
Design and Synthesis of a Polyketone Building Block with Vinyl
Groups�9,10-Diethyl-9,10-ethenoanthracene-
2,3,6,7(9H,10H)‑tetraone�and a Preliminary Photoelectrical
Property Study of Its Azaacene Derivatives
Hong Chen, Shilong Zhang, Jinlei Liu, Jiaxin Li, Wangqiao Chen,* and Guofu Zhou*

Cite This: ACS Omega 2023, 8, 32931−32939 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: Polyketone compounds are powerful building blocks
to synthesize various organic functional materials. Despite that a great
many number of planar and non-planar polyketone building blocks
have been developed, one issue is that generally there are only ketone
functional groups on the molecular skeleton, which will constrain
their transformation and further limit the development of functional
materials. In this work, we report the design and synthesis of a
building block 9,10-diethyl-9,10-ethenoanthracene-2,3,6,7(9H,10H)-
tetraone with additional vinyl functional groups. In addition, its
azaacene derivatives were also synthesized, and their preliminary
physicochemical properties were studied.

■ INTRODUCTION
Compounds with polyketone functional groups are important
building blocks and can transform into many other different
types of organic functional materials, including polyaromatic
hydrocarbons (PAHs),1 N-doped polyaromatic hydrocarbons
(N-PAHs),2 covalent organic frameworks (COFs),3 etc. As
shown in Figure 1, the previously reported polyketone building
blocks can be generally classified into two groups: planar and
non-planar.
For the planar polyketone building blocks, compounds 1 and

2 were synthesized efficiently in 2005 through ruthenium(III)
chloride-catalyzed oxidation4 and were further demonstrated as
powerful building blocks to synthesize various PAH and N-
PAH derivatives, including nonatwistarene (9-PAH),5 dodec-
atwistarene (12-PAH),6 as well as N-doped dodecatwistarene
(12-N-PAH)7 reported by Zhang’s group and 11-N-PAH,8 18-
N-PAH,9 and 53-N-PAH10 reported by Mastalerz’s group,
Baumgarten’s group, and Mateo-Alonso’s group, respectively.
In addition, they were also important units to build COF
materials. Briefly, to name some examples, Jiang’s group used
compounds 3 and 2 to synthesize FAN-24 (FAN = fused
aromatic network; FAN11a and FAN-4211b in 2011 and 2013,
respectively). Subsequently, Hoberg’s group and Mateo-
Alonso’s group synthesized FAN-5412 and FAN-9013 with
even larger pore sizes in 2018 and 2022. Meanwhile, Feng’s
group obtained pyrazine-linked MPc-pz-COF by reacting
compound 2 with an porphyrin aromatic amine.14 Generally
speaking, compounds 1−3 mainly formed linear or star-shaped
PAHs and N-PAHs as well as two-dimensional COF materials.

To further develop N-PAHs with different shapes, compound
4 was developed in 1997, and Bunz’s group used this building
block to synthesize a series of Z-shaped N-heterophenes and
investigated their properties as OLED materials.15 Recently,
Alonso’s group utilized TIPS-functionalized compound 4
(TIPS = bis-triisopropylsilylethynyl) to obtain planar and
helical dinaphthophenazines.16 Meanwhile, Zhang’s group
synthesized the isomer 5 of compound 4 and a series of its
U-shaped helical azaarene derivatives.17 Aside from these
planar polyketone building blocks, many other new polyketone
building blocks were also developed, such as dibenzoanthra-
diquinone,18 homosumanene orthoquinone,19 etc. Our group
also reported the preparation of a series of fused hetero-
aromatic diones through double intramolecular Friedel−Crafts
acylation, and it is worth mentioning that the dione product
transformed from difuran, dipyrryole, and dibenzofuran
substrates were first reported in that work.20

For the organic functional materials derived from planar
polyketone building blocks, they are generally also planar, and
it is necessary to develop non-planar or twisted or three-
dimensional polyketone building blocks to further enlarge the
types of organic functional materials and explore their potential
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properties. Toward this aim, Wuest’s group used 2,3-dichloro-
5,6-dicyano1,4-benzoquinone (DDQ) as the oxidation reagent
to synthesize triptycene triquinone 6,21 which can be used as a
cathode material itself for higher-energy alkali metal
batteries,22 and it can be converted into phenazine derivatives
subsequently.23 In addition, triptycene-based microporous
poly(benzimidazole) networks can be synthesized from 9,10-
dimethyl-substituted 6.24 Bunz’s group synthesized the
spiroketone compound 7 and used its azaacene dimers as
organic photovoltaic acceptor materials, affording a maximum
power conversion efficiency up to 1.6%.25 Recently, Bunz’s
group also synthesized 8 and further converted it into dimeric
phenazinothiadiazole and applied them as acceptors in bulk
heterojunction solar cells.26

From the above elaboration, despite that various polyketone
building blocks have been developed, regardless of whether
they are planar or non-planar ones, one issue is that there are
only carbonyl groups on the molecular skeleton, which will
constrain their transformation to some extent (e.g., at present,
mostly focusing on the condensation reaction between amine
and ketone reactants) and further limit the development of
new functional materials. Hence, it is still a challengeable work
to introduce additional functional groups on the existing
polyketone molecular skeleton to enlarge the types of reaction
as far as possible. As we know, vinyl is a fairly fundamental
functional group that can undergo the oxidation reaction
(conversion into the diol group), polymerization reaction, ring-
opening reaction, etc. Hence, we are interested in whether it is
possible to combine vinyl and polyketone functional groups
together into one molecule. In this work, we reported the
design and synthesis of the building block 9,10-diethyl-9,10-
ethenoanthracene-2,3,6,7(9H,10H)-tetraone 9 with additional
vinyl functional groups. In addition, N-PAH derivatives
(Figure 2) based on compound 9 were also synthesized, and
their preliminary photoelectrical properties were studied.

■ RESULTS AND DISCUSSION
Synthesis. Scheme 1 shows the synthetic route of

compound 9. A solution of veratrole and propanal was
added dropwise into 84% sulfuric acid to obtain 10.27 The key
to this reaction is to control the low temperature of the
reaction and the slow rate of dropwise addition of the mixed
solution. In addition, during post-processing, we added
ammonia dropwise to the reaction solution according to the
reported literature27 and then filtered the reaction mixture,
obtaining only a black solid. Then, we changed the method by
pouring the reaction solution directly into 300 mL ice-
methanol, then filtered, and washed repeatedly with methanol
to obtain the off-white solid product 10 in a relatively high
yield of 67%. Compound 10 and dimethyl acetylenedicarbox-
ylate underwent the Diels−Alder addition reaction to obtain

Figure 1. (a) Selective structures of ketone compounds reported in the literature; (b) polyketone building block in this work.

Figure 2. Chemical structures of V7, V9, and V11.
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11. After the hydrolysis reaction of 11, the two ester groups
changed into two carboxyl groups to afford the pale yellow
solid 12. We put 12 into the reaction tube, added CuO and
quinoline, and carried out the decarboxylation reaction at 240
°C,28a,b but the product was not obtained. Then, we adjusted
the temperature in the range of 200−280 °C but still failed.
Finally, under the guidance of literature,28c we replaced copper
oxide with Cu2O and maintained the reaction at 200 °C for 30
min, and finally obtained a beige solid product 13 by column
chromatography. The four methoxyl groups of 13 were
removed using boron tribromide [(1 M in dichloromethane
(DCM)].21 It is important to note that the temperature must
be kept below 0 °C, and the boron tribromide solution cannot
be added too fast. During the post-processing, we initially
extracted with ethyl acetate and then concentrated by
evaporation, only resulting in a dark black solid with a lower

purity of the desired product. Later, we poured the reaction
system into ice water and then allowed it to stand in the fume
hood about 10 min. After that, we filtered it directly and
washed the solid with petroleum ether, obtaining the light
purple solid product 14 with higher purity. Finally, the
hydroxyl groups were oxidized to carbonyl groups in the
presence of the oxidant DDQ29 to obtain 9. The residue was
chromatographed on silica gel (petroleum ether/ethyl acetate
= 2:1) and dried under vacuum to afford a dark green solid,
which is stable in the solid state. Their structures were
confirmed by 1H NMR, 13C NMR, and MS, as shown in
Figures S1−8 and S21−22 in the Supporting Information.
Scheme 2 shows the synthetic route of novel V-shaped

azaacenes. The 2-fold condensation reactions between tetraone
9 and diamines 15,30 16,31 and 1732 gave the azaacene dimers
in moderate to good yields. We initially chose the reaction

Scheme 1. Synthetic Route of 9

Scheme 2. Synthesis of V-Shaped Azaacenes V7, V9, and V11
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temperature at 100 °C but obtained a very low yield of the
product. Then, we gradually lowered the reaction temperature
and obtained a much increased yield at 50 °C. The tetraone
compound is unstable in the solution state, and a too high
temperature will accelerate its deterioration, so an appropriate
lower temperature is beneficial to the reaction. It should be
noted that compared to V7 and V9, synthesis of V11 requires
the addition of manganese dioxide. Their structures were
confirmed by 1H NMR, 13C NMR, and MS, as shown in
Figures S9−14 and S23−25 in the Supporting Information.
Single crystals of V-shaped azaacenes were grown by the

volatilization of methanol into chlorobenzene or chloroform.
Unfortunately, we just got the single crystal of V7 which was
suitable for X-ray diffraction analysis. V7 crystallized in triclinic
symmetry with the association of P-1 space group, as shown in
Figure 3a, and the crystal data and structure refinement

information of V7 are summarized in Table S1. With one unit
cell containing two independent V-shaped structures, the
lattice features back-to-back stacking with a distance of 4.69 Å
(Figure 3b, distance between centroids of the azaacene rings).
Notably, the occupation of each sterically hindered triisopro-
pylsilyl group in funnel-like cavity also influenced the layer
stacking pattern, indicating the stacked structure hand-in-hand
visually (Figure 3c,d).
Scheme 3 shows the synthetic route of reported azaacenes

N3,33 N4,34 and N5.35 Unlike the previously reported
literature, we lowered the reaction temperature this time
because 1,2-benzoquinone was unstable, so lowering the
reaction temperature helped to increase the productivity. It is
worth mentioning that in previous reports,36 the condensation
of 1,2-benzoquinone and diamine 17 could not give compound
N5, but we successfully realized this reaction. It should be

Figure 3. Illustration of the X-ray crystal structure of V7: (a) structure of V7 in the solid state; (b) back-to-back feature between two V-shaped
structures [indicated by pink dashed lines, numbers refer to distances (Å)]; (c,d) different projections of part of the V7 packing mode.

Scheme 3. Synthesis of Reported Azaacenes N3, N4, and N5
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noted that after the completion of the reaction of 1,2-
benzoquinone and diamine 17, it is necessary to add
manganese dioxide to obtain the final product N5. Their
structures were confirmed by 1H NMR and 13C NMR, as
shown in Figures S15−20 in the Supporting Information.
Optical Properties. Figure 4 shows the UV−vis absorption

spectra of azaacenes. There are distinct increases in λmax (Table

1) from N3 to N5 and from V7 to V11, which indicates the
absorption bathochromic shift with the increase of conjugation
length. V-shaped azaacenes can be viewed as symmetric dimer
structures and exhibited almost same values of λmax and λonset
compared to their corresponding monomer molecules (Figure
S26), which indicates that the central 9,10-functional carbon
has no influence on their optical properties. However, the UV
absorption intensity of V-shaped molecules is all stronger than
that of monomer molecules through 300−800 nm, which can
be attributed to the 2-fold azaacene backbone in the V-shaped
molecules.
Figures 5 and S27 show the fluorescence diagrams of V-

shaped azaacenes and their corresponding monomers that
clearly highlight the red shift and differences of fluorescence
intensity (Table 1). It is distinct that the fluorescence intensity

of V7 is stronger than that of N3, and the intensity of V9 is
slightly greater than that of N4. The fluorescence intensity of
N4 and V9 is strongest among all the molecules. Nevertheless,
the fluorescence intensity of V11 is much less than that of N5.
The quantum yields for V7, V9, and V11 were measured to be
3.08, 12.37, and 1.20%, respectively (Figure S28). From the
previous UV−vis diagram, the UV absorption intensity of V11
is greater than that of N5, indicating that the dimer azaacene
V11 undergoes some special process during relaxation from
the excited state to the ground state, which leads to
fluorescence quenching, and we are currently studying this
phenomenon.
Electrochemistry and Quantum Chemical Calcula-

tions. Cyclic voltammograms of V-shaped azaacenes were
performed in DCM at room temperature (Figure 6). Due to

the presence of triisopropylsilyl and ethyl groups, V-shaped
azaacenes are well soluble in DCM. The measured Ere

onset

values of V7, V9, and V11 were −0.76, −0.66, and −0.29 V,
respectively. V-shaped molecules and monomer molecules
have similar values of LUMO energy levels, and the values
change in the same trend as the conjugation length of the
molecule increases (Table 1 and Figure S29). The
experimentally measured LUMOs of V-shaped azaacenes are

Figure 4. UV−vis absorption spectra of azaacenes in DCM (4 × 10−5

M).

Table 1. Optical and Electronic Properties of V7, V9, and
V11

compd
λmax
(nm)

λonset
(nm)

EMSmax
(nm)

LUMO
(eV) mesa

/calb

HOMO
(eV) mesc

/calb
gap (eV)
mesd/calb

V7 441 471 496 −3.57/−
2.91

−6.20/−
5.80

2.63/2.90

V9 569 612 613 −3.66/−
3.18

−5.69/−
5.36

2.03/2.18

V11 681 725 705 −4.04/−
3.67

−5.77/−
5.46

1.73/1.79

N3 440 471 492 −3.72/−
3.06

−6.35/−
6.03

2.63/2.97

N4 569 612 615 −3.73/−
3.50

−5.76/−
5.54

2.03/2.04

N5 681 725 713 −4.07/−
3.43

−5.80/−
5.29

1.73/1.86

aELUMO
mes = −[4.8 − EFc + Ere

onset] (eV). bDFT calculations (B3LYP/
6-31G*) using Gaussian09. cEHOMO = ELUMO − Egap(opt) (eV).
dOptical band gaps were calculated from 1240 nm/λonset.

Figure 5. Emission spectra of azaacenes in DCM (4 × 10−5 M)
(excitation wavelength: 410 nm for N3 and V7, 510 nm for N4 and
V9, and 610 nm for N5 and V11).

Figure 6. Cyclic voltammograms of V7−V11 in 0.1 M n-Bu4NPF6
solution of DCM at a scan rate of 100 mV s−1.
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deeper than those of S-shaped and U-shaped isomers (Figures
S30 and 31, Table S2). This can be attributed to their
symmetrical structures, which allows V-shaped azaacenes with
the same benzenoid ring number to have a longer conjugation
length than S-shaped and U-shaped isomers.
The B3LYP density functional method with the D3(BJ)

dispersion was used. The correction was employed in this work
to carry out all the computations. The 6-31G(d) basis set was
used for the atoms in geometry optimizations using the
polarizable continuum model with DCM as the solvent. All
DFT theoretical calculations were carried out using the
Gaussian09 program package37 (Figure 7). It is obvious that
the frontier molecular orbitals (FMOs) of V-shaped azaacenes
are similar to their corresponding monomer molecules. From
the MO diagrams, the LUMOs of V-shaped azaacenes are
delocalized over the molecular backbone. The HOMOs are
distributed in their linear fused ring sections. The trends of
theoretical calculations of the LUMO/HOMO of V7, V9, and
V11 are consistent with the experimentally measured trends.
All the data are summarized in Table 1.

■ CONCLUSIONS
In summary, we have designed and synthesized a tetraketone
building block that reacted with different diamine compounds
to obtain a series of symmetric V-shape azaacenes. Solid
structure of V7 was clearly revealed by the single-crystal X-ray
analysis. The optical and electronic properties of V-shaped
azaacenes were measured and compared with their correspond-
ing monomer molecules and their S-shaped and U-shaped
analogues. Both the synthesized tetraone compound and V-
shaped azaacenes have vinyl double bonds, which can be used
as reaction sites to obtain other new organic functional
materials.

■ EXPERIMENTAL SECTION
Synthesis of Tetraone 9. Compounds 10−12. Com-

pounds 10−12 were synthesized according to the methods

reported in the literature27 (see detailed synthesis process
section in the Supporting Information). The reaction mixture
of veratrole and propanal added dropwise into 80%
concentrated sulfuric acid gave 10, which can be reacted
with dimethyl butynedioate at 220 °C to give 11. Compound
11 underwent a hydrolysis reaction in the environment of
potassium hydroxide to give 12.

Compound 13. Compound 12 (1.00 g, 2.13 mmol) and
Cu2O (0.31 g, 2.13 mmol) were added into quinoline (5 mL).
The resulting mixture was heated at 200 °C under a nitrogen
atmosphere for 30 min. After cooling, the filtrate was acidified
with 4 N HCl (20 mL). The mixture was extracted with DCM.
The organic layer was dried and evaporated under reduced
pressure. The residue was chromatographed on silica gel
(eluent: DCM) to give a white solid in 40% yield. 1H NMR
(600 MHz, chloroform-d): δ 6.96 (s, 2H), 6.88 (s, 4H), 3.85
(s, 12H), 2.66 (q, J = 7.4 Hz, 4H), 1.50 (t, J = 7.4 Hz, 6H).
13C{1H} NMR (151 MHz, chloroform-d): δ 144.9, 143.3,
141.8, 106.6, 56.4, 52.9, 21.4, 9.9. HRMS (ESI) m/z: [M +
H]+ calcd for C24H28O4, 381.2021; found, 381.2055.

Compound 14. Compound 13 (1.00 g, 2.63 mmol) was
dissolved in DCM (20 mL), and the resulting solution was
cooled to below 0 °C and kept at this temperature under a N2
atmosphere. A solution of BBr3 (1 M in DCM, 2.63 mL) was
then added dropwise to the reaction mixture over a period of
30 min. After complete addition, the reaction temperature was
gradually allowed to reach room temperature, and the stirring
was continued for 6 h. After the reaction was completed, the
reaction mixture was poured into ice water and then filtered to
obtain a light purple solid in 87% yield. 1H NMR (600 MHz,
DMSO-d6): δ 6.77 (s, 2H), 6.57 (s, 4H), 2.35 (q, J = 7.4 Hz,
4H), 1.31 (t, J = 7.4 Hz, 6H).

Compound 9. DDQ (1.55 g, 6.83 mmol) was added to a
suspension of 14 (0.20 g, 0.63 mmol) in anhydrous oxygen-
free THF (10 mL) under an atmosphere of N2. The mixture
was stirred at 25 °C for 24 h, and the resulting suspension was
evaporated under reduced pressure. The residue was dissolved

Figure 7. Quantum-chemical calculations of the FMOs (LUMOs, top; HOMOs, bottom): (a,d) V7; (b,e) V9; (c,f) V11.
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in DCM, then the mixture was filtered, and the filtrate was
dried and evaporated under reduced pressure. The residue was
chromatographed on silica gel (petroleum ether/ethyl acetate
= 2:1) and dried under vacuum to afford a dark green solid in
30% yield. 1H NMR (600 MHz, DMSO-d6): δ 6.57 (s, 2H),
6.22 (s, 4H), 2.15 (s, 4H), 1.15 (s, 6H). 13C{1H} NMR (151
MHz, DMSO-d6): δ 179.5, 153.1, 134.0, 121.6, 49.9, 20.3,
9.07. HRMS (ESI) m/z: [M + H]+ calcd for C20H16O4,
323.1082; found, 323.1274.
Synthesis of Azaacenes V7, V9, and V11. Compound

V7. Tetraone 9 (30 mg, 0.094 mmol) and diamine 15 (103.03
mg, 0.22 mmol) were added to a solvent mixture of chloroform
(1 mL) and acetic acid (1 mL) in a round-bottom flask
equipped with a condenser. The mixture was stirred at 50 °C
for 16 h. After cooling to room temperature, the solvent was
removed under reduced pressure. The crude product was
purified by column chromatography on silica gel using the
solvent mixture (hexane/DCM = 5:1) to obtain the red
product in 65% yield. 1H NMR (600 MHz, chloroform-d): δ
8.04 (s, 4H), 7.89 (s, 4H), 6.99 (s, 2H), 3.02 (q, J = 7.4 Hz,
4H), 1.68 (t, J = 7.3 Hz, 6H), 1.31−1.28 (m, 84H). 13C{1H}
NMR (151 MHz, chloroform-d): δ 149.2, 143.3, 142.5, 138.6,
133.0, 124.2, 121.2, 103.8, 100.5, 52.2, 21.3, 18.9, 11.6, 9.5.
HRMS (APCI) m/z: [M + H]+ calcd for C76H104N4Si4,
1185.7372; found, 1185.7428.
Compound V9. Tetraone 9 (30 mg, 0.094 mmol) and

diamine 16 (115.66 mg, 0.22 mmol) were added to a solvent
mixture of chloroform (1.5 mL) and acetic acid (1.5 mL) in a
round-bottom flask equipped with a condenser. The mixture
was stirred at 50 °C for 16 h. After cooling to room
temperature, the solvent was removed under reduced pressure.
The crude product was purified by column chromatography on
silica gel using the solvent mixture (hexane/DCM = 4:1) to
obtain the red product in 82% yield. 1H NMR (600 MHz,
chloroform-d): δ 8.73−8.63 (m, 4H), 8.02 (d, J = 9.9 Hz, 4H),
7.63 (tt, J = 5.8, 2.5 Hz, 4H), 6.97 (d, J = 1.8 Hz, 2H), 3.02 (q,
J = 7.4 Hz, 4H), 1.70 (t, J = 7.3 Hz, 6H), 1.41−1.33 (m, 84H).
13C{1H} NMR (151 MHz, chloroform-d): δ148.9, 143.7,
141.3, 138.1, 134.7, 127.6, 121.3, 120.6, 107.7, 103.0, 51.9,
29.7, 21.3, 19.0, 11.7, 9.5. HRMS (APCI) m/z: [M + H]+
calcd for C84H104N4Si4, 1285.7685; found, 1285.7675.
Compound V11. Tetraone 9 (30 mg, 0.094 mmol) and

diamine 17 (125.48 mg, 0.22 mmol) were added to a solvent
mixture of chloroform (1.5 mL) and acetic acid (1.5 mL) in a
round-bottom flask equipped with a condenser. The mixture
was stirred at 50 °C for 16 h. After cooling to room
temperature, the solvent was partially removed under reduced
pressure. MnO2 was added into the solution, and the mixture
was stirred at room temperature for 12 h. Then, the mixture
was filtered, and the filtrate was dried and evaporated under
reduced pressure. The crude product was purified by column
chromatography on silica gel using the solvent mixture
(hexane/DCM = 1:1) to obtain the dark green product in
50% yield. 1H NMR (600 MHz, chloroform-d): δ 8.24 (dd, J =
6.9, 3.4 Hz, 4H), 8.04 (s, 4H), 7.87−7.80 (m, 4H), 6.98 (s,
2H), 3.05 (d, J = 7.5 Hz, 4H), 1.73 (t, J = 7.4 Hz, 6H), 1.47−
1.38 (m, 84H). 13C{1H} NMR (151 MHz, chloroform-d): δ
149.6, 145.3, 144.8, 143.0, 142.6, 137.8, 131.9, 130.6, 122.6,
121.6, 112.0, 103.1, 51.9, 21.4, 19.0, 11.8, 9.4. HRMS (ESI) m/
z: [M + H]+ calcd for C88H108N8Si4, 1389.7808; found,
1389.7899.
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