cannabinoid exposure showed the ability to attenuate the production of
NO in chondrocytes treated with IL-1 [54]. This study was supported by another study
showing that a synthetic cannabinoid inhibited lipopolysaccharide-induced NO release
in macrophages, an effect mediated by CB2 receptor pathway [55]. Cannabichromene,
a cannabinoid TRPA1, reduced NO production by macrophages and attenuated colitis
of murine [56]. Moreover, THC and CBD attenuated NO production in macrophages
exposed to lipopolysaccharide, and the study found that THC was more potent than CBD
in reducing the NO production [57]. Furthermore, THC exhibited ability to attenuate the
gene expression of inducible NO synthase enzyme through modulating nuclear factor-κB
(NF-κB) pathway in macrophages treated with lipopolysaccharide [58]. Taken together,
cannabinoids might be potential compounds in modulating NO and ROS production by
macrophages in various diseases.

3.2. Selected Proteins

Our work provides clinical understanding about the serum proteomic profiling in
patients diagnosed with CUD. We found that there are significant alterations in the serum
proteins expression and these proteins have been found to be essential in inflammations,
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protein binding, acute phase reactions, metabolic pathways, and other pathways. More-
over, these proteins have been found to be involved in oxidative stress, thyroid diseases,
Alzheimer’s diseases, and lipid disorders. Our data indicate that cellular processes and
cellular anatomy are highly affected by cannabis. For this study discussion, we selected
proteins that either highly significant altered (p values) or changed at different locations in
CUD patients as compared with control group.

3.2.1. Albumin

Our study investigated the serum expression of proteins that are highly involved
in drug binding, including albumin [59]. Our work revealed that the serum expression
of albumin was decreased in CUD patient as compared with control group. As albumin
occupies high amount human serum proteins, the expression level of this protein is critical
in patients who have developed other diseases and taken certain drugs. An important note
that certain antipsychotic, antihypertensive, antiepileptic, antidepressant, antibiotic, and
other classes of drugs have high protein binding properties and have narrow therapeutic
windows [60]. Therefore, comorbidity of CUD with other diseases/disorders may result
in toxicological effects of drugs that were used to treat these diseases or disorders. It is
recommended here that CUD patients should be carefully monitored when they take other
medicines. Drug–drug interaction between cannabinoids and other classes of drugs has
been previously reported [61,62].

3.2.2. Haptoglobin

Regarding the serum haptoglobin level, our study reported a controversial result
regarding the circulatory serum levels of haptoglobin in the CUD patients as compared
with the control group. It is noteworthy that there is a correlation between haptoglobin
and the inflammation process [63,64]. Cannabinoids were found to exert ant-inflammatory
effects in animal models [65,66]. Haptoglobin was found to exert a protective effect against
oxidative stress induced by an increase in the level of the hemoglobin in pre-clinical
models [67]. Moreover, a proportional correlation was observed between haptoglobin and
the levels of inflammatory cytokines [68]. In our study, we demonstrated that haptoglobin
serum expression was upregulated in some locations and downregulated in other locations
in the CUD group as compared with the control group. This differential expression of
haptoglobin may result from post-translational modifications, cleavage by enzymes, or
different protein species presence. Importantly, THC has been reported to induce oxidative
stress, an effect associated with decreased antioxidant parameters [69]. However, CBD was
found to produce antioxidant effect in neuronal cells [70,71]. Notably, exposure to C. sativa
for 30 days resulted in a reduction in the total antioxidant capacity, an effect associated
with an increase in the levels reactive oxygen species in male albino rats [72]. More research
is required to explore the role of serum haptoglobin level in humans exposed to cannabis
and its applications in medical sciences.

3.2.3. Apolipoprotein A-I

Our study found that serum circulatory levels of apolipoprotein A-I is highly abun-
dant in CUD patients as compared with control group. Note that cholesterol levels
and lipid metabolism are highly regulated by apolipoprotein A-I. A study reported that
Apolipoprotein A-I interacted with high density lipoprotein particles [73]. Gene therapy
using apolipoprotein A-I was shown to induce protective effects against lipid disorders [74].
A prior study found that cannabis exposure is associated with weight loss and reduced
body mass index in humans [75]. Importantly, it was also found that cannabinoids could
induce anorexia in part through acting on cannabinoid receptors [76]. Therefore, cannabis
use may lead to an improvement in lipid metabolism and anorexia effects. These effects
provide hope to develop novel therapeutic agents from C. sativa for the treatment of the
lipid diseases. This is in an agreement with previous studies showing that cannabinoids
improved heart diseases [77] suggesting the involvement of apolipoprotein A-I in this
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effect. Alternatively, prior studies found that apolipoprotein A-I had ability to reduce the
beta amyloid accumulation [78,79]. This effect may lead to beneficial consequences against
Alzheimer’s disease. It is critical to mention here that THC and CBD might be potential
compounds for prevention and treatment Alzheimer’s disease symptoms [80]. Moreover,
low levels of apolipoprotein A-I in the serum was observed in schizophrenic patients [81].
CBD may have therapeutic effects against schizophrenia [82]. However, studies found that
THC exposure was associated with psychosis and schizophrenia [83,84]. The pharmacolog-
ical effects of cannabis constituents against schizophrenia and Alzheimer’s disease should
be further investigated.

3.2.4. Type I and Type II Keratins

Keratin is an essential component that is involved in the epithelial lining. Keratins
have protective functions and provide structure to the epithelium [85]. The keratin is a
protein that is a fibrous structure and localized in nails, hair, epithelial cells of the skin
outer layer, and others [85]. Our study revealed that type I and type II keratins are highly
abundant proteins in the serum of CUD compared with control group. Studies found
that keratins are essential proteins in cell growth, differentiation, and proliferation [86–88].
In addition, they provide mechanical integrity as protection against external stress [89].
They also have cycloprotection properties against non-mechanical stresses [90]. These
proteins have an additional role in the digestive system [91]. It is critical to figure out which
constituents (cannabinoids vs. non-cannabinoids) in C. sativa are responsible for increasing
both types (type I and type II) of keratins in the circulatory system in individuals who are
chronically exposed to cannabis.

3.2.5. Serotransferrin

Serotransferrin is a critical protein to transport the iron from absorption sites or heme
degradation to tissues for storage or utilization [92]. In our current study, we showed a
downregulation of the serotransferrin serum expression in the of CUD patients as compared
with control group. Additionally, serotransferrin expression was decreased in the urine of
cannabis users [93], suggesting that cannabis users have downregulation in serotransferrin
in the serum and urine. It is important to consider that a previous proteomic study
found that serotransferrin was decreased in the lungs of smokers compared with control
group [94]. However, the serum serotransferrin was found to be reduced in amphetamine
use disorder patients [23]. This suggests that chronic exposure to abused drugs induces
dysregulation in iron and heme balance.

3.2.6. Transthyretin

Transthyretin is an important protein to transport the thyroid hormone, thyroxine,
and retinol-binding protein [95]. In this study, we found that there is an upregulation of
the serum transthyretin expression in the of CUD patients as compared with control group.
In addition, previous studies found that the accumulation or mutations of transthyretin
was associated with amyloid diseases such as senile familial amyloid polyneuropathy,
systemic amyloidosis, and familial amyloid cardiomyopathy [95]. However, transthyretin
showed ability to bind to beta amyloid attenuating beta amyloid aggregation [96,97], which
has beneficial consequences against Alzheimer’s disease. Therefore, it is recommended
to explore the role of cannabis constituents in modulating transthyretin as a potential
biomarker that is involved in many diseases.

3.2.7. Tumor Necrosis Factor Alpha-Induced Protein 3

Tumor necrosis factor alpha-induced protein 3 (TNFAIP3) was found to regulate
the activity of NF-κB, especially through the receptor of TNF-alpha [27]. Importantly,
NF-κB was found to be increased in the states of inflammation and activated immune
cells [98]. Moreover, TNFAIP3 was found to be a negative feedback mechanism for NF-κB
activation [99]. Note that a reduction in the expression of TNFAIP3 is a predictor for
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inflammation and increased NF-κB expression [100]. For instance, it has been found that
the gene expression of TNFAIP3 was decreased in peripheral blood mononuclear cells
of rheumatoid arthritis patients as compared with healthy control [101]. Moreover, the
gene expression of TNFAIP3 was also reduced in peripheral blood mononuclear cells of
patients with psoriasis vulgaris [102]. This study found that the gene expression level of
TNFAIP3 was negatively linked to the severity of the disease. However, increased TNFAIP3
expression was linked to low survival rate of esophageal squamous cell carcinoma in a non-
cancerous esophageal cell line [103]. We reported here that TNFAIP3 was less abundant
protein in the circulatory serum of CUD patients as compared with control group.

3.2.8. Inactive Tyrosine Protein Kinase PEAK1

Inactive tyrosine protein kinase PEAK1 is an encoded gene and involved in the cellular
response inside the cells following the activation of tyrosine kinase receptor [104]. We here
found that inactive tyrosine protein kinase PEAK1 is less abundant in CUD patients as
compared with healthy controls. Importantly, increased PEAK1 has been linked to the
progression and metastasis of breast cancer [104,105]. We suggest that further investigation
of the modulatory role of cannabinoids in the progression of breast cancer is required.
PEAK1 has been found to regulate the responses of transforming growth Factor β in breast
cancer models [104]. Moreover, overexpression of inactive tyrosine protein kinase PEAK1
can modulate anus kinase-2 and extracellular signal-regulated kinase-1/2, which was
involved metastasis of tumors in lung cancers [106]. Previous and our findings suggest
that future directions may explore the potential role of cannabis plants in cancer research
focusing on the PEAK1 pathways.

4. Materials and Methods
4.1. Ethical Approval and Participate Consent

The IRB committees at the Eradah Complex for Mental Health (Riyadh, Saudi Arabia)
and College of Medicine-King Saud University reviewed and approved all procedures and
protocols. This study was performed according to the rules of the Declaration of Helsinki
1975 and later amendments. The written consents were acquired from all individuals
involved in the study. This study was conducted at the Proteomics Unit, Obesity Research
Center, College of Medicine and King Khalid University Hospital, Medical City, King Saud
University, Riyadh, Saudi Arabia.

4.2. Study Design and Selection Criteria

Twenty male subjects were involved in two different groups in this study: CUD
and healthy control. Ten subjects diagnosed with CUD (age of 30.4 ± 4.36 years) were
enrolled at the Eradah Complex for Mental Health (Riyadh, Saudi Arabia) and compared
with a control group containing 10 healthy individuals (age of 24.7 ± 3.63 years). To
perform the power analysis and determine the least possible number of required biological
replicates, we used Progenesis SameSpots software (Nonlinear Dynamics, Newcastle,
UK). The diagnosis for CUD was performed according to the Diagnostic and Statistical
Manual of Mental Disorders guidelines (DSM-5) [107]. The included participants have
no history of blood disorders, diabetes mellitus, obesity, psychosis, renal diseases, or any
other infectious diseases. Clinical and demographic information is shown in Table 1. The
control group demographic information and gel scanning are used from our previous
study [23] with respect of experimental procedures and timing. The CUD group tested
positive for cannabinoids only without any detection of other abused drugs at the time of
blood collection. Blood samples were collected, centrifuged for ten minutes at 1000× g.
The resulting serum samples were aliquoted and stored at −80 ◦C for proteomic analysis.

4.3. Serum Protein Extraction

Proteins were extracted from the serum samples via centrifugation (5 min, 12,000× g)
as described previously [23]. The depletion of high-abundance serum proteins (i.e., albu-
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min, IgG) was achieved using Depletion SpinTrap for Albumin and IgG (GE Healthcare,
Chicago, IL, USA) following the manufacturer’s instructions. Further, the remaining pro-
teins were extracted by the TCA/acetone method [108]. The depleted samples were mixed
with ice-cold acetone containing 10% w/v TCA (1:4), and the mixture was vortexed for
15 s to ensure uniform mixing. Next, the mixture was incubated overnight at −20 ◦C for
protein precipitation. After incubation, the tubes were centrifuged for 15 min at 4 ◦C at a
speed of 12,000× g, and the pellet was solubilized in labeling buffer (7 M of urea, 2 M of
thiourea, 30 mM of Tris-HCl, 4% CHAPS, pH 8.5). After that, the concentration of protein
samples was determined in triplicate employing the 2D-Quant Kit (GE Healthcare, Chicago,
IL, USA).

4.4. Fluorescence Labeling of Samples with CyDyes and 2-Dimensional Difference in Gel
Electrophoresis (2D-DIGE)

Fifty micrograms of protein from each sample of both the CUD and control groups
was labeled with 400 pmol of Cy3 and Cy5 dyes. Then, the internal standard was prepared
by mixing an equal amount of all samples after pooling and labelling with Cy2. A dye
swapping strategy was employed during labelling in order to avoid any dye-specific
bias (Supplementary Table S1). 1st-dimension analytical GE followed by 2nd-dimension
sodium dodecyl sulfate (SDS)-polyacrylamide GE (SDS-PAGE) were implemented on
12.5% fixed gels as described in previous studies [23,109]. Further, the 2D-DIGE gels were
scanned using the Typhoon 9400 scanner (GE Healthcare, Chicago, IL, USA) where specific
excitation/emission wavelengths were used (488/520 nm) for Cy2, (532/580 nm) for Cy3,
and (633/670 nm) for Cy5.

4.5. Statistical Analysis

Progenesis SameSpots software (v2.0, Nonlinear Dynamics, Newcastle, UK) was
used to analyze the 2D-DIGE gel images. The image analysis was done by an automated
spot detection and comparison method between the samples of CUD and control groups.
Although the automatic analysis was completed to detect all the spots across all the 10 gels,
each selected spot was manually edited and verified wherever necessary. The differentially
expressed spots were identified by normalized volumes. The normalized volume of each
spot on each gel was calculated from Cy3 (or Cy5) to Cy2 spot volume ratio using the
software. To generate normal distributed data, log transformation of the spot volumes
was done by the software. To calculate statistically significant differences between the
two groups, one-way ANOVA was used and p < 0.05 was considered statistically significant.
A cut-off ratio ≥1.5-fold was considered significant. A pre-filtration and manual check
have been done on all spots before testing the statistical differences. In statistical analysis,
the normalized spot volumes were applied instead of intensities of the spots. Any spots
fulfil the above statistical criteria was analyzed by MS.

4.6. Protein Identification with Mass Spectrometry

Coomassie-stained gel spots from a preparatory gel were washed then digested
according to methods described previously [23,109,110]. To describe briefly, total protein
(1 mg) was obtained from a pool of equal protein amounts of the 20 serum samples (10 CUD
and 10 control). This sample was denatured in lysis buffer and then mixed in a rehydration
buffer. Then, the proteins samples were separated by first and second dimensions with
the same conditions in the DIGE section. Then, the gels were fixed in 40% (v/v) ethanol
containing 10% (v/v) acetic acid (overnight) and then washed (3×, 30 min each, ddH2O).
The gels were incubated (1 h, 34% (v/v) CH3OH containing 17% (w/v) ammonium sulphate
and 3%(v/v) phosphoric acid) prior to the addition of 0.5 g/L Coomassie G-250. After
5 days, the stained gels were briefly rinsed with Milli-Q water and stored until the spots
could be picked and identified by MS. Digestion was performed by adding 15 µL of (20 ng
ice-cold trypsin solution in 25 mM NH4HCO3, 5 mL CH3CN, 5 mL distilled water) and
incubated 20 min at 4 ◦C, and digestion continued overnight at 37 ◦C. To extract the
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peptides, 1 µL of 1% Trifluoracetic acid was added on the gel pieces and placed in vortex
incubator for mass spectrometric analysis (1 h, 400 rpm, 25 ◦C).

After that, a mixture of tryptic peptides (1 µL) was formed from each protein and
spotted onto a MALDI target (384 MTP Anchorchip; 800 µm Anchorchip; Bruker Daltonics,
Bremen, Germany). MALDI-MS spectra were obtained with UltraflexTerm time-of-flight
(TOF) MS equipped with a LIFT-MS/MS device (Bruker Daltonics, Bremen, Germany)
at a reflector (voltages of 21 kV) and detector (voltages of 17 kV), as described previ-
ously [111–113]. PMFs were calibrated against peptide calibration standard II (Bruker
Daltonics, Bremen, Germany). The PMFs were assessed with Flex Analysis software (v2.4,
Bruker Daltonics, Bremen, Germany). MS data were interpreted with BioTools v3.2 (Bruker
Daltonics, Bremen, Germany). The peptide masses were searched against the Mascot
search algorithm (v2.0.04, updated on 9 May 2019; Matrix Science Ltd., Bremen, UK). The
identified proteins were screened for a Mascot score >56 and p < 0.05.

4.7. Network Pathway and Functional Analysis

The IPA Software program (Version: 42012434, Ingenuity Systems, Redwood City,
CA, USA, http://www.ingenuity.com, accessed on 2 February 2021) was used to analyze
the identified proteins and to annotate them with related functions and pathways. The
annotations involved overlaying the proteins with their most significant networks and
biochemical pathways based on previous publications on the proteins. The identified
proteins were classified into different categories according to their biological process,
cellular components, and molecular function using protein analysis through evolutionary
relationships (PANTHER) classification system (http://www.pantherdb.org, accessed
1 February 2021).

4.8. Immunoblotting

Immunoblotting assay was performed in the current study to further confirm the
findings of the proteomic study. Two differential abundance proteins with statistically sig-
nificant were chosen and determined by immunoblotting. Primary monoclonal antibodies
against transferrin (mouse, cat # SC-365871), retinol-binding protein (RBP, mouse, cat #
SC-69795), and β-actin (goat, N-18, cat # SC-1616) were bought from Santa Cruz Biotech-
nology (Santa Cruz, TX, USA). One-dimensional discontinuous slab gel electrophoresis
(12% sodium dodecyl sulfate (SDS)-polyacrylamide gel) was used to separate an equal
amount of protein from each sample (50 µg). A mini trans-blot electrotransfer cell (BioRad,
California, CA, USA) was employed to transfer proteins from the run gels to an Immobilon-
P, polyvinylidene difluoride (PVDF) transfer membrane (Millipore, Massachusetts, MA,
USA) To test the efficiency of the transfer, the membranes were stained with Ponceau-S.
Subsequently, the membranes were blocked with tris-buffered saline (TBS)-containing 5%
fat-free milk (FFM), for one hour at room temperature, and then the membranes were
rinsed three times with TBS-T in 10 mM Tris–HCl, 150 mM NaCl, 0.1% Tween 20 buffer.
After rinsing, the membranes were incubated with the selected primary antibodies at dilu-
tion of (1:200) using a blocking buffer. Membranes were then incubated with the matched
immunoglobulin G (IgG)-horseradish peroxidase (HRP)-conjugated secondary antibody,
and the enhanced chemiluminescence (ECL, Thermo Fisher Scientific, Massachusetts, MA,
USA) was used to detect the immunoreactive bands. These bands were visualized by
scanning with Sapphire Biomolecular Imager (Azure Bio systems, Dublin, OH, USA) and
digitalized via the image analysis software Sapphire Capture system (Azure Biosystems,
Dublin, OH, USA).

5. Conclusions

Our findings provide clinical insight about the potential effects of cannabis abuse
on the circulatory protein expression. These proteins are highly involved in different
applications and diseases/disorders. The present study highlighted that drug discovery
research can further investigate the effects of cannabis ingredients on immunological and

http://www.ingenuity.com
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inflammatory responses as well as the diseases involved, e.g., atherosclerosis. This will
prove a novel direction to discover and develop potential compounds for the prevention or
treatments of these diseases. These researches might target acute phase proteins, NO and
ROS pathways, atherosclerosis signaling, or LXR/RXR and FXR/RXR pathways. One of
applications obtained from the current work is the drug–drug interaction since our present
study showed that the serum expression of albumin, which is a major serum protein
binding, is decreased in CUD patients. Our study also found that cannabis abuse might
modulate several diseases and disorders. However, the quantity of cannabis inside the
humans were not controlled; therefore, this hypothesis needs more investigations with
controlled doses. In addition, cannabis include cannabinoids and non-cannabinoids where
the cannabinoids are either psychoactive or non-psychoactive. Thus, future studies should
further investigate our findings using a specific cannabis constituent. This will provide a
clear understanding about the responsible compound for a specific effect. A limitation in
our study is the age variation in both groups. More research is required to exclude any age
variation and also investigate the serum proteomic profiling of female CUD patients.

Supplementary Materials: The following are available online, Figure S1: Pathways and canonical
pathways identified in the IPA functional analysis, Figure S2: Gel images, Figure S3: Example of the
full western blots (not truncated), Table S1: Experimental design, Table S2: Mass spectrometry list
of significant differentially abundant proteins, Table S3: List of 25 proteins with accession numbers
depicted in IPA network pathway, and Table S4: List of proteins with accession numbers for the top
5 canonical pathways.
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