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Cystatin C is a disease-associated protein subject
to multiple regulation

Yuekang Xu, Ying Ding, Xinchen Li and Xiaobing Wu

A protease inhibitor, cystatin C (Cst C), is a secreted cysteine protease inhibitor abundantly expressed in body fluids. Clinically,

it is mostly used to measure glomerular filtration rate as a marker for kidney function due to its relatively small molecular weight

and easy detection. However, recent findings suggest that Cst C is regulated at both transcriptional and post-translational levels,

and Cst C production from haematopoietic cell lineages contributes significantly to the systematic pools of Cst C. Furthermore,

Cst C is directly linked to many pathologic processes through various mechanisms. Thus fluctuation of Cst C levels might have

serious clinical implications rather than a mere reflection of kidney functions. Here, we summarize the pathophysiological roles

of Cst C dependent and independent on its inhibition of proteases, outline its change of expression by various stimuli, and

elucidate the regulatory mechanisms to control this disease-related protease inhibitor. Finally, we discuss the clinical

implications of these findings for translational gains.
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Cystatin C (Cst C) is a potent extracellular inhibitor of cysteine
protease, and has been generally considered a ubiquitously expressed
protein as no obvious regulatory elements were found in its gene
promoter.1 Clinically, Cst C is mostly used as a biomarker of kidney
function for its relatively lower molecular weight (~13.3 kDa) and easy
detection compared to the injection of compounds, radioisotopes or
radiocontrast agent2 to measure glomerular filtration rate (GFR), an
index of kidney health, because Cst C is removed from the blood
stream by glomerular filtration, whose decline as a result of failed
kidney function will lead to increased serum Cst C concentration. Cst
C serum levels were claimed to be a more precise index of kidney
function than that of creatinine3 under the assumption that serum
input of Cst C is constant, and the main determinant of blood Cst C
levels is the rate at which it is filtered at the glomerulus. Furthermore,
recent advances have facilitated the use of Cst C as a clinical measure
of kidney function (the update on Cst C in recent kidney disease
guidelines has been reviewed elsewhere4). Although, the bulk of
literature report the use of Cst C for GFR estimation, precaution
should be taken when the outcomes of this measurement is
interpreted because recent studies indicated that both genetic
polymorphisms5,6 and clinical interference7,8 could make Cst C an
unreliable index of GFR. Indeed, accumulating reports have docu-
mented that subjected to the influence of many factors, serum Cst C
levels do vary independent of renal functions, and the synthesis and
secretion of Cst C seem to be tightly regulated under different
pathophysiological conditions. For example, body composition,
thyroid function, glucocorticoid and C-reactive protein levels or even
cigarette smoking and pregnancy status of the candidates examined
have been found to affect Cst C blood concentration,9,10 let alone its

alteration in patients with cancer, HIV infection, cardiovascular
diseases and neurological disorders.11–13 Moreover, new studies
reported direct involvement of Cst C in many pathogenic processes
other than renal disorders.14,15 Thus, the oscillation of blood Cst C
levels could actually reflect the change of Cst C production,
consumption, inactivation or fibrillation (mentioned later) rather than
its filtration in the kidney, and the readout of plasma Cst C
concentration might have different clinical implications. In this review,
we first summarize the major pathophysiological roles of Cst C to
illustrate its importance as a functional protein in the body rather than
an ubiquitously expressed measuring substance. Second, we outline
the impact of different stimuli on its expression and elucidate some of
the latest developments on the regulatory mechanisms to explain Cst
C variation under certain circumstances. In the end, the clinical
implications derived from these studies are also discussed.

PATHOPHYSIOLOGICAL ROLES OF CST C

Functions dependent of its inhibition of proteases
Cysteine cathepsins play fundamental roles in multiple biological
processes such as protein turnover, pro-protein processing, bone
remodeling, antigen presentation and apoptosis.16 They are also involved
in numerous pathological processes such as cardiovascular disease and
inflammation.13 The activities of these enzymes both inside and outside
of cells thus need to be tightly controlled by their endogenous inhibitors,
of which Cst C is the most abundant and potent member.

Intracellular roles
Apoptosis. Intracellular lysosomes undergo membrane permeabili-
zation in response to extra- or intra-lysosomal stimuli, and the
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involvement of lysosomal cysteine proteases in apoptosis has been
confirmed in several systems.17,18 However, the roles of the endogen-
ous lysosomal cysteine protease inhibitor Cst C in apoptosis remain
controversial. Upregulation of Cst C expression was found to correlate
with oxidative stress-induced apoptosis in cultured rat neurons,19 and
Cst C injection into rat hippocampus led to neuronal cell death in the
granule cell layer of dentate gyrus in vivo,20 indicating a possible
functional role of Cst C in apoptosis induction. Since, the Cst
C-induced neuronal cell death could be inhibited by simultaneous
co-application of cathepsin B, the inhibitory activity of Cst C on a
cysteine protease was proposed to be involved in the process of
apoptotic neuronal cell death.20 Recent studies indicated that the roles
of Cst C in neuronal cell apoptosis induction include decreasing B-cell
leukemia-2 (Bcl-2) and increasing active caspase-9 protein levels via
the Jun N-terminal kinase (JNK)-dependent pathway,21 and upregula-
tion and accumulation of the insoluble α-synuclein in oligodendro-
cytes and neurons.22 Interestingly, apart from these documented pro-
apoptotic roles, Cst C was also found to have anti-apoptotic effects on
neuronal cells. For example, expression of Cst C in PC12 cells derived
from a pheochromocytoma of rat adrenal medulla prevents oxidative
stress-induced death in vitro.23 In accordance with this finding, the
anti-apoptotic function of Cst C was further demonstrated in vivo in a
mouse model of the inherited neurodegenerative disorder, progressive
myoclonic epilepsy type 1, where loss of function in cystatin B and
enhanced cathepsin B and D activities are the underlying pathologies.
Crossbreeding of the mice with either Cst C-overexpressing transgenic
or Cst C-deficient mice revealed that Cst C levels in vivo can affect
neuron degeneration caused by the proteases, indicating that Cst C
partially prevents neural cell death in vivo through inhibition of
cathepsins activity.24 (Described in the section of Neuroprotective
roles.)

Antigen presentation. Proteolysis of antigen by cysteine cathepsins to
generate immunogenic peptides and guide the transit of both major
histocompatibility complex class II (MHCII) and MHC-like molecules
through the endocytic compartments are important intracellular
activities in antigen-presenting cells. As a potent inhibitor of cysteine
cathepsins, Cst C had initially been implicated in playing a regulatory
role in the developmental control of MHCII presentation in dendritic
cells (DCs) by inhibiting cathepsin S in invariant chain cleavage.25

Consistent with the role of Cst C in antigen presentation, a cystatin
homolog produced by the filarial nematode parasite was found to
inhibit lysosomal cysteine protease activities, which subsequently
impeded the generation of human B cells.26 Further experiments
using bone marrow-derived DCs indicate that interleukin 6 (IL-6)-
mediated signal transducer and activator of transcription 3 (STAT3)
activation decreased Cst C expression and MHCII αβ dimer levels.27

However, a separate study using mouse primary DCs isolated from Cst
C-deficient mice demonstrated that Cst C is neither necessary nor
sufficient to control MHCII expression and antigen presentation in
DCs.28 These discrepant results obtained from different laboratories
could be due to the different cell types investigated, and/or to the
compensatory roles played by other cysteine protease inhibitors in the
absence of Cst C. In support of this view, cell-specific regulation of
cathepsin activity by Cst C was identified in two similar antigen-
presenting cells in the brain: Cst C was found to inhibit cathepsin L
activity in astrocytes, but does not regulate cathepsins L and S in
microglia.29

When intracellular localization of the Cst C and its target proteases
were examined in human DC differentiated from monocytes in vitro,
the different compartmentation of Cst C and cathepsins S, L and H in

immature and mature DCs suggests that the regulatory potential of Cst
C toward these cathepsins inside DCs is limited, which could explain
the inconsistent findings related to the intracellular roles of Cst C.
Instead, large secretion of Cst C over cathepsins S, L and H was
observed in the culture media,30 indicating that the extracellular
compartment is the primary site for these interactions.

Extracellular roles. The structure of Cst C predisposes this protease
inhibitor to extracellular functions as a secreted protein. Accordingly,
Cst C is found in all body fluids at significant concentrations,31 which
makes it a major regulator of cysteine protease activity in the
extracellular medium.

Atherosclerosis. Atherosclerosis-based vascular disease is an inflam-
matory disease characterized by extensive remodeling of the extra-
cellular matrix of the arterial walls. Apart from the well-known matrix
metalloproteinases and serine proteases, lysosomal cysteine proteases
were also found to be involved.32 Present in substantial amounts in the
normal vessel walls, the expression of Cst C was found to be severely
reduced in both atherosclerostic and aneurysmal lesions, and increased
abdominal aortic diameter correlated with lower serum Cst C levels in
humans.13 Furthermore, the pathogenic roles of Cst C were tested in a
model of atherosclerosis-prone mice with apolipoprotein E deficiency
(apoE− /−) where the elevated cathepsins were associated with the
atherosclerostic process.33 In two independent studies, Cst C- and
apoE-double-deficient mice were generated, both of them confirmed
an anti-atherosclerostic function of Cst C in the apoE− /− mice,
although differences regarding lesion size and composition were
found.34,35 These differences are most probably caused by differences
in the duration of high-fat diet of the mice, sex of the mice and
anatomic site of analyzed lesions. Interestingly, in line with the anti-
atherosclerostic role of Cst C in this animal model, polymorphisms in
the promoter regions of the Cst C gene were found to influence the
plasma Cst C concentration in human coronary artery disease,36

indicating the production of this protease inhibitor could be subject
to regulation under the diseased conditions.

Tumor metastasis. Metastatic tumor cells invade host tissues through
a series of steps that require proteolytic enzymes including cysteine
cathepsins to degrade components of the extracellular matrix.37 As a
most abundant endogenous cysteine proteinase inhibitor, Cst C is
believed to prevent tumor progression by inhibiting the activities of a
family of lysosomal cysteine cathepsins. Results from the first Cst
C-deficient animals indicated that Cst C concentration in vivo might
influence tumor metastasis in some tissues.38 In agreement, the
reduced Cst C levels correlate with increased metastasis of different
tumors in human tissues or patients.39 Furthermore, local over-
expression of Cst C in the host tissue microenvironment could lead to
successful reduction of metastasis via cysteine cathepsin inhibition in
an experimental tumor model.40 This inverse correlation between
Cst C and tumor aggressiveness, however, may not always involve
inhibition of cysteine proteases. For example, elevated matrix metal-
loproteinases 2 and crosstalk between Cst C and androgen receptor-
mediated pathways were reportedly implicated in prostate cancer
invasion and metastasis,41 indicating multiple roles of Cst C in tumor
metastasis.

Pathogen invasion. Although a secreted protein, Cst C was also
reported to be up-taken by cells of both foreign and endogenous
origins in various tissues to regulate both intracellular and extracellular
cysteine protease activities.42 One of the major roles of cystatins is to
protect the host against invading microorganisms and parasites that
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use cysteine proteases to enter the body.43 Chicken cystatin was first
reported to partially block poliovirus replication in infected human
cells.44 Further study demonstrated that a small peptide derivative that
mimics part of the proteinase-binding center of human Cst C could
inhibit a cysteine protease specific for the growth of group A
streptococci, blocking the growth of these bacteria both in vivo and
in vitro.45 Similarly, recombinant human Cst C was also proven
to inhibit the growth of herpes simplex virus46 and human
coronaviruses.47 Moreover, a family of cathepsin L- and B-like cysteine
proteases, found in all species of Leishmania examined, are required
for the parasite growth and virulence.48 Since, these parasite cysteine
proteases may not only digest the host extracellular matrix to facilitate
their invasion, but also help to ensure a Th2-like response led to
parasite proliferation,49 cystatin treatment in combination with inter-
feron γ (IFNγ) that leads to reduced parasite numbers, successful Th2
to Th1 conversion, and NO generation, which finally resulted in
abrogation of parasite infection in a mouse model of leishmaniasis.50

Functions independent of its inhibition of proteases
Modulating roles. Most abundantly expressed in tissues, Cst C also
serves numerous functions independent of protease inhibition includ-
ing affecting signaling properties of other molecules. For example, Cst
C antagonizes the binding of transforming growth factor-beta (TGF-β)
to its cell receptors by physically interacting with TGF-β type II
receptor independent of its protease inhibitory activity, as over-
expression of Cst C mutant that is impaired in its ability to inhibit
cathepsin activity blocked TGF-β-dependent invasion of 3T3-L1
fibroblasts.51 This novel function of signaling modulation allows Cst
C to inhibit the oncogenic activities of TGF-β through stimulation of
mammary epithelial-mesenchymal transition.52 Apart from blocking
interaction between TGF-β and its receptor, Cst C was also found to
prevent TGF-β signaling partly by reducing the extent of mothers
against decapentaplegic homolog 2 (Smad2), p38 mitogen-activated
protein kinases (p38 MAPKs) and extracellular signal-regulated
kinases 1/2 (Erk1/2) phosphorylation in murine 4T1 breast cancer
cells.53 In addition to affecting TGF-β signaling, Cst C is involved in
the IFNγ signal transduction pathway. It activates nuclear factor
kappa-light-chain-enhancer of activated B cells (NF-κB) p65, induces
NO synthase, but downregulates IL-10 in macrophages.54

Through interacting with other proteins with effects on their
signaling properties, Cst C can also affect biological functions of cells.
During brain development, Cst C was identified as a factor to
upregulate the glial fibrilllary acidic protein promoter.55 As a result,
addition of human Cst C to the culture medium of primary brain cells
increased the number of glial fibrilllary acidic protein-positive cells
and neurospheres formed from the embryonic brain. Again, the
promotion of astrocyte development by Cst C appears to be unrelated
to its protease inhibitor activity, as another cysteine protease inhibitor
did not have this effect.56 Along the same line, a recent study identified
a novel function of Cst C in mediating amyloid β (Aβ) precursor
protein-induced proliferation of neural stem/progenitor cells.57

Although the mechanism of Aβ precursor protein in stimulating
neural stem/progenitor cells to secrete Cst C needs further character-
ization, this study contributes to a better understanding of multi-
functional roles of Cst C in the pathogenesis of Alzheimer’s disease.

Amyloidogenic roles. In addition to cysteine protease inhibition, Cst C
is also one of the few amyloidogenic proteins that form a fibrillary
structure deposited in the vascular walls, affecting the health of blood
vessels (angiopathy). The proteins identified in cerebral amyloid
angiopathy include beta/A4, transthyretin and Cst C.58 Cst C

amyloidogenesis begin with dimerization by a process known as
‘three-dimentional domain swapping’, in which two parts of the
cystatin structure become separated from each other and next
exchanged between two molecules.59 Interestingly, with their inhibi-
tory region hidden within the dimer interface, Cst C dimers cannot
inhibit cysteine proteases.60 This none-inhibitory Cst C dimer is
required for the formation of the Cst C oligomers, intermediates in
fibrillogenesis, because variants of monomeric Cst C, stabilized against
domain swapping to block the inhibitory site, fail to produce
oligomers, indicating that Cst C fibrils are formed by propagated
domain swapping.61

Domain swapping must be preceded by at least partial unfolding of
the molecule,62 therefore, any factors affecting the stabilization of the
molecule could initiate the domain swapping process. For instance, the
point mutation with substitution of native leucine in position 68 by
glutamine (L68Q) disrupts a network of the hydrophobic interactions,
which leads to increased tendency for dimerization and aggregation
in vitro.63 The L68Q replacement is also a naturally occurring point
mutation in the Cst C protein sequence with autosomal dominant
hereditary. This Cst C variants form fibrils in vivo in the brain
vasculature, which cause hemorrhage, dementia and eventually death
in people carrying this mutation, a condition known as hereditary
cystatin C amyloid angiopathy,64 also called hereditary cerebral
hemorrhage with amyloidosis, icelandic type.65 The cellular transport
of Cst C is impeded by the mutated L68Q variants, resulting in
diminished Cst C levels in cerebrospinal fluid66,67 and retained Cst C
mutants in blood monocytes from patients.67 Consistently, in vitro
studies demonstrated that clones expressing the gene encoding L68Q
Cst C secreted either lower amounts of Cst C,68 or unstable protein
susceptible to a serine protease,69 contributing to the reduced
extracellular Cst C levels.
Cst C amyloid fibrils not only affect brain vasculature but also may

lead to toxicity in other tissues. As the most abundant protein, Cst C
was found in tissues outside of the brain including the testis, and so
was the L68Q variant.70 A recent study reports that heterozygous
transgenic mice that express this pathogenic variant were unable to
generate offspring, indicating the L68Q Cst C amyloid affects sperm
function.71 Further analysis of the L68Q mice demonstrated that their
epididymal spermatozoa were unable to fertilize oocytes and exhibited
poor sperm motility in the presence of Cst C amyloid that were not
found in the wild-type mice. The L68Q epididymal fluid, when
depleted of the Cst C amyloids, however, did not impair the motility
of wild-type spermatozoa, suggesting that amyloids in the epididymal
fluid can be cytotoxic to the maturing spermatozoa resulting in male
infertility.71 However, two other groups in earlier studies have also
generated the transgenic lines expressing this variant form of Cst C,
but they were live and fertile,72,73 questioning whether the pathology
described is really brought about by the Cst C variants or the site
where the transgene was inserted.

Neuroprotective roles. Although mutant Cst C is toxic by amyloidosis,
wild-type Cst C has multiple neuroprotective roles (comprehensively
reviewed by Gauthier et al.74). An amyloidogenic protein itself, Cst C
has an anti-toxic role against another amyloid protein, Aβ. Studies
in vitro demonstrated that Cst C binds to Aβ and inhibits its
oligomerization75 and amyloid fibril formation.76 Furthermore, in
Aβ precursor protein transgenic mice, Cst C was found to physically
associate with the soluble, non-pathological form of Aβ in vivo, which
inhibited the aggregation and deposition of Aβ plaques in the
brain.73,77 Moreover, Cst C can also directly protect neuronal cells
from amyloid toxicity, as extracellular addition of human Cst C
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promoted the survival of cultured neuronal cells against the preformed
oligomeric or fibrillar Aβ.78
Autophagy is important for the survival and homeostasis of neurons

as they cannot dilute accumulating detrimental substances or damaged
organelles by cell division (see latest review79 for details). Cst C was
first reported to induce a fully functional autophagy to protect
neuronal cells against various stress via the mammalian target of
rapamycin (mTOR) pathway in vitro independent of its inhibitor
activity.80 Consistently, following experimental subarachnoid hemor-
rhage, exogenous Cst C administration was recently found to activate
autophagy pathway ex vivo, which plays a beneficial role in early brain
injury in a rat model.81,82 In addition to these apoptotic factors like
nutritional deprivation, oxidative stress and hemorrhage, another
neurotoxic element that can be counterbalanced by Cst C partly
through autophagy is mutant Cu/Zn superoxide dismutase, a frequent
cause of inherited amyotrophic lateral sclerosis.83

REGULATION OF CST C BY DIFFERENT STIMULI

The numerous pathophysiological roles of Cst C foretell that the
original application of this small molecular weight (MW) protein as a
measurement of the GFR for kidney function might no longer be
appropriate, as participation in various pathophysiological processes
could lead to consumption and subsequent regulation of this multi-
functional protease inhibitor. Indeed, Cst C levels could be altered by
many common stimuli under both physiological and diseased
conditions.

Inflammatory cytokines and pathogens
Inflammation is a quite common condition caused by various
pathogens that elicit the burst of inflammatory cytokines by the host
as a first line of defense. The influence of inflammatory cytokines on
the production of Cst C was documented almost 30 years ago.
Treatment of resident mouse peritoneal macrophages in vitro with the
bacterial compound lipopolysaccharide (LPS) or pro-inflammatory
IFN-γ downregulates Cst C secretion.84 Likewise, inflammatory
cytokine IL-6 signaling in vivo was found to decrease Cst C expression
in DCs.27 Moreover, human immunodeficiency virus infection could
either inhibit Cst C expression in DCs12 or reduce the reactivity of Cst
C with its target enzyme cathepsin B in macrophages.85 Along the
same line, we found that in an inflammatory mouse model created by
intravenous injection of CpG oligodeoxynucleotides, mimics of
bacterial and viral DNA responsible for immune stimulation, the
synthesis of Cst C in DCs as well as the circulating pools of Cst C in
blood were greatly reduced.86 In non-hematopoietic cells, however,
addition of periodontal pathogens and pro-inflammatory cytokines to
human gingival fibroblasts was found to enhance their Cst C
expression,87 and upregulated levels of Cst C was observed in the
ethmoid sinus mucosa of patients with chronic sinusitis,88 indicating
different roles and/or regulatory mechanisms of Cst C might exist in
different cell types and tissues. However, the substantial impact of
pathogens on immune cells, and our recent finding that serum levels
of Cst C could be significantly affected by the replacement of bone
marrows89 highlights the important impact of altered Cst C produc-
tion from hematopoietic cells on the systematic pools of Cst C during
inflammation.

Growth factors and hormones
Growth factors or hormones are naturally occurring substance capable
of regulating a variety of cellular processes by stimulating cellular
growth, proliferation, healing and differentiation. They are also
frequently used in the clinic to adjust the imbalanced cellular process.

TGF-β1 has been reported to upregulate Cst C secretion from vascular
smooth muscle cells, murine embryo cells, cultured differentiated
podocytes, 3T3-L1 fibroblasts, and more recently human lung
fibroblasts.13,51,90 Clinically, a significant influence of circulating Cst
C levels by TGF-β1 were also observed in patients with thyroid
dysfunction, and both Cst C mRNA and protein levels were increased
by TGF-β in cultured human hepatoblastoma cells.91

Dexamethasone is a potent synthetic member of glucocorticoid class
commonly used in the clinic to treat many inflammatory and
autoimmune conditions. Interestingly, this steroid drug can drive
promoter-mediated upregulation of Cst C gene transcription, which
leads to a significant and dose-dependent increase in the Cst C
production by up to 80%.92 Recently, dexamethasone induced
secretions of Cst C from human cancer cells were found to be
enhanced by co-application of cisplatin and 5-fluorouracil, two agents
commonly used in esophageal cancer chemotherapy,93 adding further
factors to the repertoire of Cst C-altering elements.

Physicochemical damages
Rich in cerebrospinal fluid and brain tissue, Cst C is susceptible to
physical and chemical insults that may occur in the central nervous
system. For example, enhanced Cst C expression was observed in
response to all sorts of neurological injuries, including transient
forebrain ischemia94 and seizure.95 Consistently, the severity of
neuronal damage in the CA1 subfield of the hippocampus correlates
with enhanced Cst C immunostaining in microglia, the major Cst
C-expressing cell type in normal brain tissues.96 Indeed electrical
induction of a status epilepticus causes upregulation of Cst C
expression in rat neurons and glia.97 In addition, persistent
environmental toxicants, like dieldrin, and neurotoxin MPP
(1-methy1-4phenyl-1,2,3,6-tetrahydropyridine), were also reported to
injure dopaminergic neurons and stimulate their secretion of Cst C for
microglia activation and neurotoxicity.98

Another Cst C-sensitive tissue that is also vulnerable to physical
impairment comes from blood vasculature where proteolytic activity
of cysteine proteases requires strict regulation by their endogenous
inhibitor. Balloon injury was recently reported to increase serum Cst C
levels, which correlated with proliferating cell nuclear antigen in
smooth muscle cells.99

Oxidative stress
Interestingly, the two tissues vulnerable to Cst C levels and damages as
mentioned above are also sensitive to the disturbances in their normal
redox state. Oxidative stress initiates pathological progression through
the production of peroxides and free radicals that damage all
components of the cells, including proteins, lipids and DNA. Although
the exact mechanisms by which Cst C is possibly involved in the
disease development remain to be clarified, oxidative stress was
repeatedly reported to upregulate Cst C expression in neurological
and cardiovascular systems. For example, oxidative stress causes an
increase in Cst C expression in cultured rat primary neurons19

and cerebral microvascular smooth muscle cells.100 Moreover,
6-hydroxydopamine induced a temporal and concentration-
dependent increase in Cst C secretion from pheochromocytoma
cells.101 The release of Cst C in response to H2O2 as one of the
cytoprotective, anti-apoptotic factors from the embryonic stem cells
were believed to be the mechanism to explain why transplanted
embryonic stem cells subsequent to myocardial infarction differentiate
into the major cell types in the heart and improve cardiac function.102

Interestingly, this H2O2 induced release of Cst C was not only
observed in embryonic stem cells but was also observed later in
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cardiomyocytes isolated from rat hearts because coronary artery
blocking-induced myocardial ischemia causes an increase in the levels
of Cst C protein in the plasma.103

Others
Other factors affecting Cst C production include the lung toxicants
crystalline silica and arsenic trioxide, which were reported to stimulate
Cst C release from rat alveolar macrophages.104 In cancer patients
during malignant progression-like melanoma and colorectal cancer,
high serum concentrations of the cysteine proteases cathepsins B and
H induced by the tumors stimulate the production of Cst C for
counterbalance.11 In addition, common factors such as cigarette
smoking or C-reactive protein, an acute-phase protein in response
to inflammation, were also among the lists reported to increase serum
Cst C levels independent of renal functions.9

MECHANISMS OF CST C REGULATION

The dynamic changes of Cst C caused by different stimuli herald the
existence of, and prompt people to search for, the regulatory
mechanisms of Cst C to keep this multifunctional and disease-
associated protein under check. Like many other proteins, the
production of Cst C is subject to both transcriptional and post-
translational regulation (Figure 1).

Transcriptional regulation
Although several polymorphisms and sequence variations were
detected in the promoter region of cst3, the gene coding Cst C,1,105

it generally shares common features with those of housekeeping
genes.1 Interestingly, the promoter region of murine cst3 gene was
later found to contain a core sequence of the androgen-responsive
element and two potential binding sites for activator protein 1,106 a
transcription factor that regulates gene expression in response to a
variety of stimuli including cytokines, growth factors, stress and

bacterial and viral infection.107 However, the transcriptional regulation
of Cst C was not extensively explored probably due to the ubiquitous
expression pattern of the protein. With the increasing recognition of
the important roles of Cst C in cardiovascular diseases, the association
of this elastolytic cysteine protease inhibitor with human coronary
artery disease began to be examined at genetic levels. Two common
promoter polymorphisms, a G-to-C substitution at position − 82 and
a T-to-G substitution at position − 78, were found to influence the
binding of nuclear factors and affect the basal rate of gene transcrip-
tion in an allele-specific manner, which are also associated with the
plasma concentration of Cst C in healthy individuals and patients with
recent myocardial infarction.36 In another study, the major haplotype
− 82G/− 5G/+4A of the cst3 gene was found to determine plasma
levels of Cst C as the respondents with homozygous genotypes have
the highest plasma levels.108 Collectively, these data suggest that an
altered promoter activity of the Cst C gene could be a causal factor
for the association between Cst C genotype and plasma Cst C
concentration.
Consistent with the potential regulatory mechanisms of human Cst

C at genetic levels, we found that Cst C is differentially expressed
among mouse cells of the immune system. Specifically, cells of the
monocyte/macrophage and DC lineages express it at much higher
levels than lymphocytes.28,89 Mouse DC can be divided into two
subsets by their surface expression of CD8α (CD8+ and CD8− DC).
Further analysis of the DC subsets directly isolated from the spleen
demonstrated that the CD8+ DC were the major producer of Cst
C.89,109 This was also verified with DCs that had been generated in
culture from bone marrow precursors supplemented with Flt3L, in
which only the CD8+ DC equivalent, the CD24hi DC subset, contained
high levels of Cst C.110 The differential expression pattern of Cst C
among cells of common lineages suggests that its gene could be
controlled by cell-specific transcription factors.

Figure 1 Regulation of cystatin C. Multiple regulatory mechanisms exist to modulate the production and activity of cystatin C inside and outside of cells,
at transcriptional and post-translational levels. JAK, Janus kinase; MyD88, myeloid differentiation primary response gene (88); ROSs, reactive oxygen species;
STAT, signal transducer and activator of transcription; TLR, Toll-like receptor. A full color version of this figure is available at the Immunology and Cell
Biology journal online.
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This preferential expression pattern of Cst C in monocyte/macro-
phage and DCs is of clinical relevance in view of the recent reports
showing that these cell types are present in tissues where Cst C plays
pathological roles such as atherosclerosis and angiopathy. Vascular DCs
(aortic DCs), which increase in number in atherosclerotic lesions as
disease progresses, were reported to be related to CD8+DC,111 and the
Flt3L-signaling-dependent CD103+/CD11b− (CD8+ equivalent) DCs
protect against atherosclerosis.112 Consistently, our analysis of DC
purified from aortas indicates that these cells indeed express Cst C
(unpublished observation). Similarly, microglia, also called the mono-
cyte/microphage in the brain, is the major cell type that express Cst C in
the brain,96 where deposition of Cst C fibrils produces angiopathy.64

To uncover the transcriptional mechanisms underlying the prefer-
ential expression of disease-related Cst C in these cells, a novel cis
element for transcription factors, denoted as IRF (interferon regulatory
factor)-Ets composite sequence (IECS), in the promoter region of the
cst3 gene was identified in a reporter assay system employing a self-
inactivating retrovirus.113 This element consists of a core IRF-binding
motif for IRF8, and an Ets-binding motif for PU.1, an Ets transcrip-
tion factor and binding partner that facilitates a more stable binding of
IRF8 to chromatin.114 Notably, both IRF8 and PU.1 are essential for
the development of DC subsets,115,116 of which IRF8 is required for
the development of CD8+ CD103+DC,115 the major producers of
Cst C. This could imply that Cst C expression by these cells might be
the direct consequence of the presence of IRF8-binding motif in the
Cst C promoter region in cells that depend on IRF8 for their
development. However, this cannot be the only explanation because
IRF8 is also required in plasmacytoid DC development,117 yet this DC
type does not express Cst C.110 Thus, the molecular mechanisms
responsible for this phenomenon remain to be revealed.
To investigate the involvement of these two transcription factors in

Cst C expression in primary DC in vivo, the physical interaction of
IRF8 and PU.1 with the cis element IECS was examined by chromatin
immunoprecipitation in three different DC subsets freshly isolated
from splenic cells.86 Consistent with their Cst C expression profile
(CD8+DC express Cst C, both CD8−DC and plasmacytoid DC do not
express Cst C), the binding of IRF8 to the IECS sequence was detected
in CD8+DC, but not in CD8−DC and plasmacytoid DC. Interestingly,
in the plasmacytoid DC where PU.1 expression is low but IRF8
expression is the same as CD8+DC, the binding of IRF8 to the IECS
sequence is still not detected, indicating a quantitative requirement of
PU.1 in IRF8 binding to the chromatin, a result consistent with
previous findings with fluorescence recovery after filling to mathema-
tical models.114 Collectively, the chromatin immunoprecipitation data
suggest that IRF8 binding to the IECS of the Cst C promoter in the
presence of sufficient PU.1 could drive cst 3 expression. To finally
confirm the role of IRF8 in Cst C expression, a CD8+ DC line 1940,
where both IRF8 and PU.1 were amply expressed, were transfected
with the retrovirus vector LMP encoding shRNAs for irf8 to silence the
gene. When the synthesis of IRF8 was reduced in the cells, that of Cst
C, but not MHC I, was also compromised. This causal impact of IRF8
on Cst C production, combined with the diminished Cst C expression
in bone marrow (BM)-derived DC from irf8− /− mice compared with
wild-type control, strongly suggest that IRF8 is the key transcription
factor regulating Cst C expression.86

Post-translational regulation
The translational expression of Cst C in quantity does not necessarily
lead to a functional protein product. The activity of Cst C can still be
further modulated after its transcription. As discussed before, the
reactivity of Cst C with its target protease is lost if it dimerizes.

Therefore, the factors that cause this conformational change of Cst C
by dimerization can be regarded as a way to regulate the activity of this
protease inhibitor. It is intriguing to think that Cst C adopts the
unreactive dimer conformation as storage form, which quickly
monomerizes in response to the stimulation of its target enzymes.
This post-translational regulation of Cst C by dimerization was first
described in transfected Chinese hamster ovary cells, where Cst C is
inactivated during the early part of its trafficking through the secretory
pathway and then reactivated prior to secretion.118 Interestingly, we
found that steady-state (immature) CD8+ DCs isolated from primary
spleens constitutively contain Cst C homo-dimers, which can be
separated from monomers by size-exclusion chromatography of cell
lysates and their non-reactivity with the Cst C target enzyme papain,
supporting the notion that they are domain-swapped dimers.
Furthermore, when CD8+ DC underwent maturation by incubation
in vitro, they no longer produced Cst C dimers.89 Disappearance of
dimer could be the strategy employed by healthy primary cells to
process this potentially pathogenic form on their way toward
maturation, which might then be disrupted in diseased conditions.
To identify the mechanistic factors leading to Cst C dimerization

either as post-translational regulation of its activity, or as amyloid
precursor protein, the intracellular accumulation of reactive oxygen
species in the immature and mature states were compared. A strong
correlation between reactive oxygen species levels and Cst C dimer was
observed not only in same cell type at different developmental stages,
but also in different cell types at the same developmental stages.89

Furthermore, artificial enhancement of the intracellular oxidative
status resulted in a time-dependent Cst C dimer enrichment, which
could be prevented by inhibiting mitochondrial activity, indicating the
reactive oxygen species released from mitochondria are responsible for
the observed constitutive Cst C dimer formation.89 Although, the
exact process by which oxidative stress exerts the conformational
changes of Cst C is not fully understood, a recently published report
on recombinant human Cst C stabilized by genetically introduced
disulfide linkage demonstrated a disappearance of a dithiothreitol-
induced dimer if the concentration of this reducing agent was further
increased,119 suggesting a direct impact of redox environment on the
conformational changes of Cst C protein.
Different from type I cystain family members, the type II cystatin

Cst C is synthesized with a signal peptide, hence being secreted and
consequently found in body fluids.31 Although its intracellular roles in
processing MHCII molecules via lysosomal proteinase in DCs were
debatable, the uptake of Cst C in amounts sufficient to affect the
activities of intracellular cysteine proteases was described in the
eyes,120 proximal tubule cells121 and several human cancer cell
lines.122,123 Thus, trafficking inside and outside of the cell membrane
of Cst C can regulate or fine tune its division of labor between
intracellular compartments and the extracellular matrix. However, the
structural determinants on the internalized inhibitor required for
efficient uptake were not characterized until recently 12 variants of Cst
C with substitutions of selected amino acids were generated.42 Uptake
of Cst C in human breast adenocarcinoma cells is dependent on both
charged amino acids of the N-terminal segment and on a hydrophobic
amino acid in domains involved in the inhibition of cysteine
cathepsins. Furthermore, natural arginine (Arg) residues in positions
24 and 25 are of importance for the uptake process.42

Another mechanism for post-translational regulation of Cst C could
come from digestion of this cysteine protease inhibitor by proteases of
another family. For example, earlier proteomic studies have shown
that Cst C is a substrate of matrix metalloproteinase 2 with specific
inactivation upon cleavage.124 In addition, human aspartic
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endoproteinase cathepsin D was also able to inactivate human Cst C
by cutting hydrophobic amino acid residues into several fragments
in vitro.125 Along the same line, the amount of Cst C in the
extracellular environment is reduced in the secretome of mouse
embryonic fibroblasts stably transfected with human cathepsin D,
and the tumor-derived cathepsin D assists breast cancer progression
by inhibiting Cst C activity.126 Importantly, the relevance of this
mechanism was also found in other biological process in which Cst C
was shown to be a proteolytic target of cathepsin D, affecting the
differentiation of DCs from hematopoietic stem cells.127

CLINICAL IMPLICATIONS

Given the increasingly discovered roles of Cst C in various pathophy-
siological processes and identification of its regulatory mechanisms at
both transcriptional and post-transcriptional levels, manipulation of
Cst C expression either locally or systematically may have many
clinical implications. Characterization of the factors that control Cst C
expression at the transcriptional level could provide valuable clues for
the treatment of pathologies associated with insufficient control of
extracellular proteases. For example, signaling molecules that upregu-
late Cst C expression could be used to promote Cst C secretion in the
case that requires slightly higher Cst C concentration to protect
neuronal cells from cell death in Alzheimer’s disease,78 or at sites of
inflammation in which excessive protease activity causes tissue
damage, as has been suggested to occur in atherosclerosis and aortic
aneurysm.13 However, the factors associated with the Cst C dimeriza-
tion or cytokines that repress Cst C expression could be developed for
the treatment of diseases associated with formation of Cst C amyloid.
Moreover, identification of the receptors or signaling pathways that
initiate the Cst C uptake on the cell surface could be translated to
target this potent inhibitor to intracellular cancer-promoting proteo-
lysis via the Cst C internalization.
Since Cst C dimerization loses its activity as a protease inhibitor,

which could also be an initial step for the amyloid formation in
hereditary cystatin C amyloid angiopathy patients, the development of
Cst C dimer/oligomer specific antibodies could be used to make
diagnostic screening of hereditary cystatin C amyloid angiopathy

family members for early prevention, or selectively remove Cst C
dimers from biological fluids containing both dimers and monomers
in patients with hereditary cystatin C amyloid angiopathy. In addition,
the mechanistic factors affecting the inhibitive activity of Cst C can
also be harnessed for therapeutic gains. Drugs to improve the
intracellular redox environment by removal of reactive oxygen species
and compounds may be beneficial in not only reducing the Cst C
amyloidogenesis, but also regulating the elastic proteolysis in the
diseased locus as elevated protease activity in the local body fluids is
partly responsible for the tissue destruction in the disease associated
with Cst C amyloid.64

Last but not least, identification of transplantable cellular sources
for major Cst C production will also be of great clinical value. Since
Cst C is involved in inflammatory diseases, in which immune cells
accumulate and play important roles, bone marrow-derived cells are
an important cellular source for Cst C manipulation. Along this line,
we found that hematopoietic cells contribute significantly to the
systematic pools of Cst C.89 Therefore, bone marrow transplantation
would be an applicable approach in clinic to treat patients with Cst C
amyloidogenesis or reduction.

CONCLUSION

With the recent identification of regulatory elements in the promoter
region of Cst C and increasing reports of factors affecting its production
and/or activities, precaution should be taken when Cst C is used as an
index of GFR because its blood concentration is subject to changes
caused by many factors independent of kidney function. These factors
include cigarette smoking, body composition, viral infection, tumor
malignancy or gene mutations. Ultimately, the altered Cst C levels or
activity could lead to pathological processes in cardiovascular diseases,
neurological disorders or even mortality (Figure 2). Such an important
disease-associated protein thus should be effectively regulated for
therapeutic gains. Further characterization of the signaling pathways
leading to Cst C expression will help to develop antagonists and/or
synagonists for medical intervention or regulation of the abnormal
production and/or activity of this disease-associated enzyme inhibitor.
Likewise, identification of the post-translational modifications in the
microheterogeneity of the pathogenic species will also assist in under-
standing the mechanisms or direct factors triggering Cst C dimerization.
The knowledge should provide the information for a better under-
standing of the mysterious mechanisms underlying the diseases
associated with Cst C abnormalities.
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