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Aortic valve stenosis (AVS) patients experience pathogenic valve
leaflet stiffening due to excessive extracellular matrix (ECM)
remodeling. Numerous microenvironmental cues influence patho-
genic expression of ECM remodeling genes in tissue-resident
valvular myofibroblasts, and the regulation of complex myofibro-
blast signaling networks depends on patient-specific extracellular
factors. Here, we combined a manually curated myofibroblast sig-
naling network with a data-driven transcription factor network to
predict patient-specific myofibroblast gene expression signatures
and drug responses. Using transcriptomic data from myofibro-
blasts cultured with AVS patient sera, we produced a large-scale,
logic-gated differential equation model in which 11 biochemical
and biomechanical signals were transduced via a network of 334
signaling and transcription reactions to accurately predict the
expression of 27 fibrosis-related genes. Correlations were found
between personalized model-predicted gene expression and AVS
patient echocardiography data, suggesting links between fibrosis-
related signaling and patient-specific AVS severity. Further, global
network perturbation analyses revealed signaling molecules with
the most influence over network-wide activity, including endothe-
lin 1 (ET1), interleukin 6 (IL6), and transforming growth factor β
(TGFβ), along with downstream mediators c-Jun N-terminal kinase
(JNK), signal transducer and activator of transcription (STAT), and
reactive oxygen species (ROS). Lastly, we performed virtual drug
screening to identify patient-specific drug responses, which were
experimentally validated via fibrotic gene expression measure-
ments in valvular interstitial cells cultured with AVS patient sera
and treated with or without bosentan—a clinically approved ET1
receptor inhibitor. In sum, our work advances the ability of compu-
tational approaches to provide a mechanistic basis for clinical deci-
sions including patient stratification and personalized drug
screening.
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F ibrotic tissue remodeling is a significant driver of many
pathologies, including heart failure, pulmonary fibrosis,

wound healing, kidney disease, cancer, and others. But thera-
pies to control fibrotic remodeling remain elusive due, in large
part, to the complex intracellular signaling pathways and tran-
scriptional networks that regulate the expression activities of
the principal fibrosis-inducing cell type: the myofibroblast. For
example, valvular remodeling is a major obstacle for the treat-
ment of patients suffering from aortic valve stenosis (AVS).
AVS is characterized by thickening of aortic valve leaflets via
progressive extracellular matrix (ECM) accumulation and calci-
fication, reducing blood flow through the valve and leading to
compensatory cardiac hypertrophy, myocardial fibrosis, and,
eventually, heart failure (1). Minimally invasive transcatheter
aortic valve replacements (TAVR) serve as the current gold
standard for treating severe AVS patients with high surgical
risk (2). Unfortunately, interstitial fibrosis prior to surgery is

not necessarily reversed after valve replacement, and high
degrees of fibrosis are associated with reductions in long-term
survival and cardiac function (3–5). Therefore, preventing valve
fibrosis during initial AVS progression remains crucial for pre-
serving heart function and preventing the late onset of heart
failure. Identifying appropriate therapeutic compounds for this
task remains a significant clinical need (6).

As mediators of ECM remodeling, valvular myofibroblasts
play key roles during AVS progression, synthesizing matrix pro-
teins, proteases such as matrix metalloproteinases (MMPs),
and other regulatory matricellular proteins that orchestrate
scar formation and increase tissue stiffness (7). Valvular inter-
stitial cells (VICs) undergo activation to a myofibroblast pheno-
type in response to an influx of inflammatory cytokines, growth
factors, and hormonal peptides, as well as changes in local bio-
mechanical cues, including pathological stiffness and tensile
loading (8–10). These extracellular cues are transduced through
a complex network of regulation in which multiple intracellular
signaling pathways interact via cross-talk and feedback mecha-
nisms to dictate overall cell responses (11), thus further compli-
cating efforts to understand how myofibroblasts respond within
the valve microenvironment. While previous studies have
shown that myofibroblasts can undergo deactivation in
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response to serum biomarkers after TAVR, macrophage-
secreted inflammatory cues, and local mechanical stiffness
(12–16), the complexities of valve myofibroblast signal trans-
duction among a diverse microenvironment complicates efforts
to control cell deactivation.

To account for the complex system of myofibroblast intracellular
signaling, we employed a computational model in which environ-
mental cues are transduced via a network of intracellular signaling
and transcriptional interactions to predict changes in protein
expression. Similar approaches have been used to model various
cardiovascular and systemic diseases and successfully generate
insight into influential mechanisms within this broad biological
scope (17–21). In our current work, we adapted these approaches
to model valve myofibroblast responses to patient-specific serum
biomarker levels before and after TAVR by combining a network
of myofibroblast signaling with a data-driven network of myofibro-
blast transcriptional regulation. We developed network reaction
topology and fit reaction parameters using VIC RNA-sequencing
data under various patient-matched serum conditions, then tested
the correlations of personalized model predictions to clinically mea-
sured, patient-specific AVS severity. In addition, we conducted net-
work perturbation analyses and patient-specific drug target screens,
followed by in vitro validation experiments to test the model’s abil-
ity to predict variable drug responses across diverse patient sera
contexts.

Results
Development of Myofibroblast Transcriptional Network. Using a
published dataset of valvular myofibroblast gene expression in
response to pre- and post-TAVR patient sera (12), we devel-
oped a model of valve myofibroblast transcriptional regulation
using established gene regulatory network inference algorithms.
This dataset pairs proteomic signatures of patient sera collected
prior to surgery and 1 mo postprocedure with RNA-sequencing
signatures of porcine VICs treated with individual patient sera
from both time points. The authors of this study found that
altering protein composition after TAVR deactivated cultured
VICs from a myofibroblast phenotype, suggesting that increases
in inflammatory factors in circulating plasma can rescue resi-
dent cells from a profibrotic state. This study design provided a
platform to unravel mechanisms of VIC deactivation through
changes in patient proteomes after surgical replacement, and
the use of computational networks can build on this insight in a
predictive manner by prioritizing therapeutic strategies to res-
cue VIC activation before the need for valve replacement.

Upon initial topology inference and implementing several filter-
ing steps to ensure sufficient experimental evidence and relation to
fibrosis-related gene expression (Fig. 1A), our transcriptional net-
work represents 10 transcription factors (TFs) activated by intra-
cellular signaling, 27 intermediate TFs, and 18 target genes related
to ECM turnover or autocrine feedback (SI Appendix, Fig. S1).
This network inference strategy identified mechanisms mediating
the expression of structural matrix proteins, matricellular proteins,
and remodeling proteins related to collagen processing, cross-
linking, and turnover, which is supported by substantial overlap
with genes and pathways differentially expressed across normal,
fibrotic, and calcific regions in aortic valve leaflet tissues obtained
from AVS patients (22). Additionally, this data-driven approach
identified several intermediate TFs shown to regulate valvular and
ventricular myofibroblast behavior, including SOX9 (23, 24),
CCND1 (25), ATF3 (26, 27), and NOTCH1 (28), suggesting
agreement between inferred topology and previous experimental
findings.

Composite Myofibroblast Network Accurately Predicts Gene
Expression. Valve myofibroblast activation and expression of ECM
components during AVS relies not only on regulatory mechanisms

at the transcriptional level but also on changes in intracellular sig-
naling that often involves cross-talk between multiple pathways.
To provide a predictive solution that accounts for both levels of
regulation simultaneously, we integrated the inferred transcrip-
tional network above with our published network of myofibroblast
signaling, incorporating signaling reactions and TF–target interac-
tions into a single composite network for modeling via a system of
ordinary differential equations (ODEs) (Fig. 1B). This composite
network, consisting of 151 nodes and 334 edges in total, predicted
the expression of 27 fibrosis-related proteins (output nodes) based
on 11 canonical biochemical and mechanical stimuli (input
nodes), providing a detailed footprint of valve myofibroblast
responses to local environmental cues. This network was imple-
mented as a system of logic-based ODEs as previously described
(29), in which normalized node activity levels are approximated
via Hill equations using normalized node and reaction parameters
(see Materials and Methods for a full description).

We then contextualized this network to patient conditions
before and after TAVR and maximized predictive capabilities
of myofibroblast behavior during AVS progression. We imple-
mented a genetic algorithm to estimate the relative weight
parameters of all network reactions based on a published mul-
tiomic dataset consisting of proteomic profiling of pre- and
post-TAVR patient sera and RNA sequencing of myofibroblasts
cultured with patient-specific serum (12). An ensemble of
parameter sets was estimated using serum proteomic and myo-
fibroblast transcriptomic datasets as analogs for model inputs
and outputs, respectively, and the resulting fitted network
emphasized downstream signaling pathways from transforming
growth factor-β (TGFβ), endothelin-1 (ET1), tumor necrosis
factor-α (TNFα), and interleukins 1 and 6 (IL1 and IL6) as
well as signal transducer and activator of transcription (STAT)-
and nuclear factor kappa B (NFKB)-mediated transcriptional
regulation (Fig. 1B).

We compared model predictions of myofibroblast-expressed
proteins to measured gene expression levels by simulating cell
responses to each patient’s pre- or post-TAVR serum condi-
tions and measuring changes in output activity between pre-
and post-TAVR conditions (ΔActivityTAVR). Trends in model
predictions matched changes in gene expression experimentally
observed in pre- and post-TAVR serum-treated myofibroblasts
(ΔExpressionTAVR), with significant decreases in plasminogen
activator inhibitor-1 (PAI1) and elastin activity along with sig-
nificant increases in CTSC, CTSL, P4H, periostin, and IL6
activity mirroring significant changes in respective gene expres-
sion before and after TAVR (Fig. 1C). Across the ensemble of
estimated parameter sets, the average mean-squared error
(MSE) between ΔActivityTAVR and ΔExpressionTAVR levels for
each patient and model output was 0.0329 ± 0.0531, reaching a
level similar to other fitted mechanistic and logic-based net-
works (30, 31).

We additionally assessed the accuracy of our parameter esti-
mation strategy against a default model without fitted reaction
weight parameters (i.e., all reactions weight parameters set to
one) by comparing ΔActivityTAVR levels for each model against
the previous ΔExpressionTAVR levels. We found that parameter
estimation improved predictive accuracy for individual outputs
with respect to each patient serum, as fitted model
ΔActivityTAVR levels for individual patients and outputs had
lower squared errors against respective ΔExpressionTAVR levels
compared to the default model (Fig. 1D). Moreover, compari-
sons of significantly altered output levels between pre- and
post-TAVR conditions as predicted by the two models and as
measured in myofibroblasts suggests a sizeable improvement in
predictive accuracy. We found that, while the default model
had a classification accuracy of 43.5% in predicting truly signifi-
cant and nonsignificant changes in output activity compared to
gene expression data, the fitted model improved the accuracy

2 of 11 j PNAS Rogers et al.
https://doi.org/10.1073/pnas.2117323119 Network modeling predicts personalized gene expression and drug responses in

valve myofibroblasts cultured with patient sera

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2117323119/-/DCSupplemental


Fig. 1. Composite valve myofibroblast regulatory network accurately predicts fibrosis-related protein expression based on patient-specific biochemical
stimuli. (A) Schematic of gene regulatory network inference and model pruning scheme resulting in a targeted myofibroblast transcriptional network. (B)
Topology of combined network consisting of a curated network of myofibroblast signaling and an inferred transcriptional network derived from valve
myofibroblast RNA sequencing. Biochemical and biomechanical input nodes, signaling intermediates, and cell-secreted output nodes are connected by
directed edges representing activating and inhibiting reactions with reaction logic indicated by circular nodes (AND gates) or multiple edges (OR gates).
Line widths represent average reaction weight parameters estimated via genetic algorithm. (C) Comparison of experimentally measured changes in out-
put gene expression between pre- and post-TAVR conditions (ΔExpressionTAVR) with model-predicted changes in output protein activity between pre-
and post-TAVR conditions (ΔActivityTAVR). Individual comparisons made for each patient (boxes) represent mean levels across an ensemble of estimated
parameter sets, and statistical comparisons of activity levels between pre- and post-TAVR groups were conducted via two-tailed Student’s t tests. *P <
0.05, †P < 0.05 for model predictions and experimental values. (D) Comparison of squared errors (SE) of predicted patient ΔActivityTAVR levels between fit-
ted model (x axis) and a default model (y axis). All SE values were calculated against experimental ΔExpressionTAVR levels.
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to 69.6%, thus predicting a higher proportion of truly signifi-
cant and nonsignificant changes in output levels than in the
default, unfitted model.

Model-Predicted ECM Expression Correlates with Clinical Measures
of AVS Severity. The relationship between valve fibrosis and
reduced cardiac function during AVS is well known, but linking
individual secreted proteins to changes in valve and heart function
remains challenging because scarring involves a variety of matrix,
protease, matricellular, and cross-linking proteins for overall
changes in tissue architecture. Our myofibroblast network can
account for many of the species involved in valve remodeling, so
we hypothesized that comparing model-predicted trends in myofi-
broblast protein expression to patient-matched clinical measure-
ments could identify strongly correlated proteins among a diverse
protein expression profile. We performed a systematic correla-
tional analysis between activity levels of 23 outputs predicted for
each pre-TAVR patient serum and 13 clinical features measured
prior to surgery, utilizing serum levels of the patient cohort used
for model training as well as levels for four additional patients as
a validation set (Fig. 2A). Several model-predicted outputs dem-
onstrated significant positive correlations with left ventricle (LV)
volume measurements (e.g., LV internal diameter at end diastole,
LV internal diameter at end systole, and stroke volume index),
including protease inhibitors TIMP1 and TIMP2, matricellular
proteins osteopontin and tenascin C, and autocrine feedback
signals latent TGFβ, CTGF, ET1, and angiotensinogen. These
associations suggest that high levels of feedback signaling and
matricellular protein expression persist for patients with worse
valve function and greater severity of AVS, although the underly-
ing mechanisms remain unclear.

We also aggregated individual output predictions into a sin-
gle matrix content score (MCS) via a rank-based procedure as
an analog for net matrix accumulation for each patient (see
Materials and Methods for a full description). Notable correla-
tions include pre-TAVR MCS values with pre-TAVR Society of
Thoracic Surgeons risk scores (STS score), and pre- to post-TAVR

changes in Kansas City Cardiomyopathy Questionnaire score
(ΔKCCQ score), which show that simulated ECM production is
predictive of declines in ventricular function, overall disease sever-
ity, and negative postsurgical outcomes (Fig. 2B).

Network Perturbation Analysis Reveals Influential Pathways
Mediating Fibrosis during AVS. A key barrier to understanding
myofibroblast activation during AVS is a lack of insight into the
relative contributions of individual signaling molecules across
the full, multipathway network. Thus, we performed compre-
hensive knockdown simulations of individual nodes for all indi-
vidual patient serum levels, measuring changes in network
activity with each knockdown (ΔActivityKD) to assess network-
wide effects in a patient-specific manner. We calculated a
knockdown influence level for each node as a metric for the
total effects that one node has on all other nodes, and we calcu-
lated a knockdown sensitivity level for each node as a metric
for the total change in activity for one node across the knock-
down of all other nodes (see Materials and Methods for a full
description). Selection of the top 10 scoring nodes in both met-
rics for each pre- and post-TAVR serum condition showed simi-
lar trends in node sensitivity and influence across patients, with
a total of 19 nodes ranking in the top 10 knockdown influence
and 17 nodes ranking in the top 10 knockdown sensitivity for at
least one of the eight patients (Fig. 3 A and B, and see SI
Appendix, Fig. S2A for network-wide sensitivity analysis).

Across all patient and serum conditions, several intracellular
signaling pathways were consistently influential with respect to
network-wide activity. Among the top influential pathways rep-
resented were IL6 signaling via gp130/STAT activation, canoni-
cal and noncanonical TGFβ signaling via smad3 and ROS,
extracellular signal-regulated kinase (ERK) and JNK activa-
tion, and ET1 signaling via ROS/ERK/JNK activation along
with minor influence via IL1, TNFα, and PDGF signaling (Fig.
3C). Nodes downstream from these pathways consistently
scored highly in knockdown sensitivity, including targets of IL6
signaling such as smad7, TCF4, TP53, and NOTCH1 as well as

Fig. 2. Model-predicted protein expression correlates with clinical measures of disease severity. (A) Correlation analysis of pre-TAVR output node activity
levels (rows) with clinical features measured before and after TAVR surgery (columns). All dots represent Pearson correlation coefficients and respective P
values. (B) Notable correlations between aggregated MCS and clinical features. Spearman correlation coefficients (ρ) and P values were used to determine
significance. Stars represent each patient's data point, solid line represents linear correlation fit, and dotted lines denote confidence intervals.
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targets of TGFβ/ET1 signaling such as AP1, NFKB, cmyc, and
MECOM. These influential and sensitive species coincide with
sizeable changes in activity between pre- and post-TAVR condi-
tions, as average ΔActivityTAVR levels across all patients indi-
cate up-regulation of IL6 pathway activation after TAVR and
large increases or decreases in downstream activity, including
connected TFs and target output nodes (Fig. 3C).

We next compared knockdown influence and sensitivity lev-
els for top-ranked nodes across patient-specific conditions to
assess differences both between individual patients and
between pre/post-TAVR conditions. We found that influential
nodes representing IL1 and TGFβ signaling pathways fluctu-
ated between the patient cohort, as select patient conditions
showed large network-wide changes in activity compared to
others (Fig. 3A), and calculated coefficients of variation across
patient conditions were largest for IL1- and TGFβ-associated
nodes out of all top-ranked nodes (SI Appendix, Fig. S2B).
While patient-specific differences in knockdown sensitivity lev-
els were not as pronounced and coefficients of variation were
generally lower (SI Appendix, Fig. S2C), overall knockdown
sensitivity levels did vary by patient, with some patients showing
little sensitivity across all top-ranked nodes compared to others
(Fig. 3B). We also observed differences in influence and sensi-
tivity from pre-TAVR to post-TAVR conditions across top-
ranked nodes. Knockdown influence levels for IL6 signaling
nodes increased for post-TAVR conditions compared to pre-
TAVR conditions for seven of eight patients, which was consis-
tent with increases in IL6-related activity during post-TAVR
simulations.

As an additional exploratory analysis of influential pathway
effects on myofibroblast behavior, we correlated pre-TAVR knock-
down influence levels of top-ranked nodes with ΔActivityTAVR lev-
els for all fibrosis-related outputs to discover relationships between
pre-TAVR conditions and changes in cell behavior with surgical
intervention. A total of 82 out of 437 correlations between
pre-TAVR influence and output ΔActivityTAVR levels were sig-
nificant, including 27 positive correlations and 55 negative cor-
relations (Fig. 3D). Within these pairings, influence levels of
IL6-associated nodes and ET1-associated nodes significantly
correlated with nodes that ranked highly in knockdown sensi-
tivity (Fig. 3D). Positive correlations with elastin, PAI1, and
LOXL1 as well as negative correlations with multiple matrix
proteases, periostin, and P4H suggest strong connections
between pre-TAVR pathway knockdown and changes in prote-
ase, protease inhibitor, and collagen cross-linking protein
expression over other ECM-related proteins. We additionally
correlated pre-TAVR influence levels with changes in MCS val-
ues from pre-TAVR to post-TAVR (ΔMCS) as a metric for
overall changes in myofibroblast-mediated matrix turnover, and
we found that knockdown influence of the IL1- and ET1-
associated nodes positively correlated with changes in matrix
content for patients (Fig. 3E), suggesting that these pathways
may contribute to overall changes in myofibroblast protein
secretion within the larger network.

Targeted Virtual Drug Screen Predicts Stratified Patient Responses
to Therapies. Our perturbation analyses above suggested that,
while some signaling pathways tend to mediate valve myofibro-
blast protein expression over others, responses of individual
patients to pathway perturbations can vary widely, with some
patients experiencing little to no benefit for a given therapy.
This variability is a common challenge for cardiovascular ther-
apy development, so we investigated whether our network
model could discern patient-specific responses to drugs by pre-
dicting personalized changes in matrix-related outputs. Inhibi-
tion of each node was performed for each patient’s pre-TAVR
conditions in a dose–response manner by limiting the maximum
activation of each node, and average changes in activity of

output nodes (ΔActivityinhib) were measured for each patient
relative to unperturbed levels. This knockdown analysis identi-
fied the 14 most influential nodes (Fig. 4A, rows) and the 15
most sensitive outputs (Fig. 4A, columns), on average, but also
demonstrated wide distributions of patient responses to each
perturbation. As an example, inhibiting endothelin-1 receptor
(ETAR) produced either minimal, moderate, or substantial
reductions in OPN production as well as minimal, moderate, or
substantial increases in PAI1 production, depending upon the
particular patient serum context (Fig. 4B). In addition, different
patient backgrounds exhibited different response sensitivity,
depending on the protein output of interest.

To experimentally validate the predictive accuracy of our
model to capture patient-specific drug responses, we subjected
porcine VIC populations to the ETAR inhibitor bosentan
across eight patient-specific serum culture conditions (see
Materials and Methods for a full description). Briefly, we cul-
tured VICs on poly(ethylene glycol) hydrogels that served as
precision biomaterials (32) and then exposed the cell-laden
hydrogels to individual patient sera with or without 10 μM
bosentan. Previous studies have demonstrated that VICs cul-
tured on soft hydrogels retain a quiescent phenotype in the
presence of serum, whereas the use of standard tissue culture
plastic may activate VICs to a myofibroblast phenotype, due, in
part, to the supraphysiological stiffness of tissue culture plastic
(32, 33). After 24 h of drug treatment, we collected messenger
RNA (mRNA) and measured OPN, PAI1, COL1, MMP9, and
TIMP1 expression levels using RT-PCR (Fig. 4C). Patients
were first classified as “responders” or “nonresponders” for
each protein output, based on computationally predicted effects
of ETAR 80% knockdown and a simple over–under threshold.
Computational model-based classifications across patient back-
grounds and genes were compared to experimental results for
patient backgrounds and genes by designating each experimen-
tal result as a responder (i.e., statistically significant effect of
bosentan in the same direction as the model prediction), an
inverse responder (i.e., statistically significant effect of bosentan
in the opposite direction from the model prediction), or a non-
responder (i.e., statistically insignificant effect of bosentan in
any direction). The model-based stratification showed substan-
tial predictive power, with 8 of 10 experimental responders cor-
rectly identified in the computational responder group, while
only 6 of 16 nonresponders and only 2 of 7 inverse responders
were incorrectly classified by the model as responders (Fig. 4 D
and E). Varying the model stratification threshold produced a
full receiver operating characteristic curve with an area under
the curve of 0.81.

Discussion
Preventing valve fibrosis during AVS is crucial for long-term
patient outcomes even after valve replacement interventions.
Although previous studies have shown that alterations in serum
protein levels after valve replacement can deactivate myofibro-
blasts (12, 13), the underlying mechanisms of this deactivation
remain unclear due, in part, to the complexities of intracellular
regulatory mechanisms. Using coupled serum proteomic and
valve myofibroblast transcriptomic datasets for patients undergo-
ing TAVR, we developed a strategy to integrate these patient-
specific data into a computational model of cell signaling and
transcriptional regulation to predict fibrosis-related protein
expression in response to environmental signals. We found that
this strategy improved the accuracy of patient-specific predic-
tions over simulations based on model topology alone and
resulted in a similar degree of accuracy against experimental
gene expression data compared to other fitted network models
(30, 31). Correlational analyses demonstrated strong trends
between both individual matrix protein predictions and
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Fig. 3. Network perturbation analysis reveals influential pathways and differences in myofibroblast responses across patient conditions. (A and B) Com-
parison of top-ranked influential and sensitive nodes between patients and pre/post-TAVR conditions. Nodes shown reflect all unique nodes ranked in
the top 10 based on knockdown influence (A) or knockdown sensitivity (B). Dark bars represent knockdown influence/sensitivity levels for each pre-TAVR
patient condition, and light bars represent levels for each post-TAVR patient condition. (C) Topological representation of influential and sensitive path-
ways within the myofibroblast network. Knockdown influence/sensitivity levels and ΔActivityTAVR levels represent average values across all patient and
pre- and post-TAVR conditions. (D) Correlational analysis between pre-TAVR knockdown influence levels for top-ranked nodes and ΔActivityTAVR levels
for model outputs. All dots represent Pearson correlation coefficients and respective P values. (E) Correlational analysis between knockdown influence
levels for top-ranked nodes and predicted ΔMCS levels between pre- and post-TAVR conditions.
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aggregated MCSs with clinical measures of disease severity and
patient quality of life. Network-wide perturbation analyses iden-
tified influential signaling pathways and transcriptional regula-
tors of network activity and output expression such as the
IL6–gp130–STAT, TGFβ–ROS–JNK, and ET1–ROS–ERK/JNK
signaling axes. We additionally demonstrated the capacity of the
model to detect stratified patient responses to targeted inhibition
in a virtual drug screen, showing that myofibroblasts respond
substantially to simulated inhibitors for select patient conditions
over others. Our results suggest that this strategy can accelerate
the identification of antifibrotic therapies to slow AVS progres-
sion by accounting for individual patient conditions and generat-
ing insight into possible mechanisms governing cell behavior
within a complex signaling context.

Identification of Transcriptional Regulators in Myofibroblast-
Mediated Fibrosis. While intracellular signaling processes remain
a crucial step in transducing environmental cues into changes
in cell protein expression and phenotype, regulation at a tran-
scriptional level adds an additional layer of complexity and can
confound understanding of cell behavior. Our construction and
simulation of a myofibroblast transcriptional network derived
from cell RNA-sequencing data suggest that this layer of regu-
lation plays a highly influential role in myofibroblast behavior
during AVS progression. Transcriptional regulators identified
here via gene regulatory network inference have also been
shown to mediate both VIC and cardiac fibroblast behavior in
other cardiovascular pathologies. The TF SOX9 has been iden-
tified as a positive regulator of cardiac fibrosis and heart failure

Fig. 4. Virtual drug screen reveals stratified patient responses to inhibitor treatments. (A) Comparison of ΔActivityinhib levels for fibrosis-related model
outputs upon knockdown of top-ranked influential nodes. Values represent average ΔActivityinhib levels across all patients for pre-TAVR conditions after
80% inhibition of each node relative to respective unperturbed conditions, and rows/columns were chosen for knockdowns that demonstrated an aver-
age 5% change in activity for at least five outputs and vice versa. (B) Simulated changes in OPN and PAI1 output activity for each patient with 0 to 80%
inhibition of ETAR. Patients were designated as “Responder” or “Non-Responder” based on threshold classification of delta levels at 80% inhibition. (C)
Relative in vitro gene expression levels of OPN, PAI1, COL1, MMP9, and TIMP1 across valve interstitial cell populations treated with patient-specific sera
and ETAR inhibition with bosentan. Gene expression was measured via qPCR relative to RPL30 for cells dosed with individual patient sera for 24 h fol-
lowed by 10 μM bosentan for 24 h, and statistical significance is shown as *P < 0.05, **P < 0.01, ***P < 0.001. Each experimental observation was desig-
nated as a responder (i.e., statistically significant effect of bosentan in the same direction as the model prediction), an inverse responder (i.e., statistically
significant effect of bosentan in the opposite direction as the model prediction), or a nonresponder (i.e., statistically insignificant effect of bosentan in
any direction). (D) Confusion matrix comparing model predictions of patient responder/nonresponder/inverse responder status compared to that deter-
mined via qPCR experimental results. (E) Receiver operating characteristic curve comparing demonstrated predictive accuracy of model predictions vs.
in vitro patient-specific response status.
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development in models of ischemia–reperfusion injury and
myocardial infarction (MI), with ischemia causing increased
SOX9 gene expression and spatial correlation with collagen
gene expression and scar formation measured via histology
(23). Fibroblast-specific deletion of SOX9 in an MI mouse
model has also been shown to attenuate increases in αSMA
expression, cell proliferation, scar formation, and functional
measures. These data demonstrate a strong connection
between this factor and fibrotic processes.

NOTCH1 and ATF3 have also been implicated in cardiac
fibrosis and myofibroblast activation, as overexpression of the
NOTCH1 intracellular domain in rat cardiac fibroblasts antago-
nized TGFβ-induced smad3 activation and in vivo overexpres-
sion after MI reduced fibrotic area in rats (28). Further, cardiac
fibroblast-specific overexpression of ATF3 attenuated scar for-
mation and reduced the LV internal diameter in end systole
and ejection fraction after MI (27). It should be noted that sev-
eral regulators identified by our approach serve influential roles
in osteogenic differentiation, such as NOTCH1 (34–36).
Although the scope of our model does not directly reflect oste-
ogenic phenotypes for valvular cells, this similarity in regulatory
species suggests that pathways mediating myofibroblast and
osteoblast phenotypes are not mutually exclusive. Our identifi-
cation of transcriptional intermediates and connecting interac-
tions suggests that the regulation of myofibroblast behavior
involves numerous pathways simultaneously, and that computa-
tional approaches are advantageous for discerning mechanisms
essential to cell function within a dense regulatory landscape.

Influential Signaling Axes and Regulatory Hubs Mediate Overall
Myofibroblast Behavior. Valve myofibroblasts respond to a variety
of environmental stimuli, including inflammatory cytokines,
growth factors, matrix stiffness, and hormonal peptides, all of
which have been shown to alter cell behavior individually (7, 37).
Within the context of AVS progression, however, the relative con-
tribution of each environmental signal and its respective signaling
pathway remains unclear. We performed a network-wide pertur-
bation analysis to identify globally influential pathways with cells
cultured in the presence of pre-TAVR and post-TAVR serum, and
our simulations predicted that the transduction of IL6, TGFβ, and
ET1 primarily influence activation levels across the network. Pre-
vious loss- and gain-of-function studies conducted both in vitro
and in vivo have demonstrated the influence of these top nodes in
fibrosis during AVS. Liu and Gotlieb (38) reported extensive
changes in VIC phenotypes when exposed to exogenous TGFβ
using an in vitro wound repair assay, as treated cells showed
up-regulated αSMA expression, stress fiber formation, and wound
closure in addition to attenuated apoptosis. Treatment with a
TGFβ-neutralizing antibody showed attenuation across these cate-
gories, suggesting TGFβ as a major regulatory mechanism of VIC
activation. A similar extent of behavioral change was observed by
Jenke et al. (39) in a three-dimensional culture model of ovine
VICs, as TGFβ treatment increased smad3/7 gene expression,
latent TGFβ expression, cell proliferation via CCND1, and
αSMA/COL1 expression. We additionally identified the glucocor-
ticoid receptor NR3C1 as a top influencer of network-wide behav-
ior, and, while no study has investigated glucocorticoid-mediated
phenotypes in valvular cells, both a genetic loss-of-function study
in mice and a gain-of-function study in dogs via the glucocorticoid
prednisolone demonstrated that changes in NR3C1 activity pro-
moted interstitial left ventricular fibrosis and up-regulated fibrotic
gene expression (40, 41).

IL6 signaling and downstream activation of STAT has been
previously linked to cardiac fibrosis across several cardiovascular
pathologies with effects across multiple pathways (42). Dziemido-
wicz et al. (43) found that IL6�/� mice treated with isoproterenol
developed interstitial ventricular fibrosis and increased phosphor-
ylated levels of multiple signaling intermediates including ERK,

Raf, and p38 compared to wild-type mice. In a similar finding,
Hilfiker-Kleiner et al. (44) found decreases in ERK and Akt
phosphorylation for mice carrying a point mutation in gp130 and
subjected to MI compared to wild-type mice. Recent evidence of
IL6 as a promoter of VIC osteogenic differentiation via the
increased expression of RUNX2 and osteopontin suggests that
this pathway may serve multiple phenotypic roles (13), and future
targeted investigations of this behavior may explain possible
context-dependent roles of IL6 signaling during AVS progression.

Noncanonical TGFβ signaling via NADPH oxidases (NOX)
and ROS has also been previously revealed as an effective regu-
lator of fibrosis in valvular and myocardial tissue, supporting
the high influence that we found from the TGFβ–ROS–JNK
axis in our computational network. Inhibition of NOX4 in car-
diac fibroblasts has been shown to reduce TGFβ-stimulated
intracellular superoxide production, which, in turn, mediates
phosphorylation of smad2/3 and expression of αSMA, CTGF,
and fibronectin, suggesting a largely profibrotic role of this
pathway (45). The NOX–ROS signaling axis has also been
shown to mediate changes across multiple pathways to alter
fibrosis in mouse models of hypertension (46), and decreases in
NOX4 expression and ROS generation following genetic
knockout of SOD1 in mice mitral valves has been associated
with changes in αSMA, CTGF, and MMP expression in mitral
VICs (47), suggesting a similar systemic effect of this nonca-
nonical mechanism on valvular myofibroblast behavior.

Our global analysis additionally suggests that select TFs may
act as regulatory hubs for expression of ECM-related proteins
and influence fibrotic behavior over others. We found that
STAT, NFKB, and Jun influence large changes in network-wide
activity, all of which have been well studied for their roles in
pathological scar formation. In particular, we found STAT to be
a primary influencer of myofibroblast behavior via the expres-
sion of matricellular proteins, cathepsin and MMP proteases,
and cross-linking enzymes, and previous experimental studies
have confirmed this central role of STAT in cardiac fibrosis and
systemic sclerosis. Using IL-11 as a positive regulator of STAT3
after MI in mice, Obana et al. (48) demonstrated that STAT3
activation reduced LV scar formation and improved infarct wall
thicknesses compared to untreated MI, demonstrating a pri-
marily antifibrotic effect during ischemic injury. However, dis-
ruption of STAT3 phosphorylation via inhibition of EphrinB2
in a post-MI mouse model reduced αSMA protein expression,
collagen I expression, and cell proliferation (49), and inhibition
of STAT3 during bleomycin-induced skin fibrosis reduced gene
expression of multiple ECM proteins (50), suggesting that
STAT may exert both profibrotic and antifibrotic effects. In
agreement with experimental evidence of IL6 signaling during
AVS, the activation of STAT3 was also associated with osteo-
genic dedifferentiation in VICs via down-regulation of RUNX2
and BMP-2 (51), reinforcing the need to further investigate this
intersection between fibrotic and osteogenic phenotypes.

Systems Models Relate Cell Phenotypes to Disease Severity and
Predict Patient Responses. Our model-centered approach pro-
vides unique advantages for relating cellular-level behavior to
clinical manifestations of AVS through the prediction of pro-
tein expression based on patient-specific conditions. Our find-
ings indicate that computational predictions of cell behavior
correspond to multiple measures of AVS severity, including LV
size and STS scores. Previous serum biomarker studies in AVS
cohorts have shown individual biomarkers to be predictive of
patient outcomes, such as N-terminal pro B-type natriuretic
peptide (NT-proBNP) and C-reactive protein (52, 53), and,
while useful for stratifying patient risk and informing surgical
intervention, these biomarkers alone may not connect altera-
tions in cellular function with overall disease progression. Our
patient-specific predictions and correlation with pre-TAVR
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clinical measurements suggest that matricellular protein expres-
sion, autocrine feedback expression, and aggregation of all out-
put proteins into a single ECM-related metric offer a predictive
link between myofibroblast-mediated scar formation and
reduced heart function. Virtual drug screens for individual
patient conditions further demonstrated the ability of this
model-based approach to discern responders versus nonres-
ponders to possible therapies. Translating this approach into a
clinical setting may improve overall responses to therapeutic
intervention before and after surgery, via targeted drug and/or
dose selection. While clinical validation of these trends is essen-
tial for further development and application of this approach,
the framework developed here provides opportunities to fur-
ther investigate fibrotic mechanisms of action for targeted
patient cohorts or for other possible pathological scenarios.

Study Limitations. Our study was primarily limited by the size of
patient datasets used for model training and simulated scenarios.
While this multiomic, patient-matched design formed an essential
aspect of our model development strategy through the robust
measurement of serum proteins and cell-specific gene expression,
a lack of cohort size and diversity limited our predictive capabili-
ties in terms of both model training and predicted trends in myofi-
broblast behavior. Additionally, the insufficient availability of
select biochemical stimuli (e.g., estrogen), tissue biomechanical
properties, and cell-secreted outputs limited our predictions
related to these stimuli and associated regulatory pathways. In
particular, the signaling network model was curated with substan-
tial mechanotransduction pathways enabling the incorporation of
local biomechanical signals such as tissue deformations and stiff-
ness as an additional input which was not leveraged in these cur-
rent simulations.

Throughout our analysis, we did not find patient sex to be an
influential factor in VIC responses to perturbation, as neither
knockdown experiments in silico nor drug-induced gene expres-
sion in vitro showed substantial changes in behavior in cell
behavior compared to those induced by knockdown or drug
inhibition. While we did consider patient sex as a factor in our
experimental design both through the incorporation of estrogen
transduction in our network model and through the application
of male and female sera to sex-matched VIC cultures, insuffi-
cient availability of both estrogenic biomarkers and female
patients may be a factor in this discrepancy compared to previ-
ous studies demonstrating estrogen and sex dependence of
fibrotic signaling pathways during AVS (54). Additionally, the
young, healthy porcine VICs used for experimental validation
may elicit differences in response compared to native, diseased
VICs during AVS progression, and further experimental mod-
els representing aged and diseased cells are needed for full vali-
dation of our findings.

Because both fibrosis and calcification processes play key
roles in the development of AVS, we acknowledge that our
model of myofibroblast protein expression alone accounts for
only one component mediating overall disease progression.
Future adaptation of this modeling strategy toward osteogenic
differentiation may provide additional insight into dominating
mechanisms responsible for calcification and complement our
current model of fibrosis-related gene expression for an overall
picture of cell behavior. Because several influential pathways
identified here also correspond to the expression of
calcification-related proteins, implementing these same path-
ways along with those known to mediate severe AVS may be
valuable for investigating differences in fibrotic versus osteo-
genic differentiation. Notably, recent transcriptomic and prote-
omic analyses across normal, fibrotic, and calcific disease stages
of aortic valve leaflets from AVS patients have implicated
important, stage-specific changes in the production levels of

collagens, MMPs, TIMPs, proteoglycans, and most of the
related signaling pathways included in our model (22).

Conclusion. Our development of a cell regulatory network and
analysis of patient-specific changes in valve myofibroblast protein
expression demonstrated the translational possibilities of model-
based approaches in identifying key mechanisms governing cell
behavior within a larger signaling context. Predicted intracellular
species and pathways influencing fibrosis-related gene expression
provide targeted hypotheses for future clinical validation. Our
findings of strong correlations between model-predicted protein
expression and clinical measures of disease severity suggest that
simulations of biological networks can be advantageous for relat-
ing cellular phenotypes to clinical manifestations of disease, and
future exploration of the predictive capabilities of such models
could prove useful for clinical translation. Our virtual drug screen
of individual patient responses to pathway-inhibiting drugs further
demonstrated the ability of this model-based approach to stratify
patient cohorts based on individual serum biomarker levels. This
strategy provides a framework for predicting cell behavior within
a complex signaling context and enables further investigation into
pathways mediating valvular fibrosis before and after surgical
intervention.

Materials and Methods
Fibroblast Transcriptional Network Construction.
Gene regulatory network inference. We employed a previously published
method of gene regulatory network inference to derive a network of
TF–target gene interactions based on a transcriptomic dataset of VIC popula-
tions after stimulation with patient sera. Bulk RNA-sequencing datasets
recently published by our collaborators were used as a training set for network
inference, and this dataset represents the gene expression of VIC populations
stimulated with serum derived from a small cohort of patients undergoing a
TAVR procedure (12). Briefly, patient blood samples were collected at the time
of surgery and at the 1-mo follow-up visit (n = 4 female patient pairs and n =
8 male patient pairs, 24 samples total). Donors were 79.1 ± 8.4 y of age, on
average, and all donors had a pre-TAVR aortic valve area of <1.5 cm2 (0.73 ±
0.24 cm2), suggesting either a moderate or severe stage of stenosis. The result-
ing serum samples were used to treat porcine VIC cultures seeded on soft poly(-
ethylene glycol) (PEG) hydrogels (Young’s modulus of 5.8 kPa) for 48 h prior to
RNA sequencing, and counts per million for gene expressionwere used for sub-
sequent network inference andmodel fittingmethods. Of the total 24 samples
collected, 16 samples were used for gene regulatory network inference and
network parameter estimation (n = 4 female patient pairs and n = 4 male
patient pairs), and 8 samples were retained for model validation only (n = 4
male patient pairs).

We utilized the GRNBoost2 machine learning algorithm to infer a network
of TF–target interactions from the transcriptomic dataset above. This
regression-based method is based on the GENIE3 (gene network inference
with ensemble of trees) algorithm for predicting regulatory links between
input genes and target genes via the construction of decision tree ensembles
(54). Each ensemble of decision trees, which predicts the expression of a given
target gene from the expression of all input genes, is used to determine the
relative “importance” of each input gene in predicting the expression of the
specified target gene. Decision tree ensembles are built for all genes across
the transcriptome, and input–target gene links are aggregated to form a com-
posite network of ranked interactions. The GENIE3 algorithm has been shown
to outperform other methods in inferring gene regulatory networks, as part
of the dialogue for reverse engineering assessments and methods (DREAM4)
in silico multifactorial challenge (55), and it provides several advantages over
other common inference algorithms: 1) Inference can be performedwithmini-
mal assumptions of network topology, 2) directed interactions (i.e., gene A
activates gene B) can be inferred compared to correlation- and probability-
based methods, and 3) nonlinear or combinatorial regulation can be derived
compared to other regression-based methods (56). The GRNBoost2 implemen-
tation optimizes this approach using stochastic gradient boosting, which
grows decision tree ensembles on a subset of observations and estimates the
loss function on the remaining observations with each iteration. The algo-
rithm implements an early stopping criterion if the loss function does not
improve above a set threshold, thereby preventing unnecessary iterations of
each decision tree and reducing overall computational time (57). The Arbor-
eto library for python was used to apply this algorithm to the RNA-
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sequencing data described above, and the average computational time for
network inference using a four-core computer was ∼10min.
Network pruning. Upon inference of the initial network, a three-step
workflow was applied to filter the network for TF–target interactions
that satisfy three requirements: 1) Interactions must be supported by
experimental evidence, 2) interactions must relate to either literature-
supported TFs (primary TFs) or fibrosis-related target genes in myofibro-
blasts, and 3) resulting pathways connecting primary TFs and target
genes must have relatively strong links across all individual edges, as
determined by interaction ranks assigned by the GRNBoost2 algorithm
(Fig. 1A). The first step was performed by comparing inferred TF–target
interactions with databases of known TF–target interactions aggregated
from chromatin immunoprecipitation (ChIP) studies. Curated lists of
known TF–target interactions from the ChIP-X Enrichment Analysis and
transcription factor (TRANSFAC) databases were downloaded using the
Harmonizome web interface (58), both of which were chosen to maxi-
mize coverage of TFs related to myofibroblast activation. Upon filtering
the initial gene regulatory network for interactions contained in either
database, the resulting network was filtered further for interactions
containing TFs or fibrosis-related target genes in myofibroblasts. Lists of
TFs and target genes were derived using our curated network model of
myofibroblast signaling (59), which contains 11 primary TFs and 20 tar-
get genes coding for ECM-related proteins. For TFs that consist of several
subunits (e.g., activator protein 1 [AP1] complex), both constituent
genes were included for filtering. An additional eight target genes that
were differentially expressed by patients between pre- and post-TAVR
sera were also considered: CTSC, CTSL, COL4A5, LOXL1, P4HA1, P4HA3,
LAMA4, and ELN. Proteins coded by these genes have been shown to
alter matrix degradation and collagen processing, and alter material
properties of cardiac tissue, and significant differences in expression
within the RNA-sequencing dataset provide a rationale for exploring
possible regulatory pathways affecting gene expression. After list con-
struction, the database-filtered network above was filtered again for
interactions containing genes in either list. After filtering, interactions
contained only TF–TF interactions or TF–target interactions in which
intermediate TFs not included in the primary TF list above regulate tar-
get gene expression (i.e., primary TF A activates secondary TF B, which
activates target gene C).

After the second stage of filtering above, the final network topology was
derived by ensuring that all resulting pathways between primary TFs and tar-
get genes contained interactions that ranked highly among possible regula-
tory links according to the GRNBoost2 algorithm. A modified depth-first
search algorithm was implemented to find all possible pathways between
each primary TF and target gene and check whether each interaction within
that pathway met this requirement using the “importance” score for the
interaction output by GRNBoost2. Individual interactions were only allowed if
the importance score of each edge was greater than either a threshold of one
or the 75th percentile of all interactions stemming from the same TF. This
hybrid threshold was chosen to both limit interactions driven by noise, in
which overall importance scores are low, and prevent premature exclusion of
related interactions when all possible regulatory links may be ranked low rela-
tive to the entire network. By implementing this method, all interactions
mediating expression of target genes were ensured to meet a threshold of
confidence relative to neighboring interactions such that one TF within a
pathway is not predictive of its downstream target. All network filtering steps
were performed in a python environment using the numpy (60) and pandas
(61) packages.

Composite Signaling/Transcriptional Network Implementation. We combined
the final transcriptional network with our previous myofibroblast signaling
network describing intracellular mechanotransduction and chemotransduc-
tion (59) to form a composite network capable of predicting fibrosis-related
protein expression in response to mechanical and biochemical stimuli. New
TFs (model nodes) and/or transcriptional reactions (edges) were added to the
cell signaling topology if they were not redundant to the original transcrip-
tional reactions described by the signaling network. To account for potential
differences in signaling between male/female cell signaling during fibrosis,
we incorporated a curated set of intracellular reactions encompassing estro-
gen transduction found via a manual literature search. Reactions were
included if at least two independent studies contained experimental evidence
in either VICs or cardiac myofibroblasts, resulting in an additional seven nodes
and 24 edges added to the network.

The final network was implemented as a system of logic-based ODEs in
which activity levels of all nodes weremodeled by Hill equations. Logical NOT,
AND, and OR gates were used for complex signaling interactions by applying

the respective logical operations: 1� fðxÞ for NOT gates, f xð ÞfðyÞ for AND
gates, and f xð Þ þ f yð Þ � f xð ÞfðyÞ for OR gates. The open source Netflux pack-
age for MATLAB was used to build this system of differential equations (28),
and all simulations were conducted using MATLAB (Mathworks). All visualiza-
tions of network topology were constructed using Cytoscape (29, 62, 63).

Network Parameter Estimation. Full details of our parameter estimation are
included in SI Appendix, Supplementary Methods. To summarize, we first
used k-means clustering based on a global sensitivity analysis to group closely
connected reactions (thereby reducing the total number of parameter con-
straints). We then implemented a genetic fitting algorithm to optimize the
reaction weight parameters (w) of all reactions in the composite network.
Using serum protein levels for all patients as input concentrations and VIC
gene expression levels as output concentrations, data for each input and out-
put node were normalized and fit with the ga MATLAB function by minimiz-
ing the mean-squared error between themodel-predicted and experimentally
measured changes in pre-TAVR to post-TAVR expression levels.

Network Perturbation Analysis. To identify influential signaling mechanisms
across pre-TAVR and post-TAVR signaling contexts, a series of node knock-
downs were simulated using normalized input levels from each patient serum
sample. For each set of normalized input levels used during parameter estima-
tion above, basal conditions (i.e., without any knockdown) were applied for
80 h, followed by knockdown of individual nodes using the Ymax parameter
(Ymax,KD = 0.1*Ymax,basal) for 240 h. Steady-state activity levels of all nodes
were measured with each knockdown, and changes in node activity
(ΔActivityKD) were calculated as the difference between node activity after
knockdown and basal node activity. Knockdown sensitivity of each node was
calculated as the sum of absolute ΔActivityKD levels for the node across all
knockdown simulations, and knockdown influence of each node was calcu-
lated as the sum of absolute ΔActivityKD levels for all other nodes in the net-
work upon knockdown.

Patient Stratification Analysis. Targeted simulations assessing stratified model
responses to drug targets with patient-specific conditions were conducted
using a series of dose–response simulations. For each node, a series of knock-
down simulations was performed under each patient-specific condition. Fol-
lowing a simulation of basal conditions using each patient’s normalized input
levels for 80 h, the Ymax parameter for each nodewas lowered to either 0.8, 0.6,
0.4, or 0.2 times the Ymax under basal conditions for 240 h (corresponding to 20
to 80% node inhibition). Steady-state activity levels of all nodes weremeasured
with each dose and compared to steady-state levels prior to dosing. Patients
were then classified as “responder” or “nonresponder” based on a simple
over–under threshold, which was varied from zero to the maximum delta for
each protein output to generate receiver operating characteristic curves.

In Vitro Validation Experiments. Full details of our in vitro experiments and all
statistical analyses are included in SI Appendix, Supplementary Methods.
Briefly, PEG hydrogels were made and seeded with primary male or female
porcine VICs as previously described (12, 64). VICs were seeded on PEG hydro-
gels at a density of 20,000 cells per square centimeter growth area in Media
199 supplemented with 1% serum (fetal bovine serum or human serum sam-
ples), 50 U/mL penicillin, 50 μg/mL streptomycin, and 1 μg/mL amphotericin B.
In order to consider sex-specific VIC gene expression, VICs were sex matched
to each human serum sample such that female sera were applied to female
VICs and vice versa. RNA was extracted from cultured cells using a RNeasy
Micro Kit (Qiagen) according to the manufacturer’s protocol. RNA quality was
assessed via spectrophotometry (ND-1000, NanoDrop), and complementary
DNA was synthesized using an iScript Synthesis kit (Bio-Rad) according to the
manufacturer’s protocol. Relative mRNA expression was determined using
SYBR Green reagents on an iCycler (Bio-Rad). Normalizations were performed
using the RPL30 gene.

Data Availability. The code generated during this study is available in the
GitHub repository (https://github.com/jdroger/Fibroblast_Gene_Regulatory_
Network). The published article includes all models generated or analyzed
during this study. The experimental data generated from the in vitro VIC cul-
ture experiments and mRNA measurements are available in the Figshare
repository (https://figshare.com/articles/dataset/Rogers_2022_NetworkModeling
InVitroData_xlsx/19127951) (65).
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