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Abstract

Effectors of the bacterial type III secretion system provide invaluable molecular probes to elucidate the molecular
mechanisms of plant immunity and pathogen virulence. In this report, we focus on the AvrBs2 effector protein from the
bacterial pathogen Xanthomonas euvesicatoria (Xe), the causal agent of bacterial spot disease of tomato and pepper.
Employing homology-based structural analysis, we generate a three-dimensional structural model for the AvrBs2 protein
and identify catalytic sites in its putative glycerolphosphodiesterase domain (GDE). We demonstrate that the identified
catalytic region of AvrBs2 was able to functionally replace the GDE catalytic site of the bacterial glycerophosphodiesterase
BhGlpQ cloned from Borrelia hermsii and is required for AvrBs2 virulence. Mutations in the GDE catalytic domain did not
disrupt the recognition of AvrBs2 by the cognate plant resistance gene Bs2. In addition, AvrBs2 activation of Bs2 suppressed
subsequent delivery of other Xanthomonas type III effectors into the host plant cells. Investigation of the mechanism
underlying this modulation of the type III secretion system may offer new strategies to generate broad-spectrum resistance
to bacterial pathogens.
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Introduction

Plants have evolved sophisticated innate immune systems to

counter the attack of various microbial pathogens through a

combination of diverse molecular mechanisms [1]. Plant innate

immunity is controlled by two overlapping signaling pathways.

The first pathway, PAMP-Triggered Immunity (PTI), is a basal

defense response that is triggered by the recognition of pathogen-

associated molecular patterns (PAMPs) through a set of specialized

plant extracellular receptor kinase proteins [2–5]. Plants use PTI

to suppress the growth of non-pathogens. However, successful

bacterial pathogens can interfere with PTI via effector proteins

that are delivered into plant cells through the type three secretion

and translocation system (TTSS). Many bacterial TTSS effectors

have identified virulence functions that modulate the pathways

involved in PTI, making the plants more susceptible to the

proliferation of microbial pathogens [1]. Most of these TTSS

effector proteins are not homologous, and the majority have no

obvious biochemical function, although a few have been shown to

have enzymatic activity [6–9]. Characterizing the biochemical

functions of pathogen effectors and identifying the plant targets of

each effector will shed light on bacterial pathogenesis and plant

immunity. In response to effector proteins, plants have evolved a

second layer of defense signaling pathways controlled by resistance

genes (R genes). The plant R proteins directly or indirectly

recognize the bacterial TTSS effectors and initiate effector-

triggered immunity (ETI) [10]. This response is often a localized,

programmed cell death-related defense response, also known as

the hypersensitive reaction (HR) [11]. Despite intensive study of

the molecular mechanisms of PTI and ETI, the interplay between

these two primary defense mechanisms remains elusive [12,13].

The TTSS machinery of phytopathogenic bacteria encoded by

the clustered hrp (hypersensitive reaction and pathogenicity) genes is

essential for the delivery of effectors to the interior of the plant cell

[14]. Mutations in the pathogen that block the TTSS will

subsequently prevent the translocation of the type III effectors and

impair the virulence of the pathogen on host plants [14–16].

Therefore, the TTSS plays a critical role in bacterial pathoge-

nesis. The translocation of TTSS effectors can be quantitatively

measured by monitoring adenylate cyclase enzyme activity in

plant cells by fusing the effector protein with the calmodulin-

dependent adenylate cyclase domain (Cya) of Bordetella pertussis

cyclolysin [17,18]. Despite intensive characterization of the TTSS

in model bacterial pathogens, including several Pseudomonas and

Xanthomonas species, detailed information describing the establish-

ment and regulation of the TTSS is still missing. It is also not clear

if plants have evolved defense mechanisms that can recognize

the establishment of bacterial TTSS. However, a recent report
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demonstrated that PTI of the host plant can inhibit the injection of

bacterial type III effectors [19], suggesting that the suppression of

TTSS may contribute to the plant immunity.

Xanthomonas euvesicatoria (Xe) is the causal agent of bacterial leaf

spot disease of pepper and tomato, which can deliver more than 28

TTSS effectors into plant cells [20,21]. One type III effector

AvrBs2 is highly conserved not only in Xe strains but also in many

other Xanthomonas pathovars that cause disease in a wide range of

crops [22,23]. The presence of avrBs2 in many of these pathogens

makes a significant contribution toward their virulence [22].

Previous analyses have determined that the avrBs2 gene encodes a

protein containing a domain homologous to the E. coli glycer-

olphosphodiesterase (GDE) and the agrocinopine synthase (ACS)

of Agrobacterium tumefaciens. However, it has not been shown

whether AvrBs2 possesses GDE or ACS enzyme activity and

whether such activity is relevant to AvrBs2 function [23,24].

Pepper plants (Capsicum annuum) carrying the bacterial leaf spot

disease resistance gene (Bs2) are resistant to strains of Xe that

contain AvrBs2. This host-pathogen interaction results in a

resistance response that inhibits the growth of Xe [22–25]. The

Bs2 gene has been isolated by map-based cloning and encodes a

protein that belongs to the largest class of plant disease resistance

proteins. The protein contains a central putative nucleotide-

binding site (NBS) and a carboxyl-terminal leucine-rich repeat

(LRR) region [25]. Bs2 has been shown to associate with the

molecular chaperone SGT1 through its LRR domain to

specifically recognize AvrBs2 and trigger the HR in plants [26].

However, it is still not clear whether Bs2 recognizes AvrBs2

directly or indirectly in planta.

In addition to the Bs2 gene, two other pepper resistance genes,

Bs1 and Bs3, have been identified that confer resistance to Xe

strains carrying the avrBs1 and avrBs3 effector genes, respectively

[27]. Near-isogenic lines carrying the Bs1, Bs2, and Bs3 genes have

been generated by introgression of individual or combinations of

Bs genes into the susceptible pepper cultivar Early Cal Wonder

(ECW) [28,29]. The avrBs1 and avrBs3 genes have also been

identified and cloned [23,30–32]. The Bs1 gene has not been

cloned [32], but Bs3, which encodes a flavin monooxygenase

enzyme, has recently been isolated from the pepper genome [33].

In this study, the pepper and Xe pathosystem is used to study the

interaction between Bs2 and AvrBs2. We demonstrate that the

catalytic sites of the putative GDE domain of AvrBs2 are under

purifying selection, and that the GDE catalytic sites are required

for AvrBs2 virulence function but not the activation of Bs2.

Although we were unable to demonstrate the GDE enzymatic

activity using purified, full-length AvBs2, we determine that the

AvrBs2 GDE catalytic site could functionally replace the GDE

catalytic site of BhGlpQ (Borrelia hermsii) [34]. We also identify a

minimum domain of AvrBs2 that included the GDE homologous

region and a carboxyl Bs2 activation domain. Therefore, we are

able to genetically separate the virulence function of AvrBs2,

which is dependent on its GDE catalytic site, from the Bs2

activation, which is independent of the GDE catalytic site.

Finally, we describe a novel plant disease resistance phenotype

related to the AvrBs2/Bs2 host-pathogen interaction. When

AvrBs2 activates the Bs2 R gene function, the TTSS is reduced

in the delivery of effectors to the plant host. Investigation of the

mechanism of the AvrBs2 virulence function and TTSS

suppression during its recognition by Bs2 could offer new stra-

tegies to generate broad-spectrum resistance to the Xe bacterial

pathogen.

Results

Computational and biochemical evidence that AvrBs2
contains an active GDE catalytic domain

Previous characterization of AvrBs2 (YP 361783) from Xe

revealed a domain [amino acids (aa) 280 to 340] with homology to

a bacterial GDE [23]. To further characterize this Xe AvrBs2

domain, we searched the current GenBank database with the

BLASTP program using the full-length AvrBs2 protein as a query.

This search allowed us to compile remote homologs from plants,

animals, fungi, and bacteria that contain GDE domains

homologous to AvrBs2. In Figure 1A, selected GDE (or putative

GDE) proteins from plants [AtGDE (NP_177561)] and OsGDE

[(AP003274)], human [HsMIR16 (NP_057725)], fungi [ScGDE1

(NP_015215)], and bacteria [TmGDPD (TM1621) of Thermotoga

maritima, BhGlpQ (ADD63790) from Borrela hermsii, and AgtACS

(AAO15364) from Agrobacterium tumefaciens] aligned with the GDE

domain of AvrBs2 (aa 274 to 328) are shown. Several AvrBs2

homologs from Xanthomonas pathogens of tomato, euvesicatoria (Xe)

(YP_361783); alfalfa, campestris pv. alfalfae (Xca) citrus, axonopodis pv.

citri (Xac) (NP_640432); cabbage, campestris pv. campestris (Xcc)

(NP_635447); and rice, oryzae pv. oryzae (Xoo) (YP_449177) or oryzae

pv. oryzicola (Xoc) (ZP_02241238) were included in the alignment.

The overall sequence identity between AvrBs2 and the different

GDEs in this region was approximately 33% (with .37%

sequence similarity) (Figure 1A) [35]. The putative GDE domain

in AvrBs2 aligned well with the glycerophosphodiester phospho-

diesterase (GdPd) protein from Thermotoga maritima, for which the

three-dimensional crystal structure had been previously deter-

mined (PDB ID: 1O1Z) [36]. The GDE domains of AvrBs2 and

TmGdpd share 60% amino acid sequence similarity and 47%

identity. The high amino acid sequence similarity between the

GDE domains of AvrBs2 and TmGdpd predicts that these two

proteins will have similar three-dimensional structures.

A homology-based modeling method was employed to generate

a three-dimensional structural model for AvrBs2 (aa 274 to 328)

using the solved crystal structure of TmGdpd as a template

[36,37]. The resulting three-dimensional structural model of

AvrBs2 closely matched the solved crystal structure of Tm 1o1z

A (Figure 1B). Both structures consist of two antiparallel beta-

sheets capped by nine putative alpha-helices. Recently, GDE

enzyme activity and the putative catalytic sites of the human GDE

(HsMIR16) have been characterized [38,39]. Point mutations in

the GDE catalytic sites (E97A, D99A, and H112A) in HsMIR16

eliminated GDE enzyme activity [38,39]. The putative catalytic

sites of HsMIR16 are conserved in all of the GDE homologs,

including the six AvrBs2 homologs (Figure 1A). In the three-

dimensional structural model of AvrBs2, the catalytic sites are

present in regions of high structural homology between the two

proteins (TmGdpd in blue and AvrBs2 in red), which suggests that

AvrBs2 utilizes the same residues for enzymatic function

(Figure 1B).

Author Summary

The bacterial pathogen Xanthomonas euvesicatoria (Xe) is
the causal agent of bacterial leaf spot disease of pepper
and tomato. This pathogen is capable of delivering more
than 28 effector proteins to plant cells via the type three
secretion and translocation system (TTSS). The AvrBs2
protein is a TTSS effector of Xe with a significant virulence
contribution that depends on a conserved glycerolpho-
sphodiesterase (GDE) domain. Additionally, activation of
the resistance protein Bs2 by AvrBs2 modulates the TTSS
of Xe and suppresses the subsequent delivery of TTSS
effectors.

Characterization of Xanthomonas Effector AvrBs2
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To investigate whether the AvrBs2 protein possesses GDE

enzyme activity, both the wild type and the catalytic mutants of

avrBs2 were expressed in E. coli as GST-AvrBs2 fusion proteins.

The fusion proteins were assayed for GDE enzyme activity using

a method that was originally adapted for E. coli and Borrelia

GDEs, with glycerophosphocholine as a substrate [40,41].

However, we were unable to detect GDE enzyme activity of

AvrBs2 with this substrate. Because the GDE catalytic sites of the

BhGlpQ enzyme were conserved with predicted catalytic sites in

AvrBs2 (Figure 1A), we hypothesized that if we replaced the core

GDE catalytic site of the active BhGlpQ enzyme [41] (24 amino

acids) with the putative GDE catalytic site of AvrBs2, we might

be able to detect enzyme activity with glycerophosphocholine

substrate in vitro. To test this possibility, the GDE catalytic site of

BhGlpQ was replaced with either the wild-type AvrBs2 catalytic

site or a GDE catalytic site mutant (E304A/D306A) (Figure 1C).

The GDE enzyme activities of purified GST:BhGlpQ (positive

control), GST:BhGlpQ-AvrBs2-WT, and GST:BhGlpQ-AvrBs2-

E304A/D306A were analyzed using an indirect coupled enzyme

assay [41]. The higher light absorbances at 340 nm for

GST:BhGlpQ (positive control) and GST:BhGlpQ-AvrBs2-WT

compared to the inactive GST:BhGlpQ-AvrBs2-E304A/D306A

indicated that AvrBs2 had a functional GDE catalytic site (Figure

1C and 1D).

The GDE catalytic sites of AvrBs2 are required for
virulence but not for activation of the Bs2-specified
disease resistance signaling pathway

To test whether the GDE catalytic site of AvrBs2 is important

for Xe virulence in susceptible bs2 plants or for Bs2 disease

resistance activation, we mutated the GDE catalytic sites E304A,

D306A and H319A by site-directed mutagenesis of the wild-type

avrBs2 gene (Figure 2A). We replaced the chromosomal copy of

avrBs2 in strain Xe GM98-38-1 with various avrBs2 mutants by

homologous recombination. The effects of these mutations on

AvrBs2 virulence function and/or Bs2-activation were evaluated

by in planta bacterial growth assays in near-isogenic pepper and

tomato lines with and without the R gene Bs2 (Figure 2B). In

pepper and tomato lines without Bs2, the Xe strain with wild-type

avrBs2 was more virulent and grew approximately five-fold higher

than the null strain Xe without avrBs2 (Figure 2B). The Xe strains

with mutations in GDE domain (E304A/D306A and H319A) lost

AvrBs2 virulence function and were similar to the null strain Xe

without avrBs2 (Figure 2B). However, on near-isogenic pepper and

transgenic tomato lines with Bs2 [25], Xe strains carrying the

AvrBs2 GDE mutants were still able to activate Bs2-based

resistance, similar to the Xe strain carrying wild-type avrBs2

(Figure 2B). These results demonstrate that the putative GDE

catalytic sites of avrBs2 are required for its virulence function but

not for recognition by Bs2.

Additionally, we tested two control Xe strains that contain point

mutations (R403P and A410E) [24] that evade Bs2 activation

while maintaining most of the virulence functions of AvrBs2

(Figure 2A). Similar to previously reported results in pepper plants

without Bs2 [24], these mutants were intermediate in virulence

between Xe carrying wild-type avrBs2 and Xe without avrBs2.

However, the mutants were unable to activate Bs2 resistance in

pepper plants containing Bs2 (Figure 2B).

Another method for assaying the induction of plant immunity is

to challenge a plant with a high-density bacterial dose that triggers

a macroscopic hypersensitive cell death reaction, or HR response.

High-density inoculations (26108 CFU/ml) of pepper with Bs2

caused a similar, strong brown necrosis with the Xe strain with

wild-type avrBs2 and the Xe strains with avrBs2 GDE mutations

(E304A/D306A and H319A) (Supplemental Figure S1). However,

high-density inoculations of pepper plants containing Bs2 with the

Xe avrBs2 mutant strain (A410E) caused a light brown necrosis,

Figure 1. Structural model of the AvrBs2 phosphodiesterase
(GDE) domain and in vitro GDE activity. A. CLUSTALW alignment
of the GDE domain shared by Xe AvrBs2 (amino acids 274 to 328) and
its homologs from Xanthomonas pathogens of tomato, euvesicatoria
(Xe); alfalfa, campestris pv. alfalfa (Xca); citrus, axonopodis pv. citri (Xac);
cabbage, campestris pv. campestris (Xcc); and rice, oryzae pv. oryzae
(Xoo) and oryzae pv. oryzicola (Xoc). Also includes selected GDE
(orputative GDE) proteins from planta (AtGDE and OsGDE), animala
(HsMIR16), fungi (ScGDE1), and other bacteria (Tm GDPD, BhGlpQ and
AgtACS). The conserved putative catalytic sites of the human GDE,
HsMIR16 are in red. B. The three-dimensional structural model for
AvrBs2 (amino acids 274 to328) using the solved crystal structure of
TmGPDO (1o1z A) as a template. TmGPDO 1o1z A is displayed in gray,
and AvrBs2 is in green. The GDE catalytic sites ExD and H are blue in
1o1z A and red in AvrBs2. Shown in yellow are the amino acid
mutations in the AvrBs2 putative catalytic sites and three additional
sites that disrupt AvrBs2 activation of Bs2. C. Multiple sequence
alignment of a 23 amino acid area of the GDE, BhGlpQ, catalytic site
(amino acid 61–84) for two chimeric BhGlpQ proteins with the
underlined sequences of the GDE catalytic site from either wild-type
AvrBs2or AvrBs2 GDE mutants. D. In vitro GDE activity. The GDE enzyme
activity of purified GST:BhGlpQ (positive control), GST:BhGlpQ-AvrBs2-
WT, and BhGlpQ-AvrBs2-E304A/D306A were analyzed using an indirect
coupled enzyme assay. A higher absorbance indicates increased GDE
enzyme activity.
doi:10.1371/journal.ppat.1002408.g001
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suggesting that this mutant maintained a low level of Bs2

activation capability (Supplemental Figure S1), similar to previ-

ously reported [24].

To test whether the GDE mutations had a negative effect on

AvrBs2 delivery by Xe TTSS, the TTSS effector delivery reporter

Cya [18] was utilized to quantitatively measure the translocation of

two different AvrBs2 GDE mutant Xe effectors. The AvrBs2 GDE

mutations caused no reduction of detectable effector delivery

(Supplemental Figure S2A). Additionally, the Xe (avrBs2-Cya) wild

type and catalytic site mutant strains were not altered from the non-

Cya strains in the activation Bs2 HR (Supplemental Figure S2B).

The AvrBs2 GDE virulence domain is under strong
purifying selection

Demonstrating that the GDE domain of AvrBs2 is required for

virulence prompted us to evaluate the natural variations in various

avrBs2 alleles with respect to the evolutionary selection. In addition

to the previously published avrBs2 homologs [(Xe in pepper

(YP_361783), Xca in alfalfa and Xcc in cabbage (NP_635447)] [23],

three additional uncharacterized homologs of avrBs2 (Xanthomonas

axonopodis pv. citri [Xac] (NP_640432), Xanthomonas oryzae pv. oryzae

[Xoo] (YP_449177), and Xanthomonas oryzae pv. oryzicola [Xoc]

(ZP_02241238) from newly released genome sequences were

aligned using the CLUSTALW program [35]. The overall

sequence identity of the different avrBs2 homologs in Xanthomonas

was high (.70%). Phylogenetic analysis by maximum likelihood

(PAML) software was used to determine which evolutionary model

acts on these six homologs of avrBs2 from different Xanthomonas

pathovars that have adapted to cause disease in different host plant

species [42]. This statistical analysis of nucleotide changes with

respect to amino acid changes calculated an average rate of non-

synonymous (KA) and synonymous (Ks) substitutions per site for all

six avrBs2 homologs. The ratio (v) = KA/Ks measures the

difference between the two rates. For neutral amino acid changes

or neutral selection, the v ratio is 1.0. For advantageous amino

acid changes or adaptive selection, the v ratio is .1.0, and for

deleterious amino acid changes or purifying selection, the v ratio is

,1.0 [42,43]. The average v ratio over all six homologs was

estimated to be 0.1534, indicating a strong purifying selection on

the Xanthomonas pathovars to maintain avrBs2 for its contribution to

pathogenic virulence in a range of different host plant species. In

addition, PAML analysis revealed a significant variation in the v
ratio over the length of the avrBs2 sequence. Sliding window

analysis using the SWAKK program [43] was used to determine

the distribution of variation in the v ratio across avrBs2 from Xe

and Xcc. The low v over the GDE-virulence region is consistent

with purifying selection to maintain the virulence function of

avrBs2 (Figure 2C). Although the v for the TTSS signal peptide

remained below one, there was an increase in v in this region,

possibly associated with differences in TTSS effector delivery for

specific Xanthomonas pathovars as they infect different host plants

(Figure 2C).

The minimum AvrBs2 domain required for Bs2-activation
includes the entire GDE homologous region and an
additional C-terminal region

Having established that the GDE catalytic sites are required for

AvrBs2 virulence function but not Bs2-activation, we generated

additional deletions of the N-terminus of AvrBs2 to define a

minimal region required for Bs2 activation. The deletions were

cloned into a binary vector and screened for HR in stable

transgenic Bs2 Nicotiana benthamiana using Agrobacterium-mediated

transient expression (Figure 3A). The previously reported [44]

avrBs2 deletion construct (aa 97 to 520) was still able to trigger a

Bs2 HR; the N-terminal deletion (aa 271 to 520) produced a

similar result (Figure 3A and 3B). Further deletions at either the

Figure 2. The GDE catalytic sites are required for AvrBs2
virulence function. A. The map of the AvrBs2 coding region with
numbers representing amino acid positions. AvrBs2 mutations for the
GDE catalytic site and the AvrBs2 mutations from Xe field strains
isolated from diseased BS2 pepper. B. In planta pathogen growth assay
for Xanthomonas strains GM98-38 Xe (w/o avrBs2), GM 98-38-1 Xe
(avrBs2), and GM98-38-1 exchange mutants for the putative GDE
catalytic site Xe (avrBs2-E304A/D306A) and Xe (avrBS2-H319A) and two
previously published control exchange mutants Xe (avrBs2-R403P) and
Xe (avrBs2-A410E). Host plants include the near-isogenic pepper (w/o
Bs2) and pepper (Bs2) along with the tomato line VF36 (w/o Bs2) and
the previously published transgenic line VF36 (Bs2). Student t-test was
used to compare different growth assays with the most virulent case
(Xe (avrBs2) on non-Bs2 plants) for both Pepper and Tomato hosts; p-
values were ,0.01 for all other combination when compared to (Xe
(avrBs2) on non-Bs2 plants). The Xe strains carrying AvrBs2 mutations for
the GDE catalytic site still activate full Bs2 resistance but do not
maintain the full virulence in the absence of Bs2. There is a
corresponding wild type HR brown necrosis phenotype for Bs2 pepper
inoculated with high-density suspensions (26108 CFU/ml) for these two
Xe mutant strains (Supplemental Figure S1). The Xe strains carrying
AvrBs2 mutations from Xe field strains isolated from diseased Bs2
pepper grow to similar levels in the presence or absence of Bs2. There is
a corresponding loss of the HR brown necrosis phenotype for Bs2
pepper inoculated with high-density suspensions of Xe avrBs2-R403P
and only a weak HR brown necrosis phenotype for Xe avrBs2-A410E
(Supplemental Figure S1). C. Plot of amino acid substitution rate
analysis using a sliding window calculation of non-synonymous (KA) and
synonymous (Ks) changes between avrBs2 homologs from Xe and Xcc.
The KA/Ks ratios less than 0.5 indicate that much of AvrBs2 is under
purifying selection, including the region homologous to GDE that is
required for AvrBs2 virulence function. The numbers below the plot
represent amino acid positions.
doi:10.1371/journal.ppat.1002408.g002
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amino or the carboxyl terminus of the minimal domain failed to

elicit a Bs2-dependent HR. Thus, the fragment (aa 271 to 520) was

the minimal region required for Bs2 activation. Interestingly, the

minimal Bs2 recognition region included the GDE domain,

although an active catalytic site was not required for Bs2

activation. We confirmed the Agrobacterium-mediated transient

expression HR response of these AvrBs2 mutants on Bs2 pepper

(Supplemental Figure S3B). Also, we detected similar protein

expression for all clones using C-terminal HA epitope tags and

immunoblot analysis (Figure S3A).

The previously identified AvrBs2 loss-of-Bs2-recognition muta-

tions (R403P and A410E) [24] are within the minimal Bs2

activation domain but are C-terminal to the GDE homologous

region. To identify other residues in AvrBs2 near the point

mutations of R403P and A410E that might play a role in Bs2

activation, a collection of randomly selected single amino acid

mutations in the C-terminal region of the minimal Bs2 activation

domain was generated. These fragments were cloned into the

same binary vector used for the deletion constructs and used in

Agrobacterium transient expression experiments. We identified one

additional point mutant (Y419A) that had lost the ability to trigger

HR (Figure 3A and 3C). In the AvrBs2 three-dimensional

structural model (Figure 1B), the Y419A mutation and the two

other mutations (R403P and A410E) that also disrupt AvrBs2

activation of Bs2 are located on the loops that do not closely align

with the solved crystal structure template (1O1Z). In Supplemental

Figure S3A and S3B we confirm the Agrobacterium-mediated

transient expression HR response of these AvrBs2 mutants on

Bs2 pepper and confirm protein expression.

To further evaluate the role of Y419A, we replaced the wild

type avrBs2 allele of Xe with the Y419A mutant by double

homologous recombination. The effects of Y419A on AvrBs2

virulence and/or Bs2-activation were evaluated by in planta

bacterial growth assays (Supplemental Figure S4A). On Bs2

pepper the Xe Y419A mutant strain was intermediate between Xe

carrying wild-type avrBs2 and Xe without avrBs2. High-density

inoculations of pepper plants containing Bs2 with the Xe avrBs2

mutant Y419A caused a light brown necrosis, suggesting that this

mutant maintained a low level of Bs2 activation (Supplemental

Figure S4B) similar to the Xe mutant A410E (Supplemental Figure

S1).

This deletion analysis defined a minimal Bs2 activation domain

that included the GDE region, but did not require an active GDE

catalytic site. The results of the mutagenesis assays suggest that the

critical amino acids for Bs2 recognition are located near the C-

terminal end of the minimal Bs2-activation domain. Therefore,

the general AvrBs2 structure but not the putative GDE enzymatic

activity, was required for Bs2 activation.

Recognition of the AvrBs2 effector by the Bs2 immune
receptor modulates TTSS effector delivery to host plant
cells

It has long been known that cognate effector/R protein

interactions result in a hypersensitive reaction that is specified by

the interacting gene pairs. The intensity and the color of the

collapsing host tissue and the timing of cell death are specific to the

interacting gene pairs. The activation of HR by AvrBs2/Bs2

interactions is slow; macroscopic cell death symptoms appear at

48 hours post-infection (hpi). The Xanthomonas effector AvrBs1

activates a rapid Bs1-dependent HR visible at 18 hpi [30]. When

we inoculated the Xe (avrBs2, avrBs1) strain delivering both AvrBs1

and AvrBs2 into a pepper line containing both Bs1 and Bs2 R

genes, we observed that AvrBs2 activation of a slower Bs2-HR was

epistatic to the AvrBs1 activation of a more rapid Bs1-HR (Figure

4). Control strains Xe (avrBs1) and Xe (avrBs2) along with control

pepper (Bs1) and pepper (Bs2) were included for comparison to

detect the epistatic, slow Bs2-HR at 48 hpi instead of the expected

faster Bs1-HR at 18 hpi (Figure 4). The epistasis of the Xe

activated slower Bs2 HR over the Xe activated faster Bs1 HR was

also confirmed by measuring electrolyte leakage (Supplemental

Figure S5A and S5B).

To test whether the Bs2 activation dependent suppression of the

AvrBs1/Bs1 fast HR phenotype could be activated in trans, we co-

inoculated a mixed inoculum of two strains of Xe containing either

avrBs1, avrBs2 or no effector onto pepper (Bs1, Bs2). Again we

observed the Bs2 activation dependent suppression of the AvrBs1/

Bs1 fast HR phenotype (Supplemental Figure S6A). Control

Figure 3. Characterization of the minimal AvrBs2 domain
required for Bs2 activation. A. Various AvrBs2 deletions and
mutations of the minimal AvrBs2 domain required for Bs2 activation
are expressed by the 35S promoter transiently on Bs2 Nicotiana
benthamiana by Agrobacterium (48 hpi at 36108 CFU/ml). B. AvrBs2
coding region map with numbers representing amino acid positions.
Deletion analysis defined AvrBs2 amino acids 271–520 as the minimal
domain for Bs2-activation. In Supplemental Figure S3B we confirm the
HR response of these AvrBs2 clones on Bs2 pepper. Also we detect
similar protein expression for all clones using C-terminal HA epitope
tags and immunoblot analysis (Supplemental Figure S3A). C. Mutational
analysis of the C-terminal region of the minimal Bs2-HR activation
domain. Single amino acid mutations identify amino acid Y419 as
needed for BS2 activation. In Supplemental Figure S3B we confirm the
HR response of these AvrBs2 clones on Bs2 pepper. Also we detect
similar protein expression for all clones using C-terminal HA epitope
tags and immunoblot analysis (Supplemental Figure S3A).
doi:10.1371/journal.ppat.1002408.g003
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inoculations with single Xe effectors, either by individual or

mixtures, gave the expected responses on pepper plants with and

without the corresponding R gene (Supplemental Figure S6).

Additionally, the epistasis of the Xe activated slower Bs2 HR over

the Xe activated faster Bs1 HR was again confirmed by measuring

electrolyte leakage (Supplemental Figure S7A).

We hypothesized that this suppression might be accounted for

by one of the following: (i) Bs2 activation disrupts Bs1 activation or

(ii) Bs2 activation disrupts TTSS-mediated translocation of AvrBs1

or (iii) Bs2 activation causes a reduction or loss of induction of

AvrBs1. To test the first hypothesis, three Agrobacterium strains

containing either 35S-avrBs1, 35S-avrBs2 alone or a 35S-avrBs1/

35S-avrBs2 tandem construct were inoculated on pepper contain-

ing both the Bs1 and Bs2 R genes. If Bs2 activation disrupts Bs1

activation, then suppression of AvrBs1/Bs1-dependent HR should

occur. However, we did not observe alteration of the fast, Bs1

HR by the slow Bs2 HR activation when both effectors were

transiently expressed (Supplemental Figure S8A). The fast Bs1 HR

for the co-expressed AvrBs2 and AvrBs1 on pepper (Bs2, Bs1) was

confirmed by measuring electrolyte leakage (Supplemental Figure

S8B). In addition, immunoblot analysis detected similar levels of

expression for both HA epitope tagged effectors after 24 hours

(Supplemental Figure S8C). Therefore, when AvrBs1 and AvrBs2

were simultaneously expressed in plant cells, the Bs2/AvrBs2-

Figure 4. The slower Bs2-HR (48 hpi) from high-density (1.56108 CFU/ml) inoculation of Xe (avrBs1, avrBs2) strain was epistatic to
the faster Bs1-HR (18 hpi) for pepper (Bs1, Bs2). Near-isogenic pepper lines with bacterial spot resistance genes (Bs1, Bs2 and the combination
of Bs1 and Bs2), at 18 and 48 hours post-inoculation (hpi) with the strains Xe (avrBs1), Xe (avrBs2) and Xe (avrBs1, avrBs2). When the strain Xe (avrBs1,
avrBs2)) was inoculated on pepper (Bs1, Bs2) the fast Bs1/AvrBs1 HR was not detected at 18 hpi.
doi:10.1371/journal.ppat.1002408.g004
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dependent HR no longer suppressed the Bs1/AvrBs1-dependent

HR. This finding is not consistent with the first hypothesis.

To test our second hypothesis, whether Bs2 activation

modulates subsequent Xe TTSS effector delivery, the TTSS

effector delivery reporter Cya [18] was utilized to quantitatively

measure the translocation of two different Xe effector-reporters for

avrBs1 and xopX. In this assay, the type three secretion and

translocation signal peptides for each effector were translationally

fused to the reporter Cya. Using homologous recombination, the

reporters were marker-exchanged in tandem with the correspond-

ing chromosomal allele of different Xe strains so that the wild-type

copy of the particular effector was also maintained [18]. Pairs of

effector-Cya reporter strains with and without avrBs2 included the

pair of strains Xe (avrBs1) and Xe (avrBs1, avrBs2) with either

AvrBs11-212-Cya reporter (Figure 5A) or XopX1-183-Cya reporter

(Figure 5B).

Pairs of Xe Cya reporter strains, with and without avrBs2, were

inoculated on pepper (no R genes), pepper (Bs2) and pepper (Bs1).

Plants were sampled eight hours post-inoculation to avoid in

planta multiplication of the reporter strains [18]. Eight hours post-

inoculation is also before visible R gene-mediated HR. Because

each effector-Cya reporter construct has a unique rate of trans-

location, each reporter construct was evaluated separately.

When the translocation of AvrBs1 and XopX Cya reporters was

assessed in the presence of Bs2/avrBs2, the detectable levels of

cyclic AMP for both effector-Cya reporters were significantly

reduced in comparison to all other combinations where Bs2 was

not activated including the Bs1/AvrBs1 interaction (Figure 5A, 5B).

Additionally, we tested three other pairs of effector-Cya reporter

strains with and without avrBs2 that included the pair of strains Xe

(avrBs3) and Xe (avrBs3, avrBs2) with either AvrBs21-212-Cya

reporter, AvrBs31-212-Cya reporter or XopX1-183-Cya reporter

(Supplemental Figure S9). Again only Bs2 activation was

associated with reduced levels of effector-Cya reporter delivery

to the host. This is consistent with the hypothesis that the Bs2

activation disrupts general TTSS-mediated translocation of

effectors.

To preclude the possibility that Bs2 activation might block

calmodulin dependent Cya elevation of in planta cyclic AMP levels,

we tested Agrobacterium transient expression of 35S-AvrBs2:Cya in

the presence and absence of Bs2 at 15 hpi in N. benthamiana.

Similar elevated levels of cyclic AMP were observed in the

presence and absence of Bs2 activation (Supplemental Figure

S10A).

Additionally, we evaluated the effect of the GDE catalytic site

mutations in AvrBs2 on the TTSS disruption by Bs2 activation

with the AvrBs3-Cya reporter Xe strain. The set of four effector-

Cya reporter Xe strains (avrBs2, avrBs2-E304A/D306A, avrBs2-

H319A and without avrBs2) with the AvrBs31-212-Cya reporter

were tested on pepper with or without Bs2. The loss of the GDE

catalytic sites in AvrBs2 did not alter the TTSS repression effect of

the Bs2/AvrBs2 interaction (Supplemental Figure S10B).

To preclude the possibility that Bs2 activation causes a

reduction or loss of induction of TTSS effectors in Xe, AvrBs2-

Cya, an effector that is also disrupted in delivery to the host by

Bs2 activation (Supplemental Figure S9A), was tested for

reduction in protein level. Immunoblot assays of high titer

inoculation of pepper (w/o Bs2) and pepper (Bs2) with Xe

(avrBs2), Xe (avrBs2-Cya), Xe (avrBs2-E304A/D306A:Cya) and Xe

(avrBs2-H319A:Cya) detected no reductions of protein levels

associated with Bs2 activation (Supplemental Figure S10C).

Although these results do not support hypothesis (iii) as a broad

mechanism targeting all TTSS effectors it does not preclude an

AvrBs1 specific targeting for degradation or loss of induction by

Bs2 activation. While both 35SAvrBs2:HA and 35S-AvrBs1:HA

transiently expressed in pepper were detected in immunoblot

analysis we were only able to detect Xe expressed AvrBs2:HA but

not AvrBs1:HA (data not shown). Low Xe expression of AvrBs1

may contribute to the overall low levels of TTSS delivered

AvrBs1-Cya reporter compared to all other effector-Cya

reporters evaluated. There is also a Bs2 activation specific

reduction in the detectable Xe delivered AvrBs1-Cya reporter

that should correlate with a Bs2 activation specific reduction in

the Xe delivered AvrBs1. This indirect evidence is all consistent

with a Bs2 activation dependent reduction in TTSS delivery of

an already lowly expressed AvrBs1 resulting in a lack of the

minimal amount of AvrBs1 required to activate a confluent Bs1

HR.

Figure 5. Bs2 activation by AvrBs2 blocks TTSS delivery of two
independent effector reporters to host cells. The TTSS effector
delivery reporter constructs consisted of the effector promoter and the
secretion and translocation signal peptide translationally fused to
adenylate cyclase (Cya). These constructs were introduced into Xe in
tandem with the native effector by single homologous recombination.
Pepper (no R genes), pepper (Bs1) and pepper (Bs2) were sampled
8 hours post-inoculation to avoid in planta multiplication of the
reporter strain pairs (with and without AvrBs2) and assayed for cyclic
AMP (cAMP). TTSS delivered effector-Cya translational fusions into the
plant cell and calmodulin from the plant cell leads to elevated levels of
cAMP. A. AvrBs11-212-Cya reporter in strains Xe (avrBs2 and avrBs1) and
Xe (avrBs1) were inoculated into pepper plants (no R genes, Bs1 or Bs2).
In planta cAMP levels were assayed. Student t-test was used to compare
TTSS delivery of effector reporter in an Xe strain with and without
avrBs2 on Pepper (+) Bs2; p-values were ,0.05. B. XopX1-183-Cya
reporter in strains Xe (avrBs2 and avrBs1) and Xe (avrBs1) were
inoculated into pepper plants (no R genes, Bs1 or Bs2). In planta cAMP
levels were assayed. Student t-test was used to compare TTSS delivery
of effector reporter in an Xe strain with and without avrBs2 on Pepper
(+) Bs2; p-values were ,0.01.
doi:10.1371/journal.ppat.1002408.g005
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These results led us to conclude that plant cells undergoing a

Bs2/AvrBs2 incompatible reaction were able to modulate

subsequent effector delivery by the Xe TTSS.

Discussion

Bacterial GDEs contribute to Xe virulence
Several classes of bacterial TTSS effectors have been charac-

terized based on their enzymatic activities targeting host proteins

[6–9]. In this study, we identified a GDE domain present in

AvrBs2 that is highly conserved in homologs from several species

of Xanthomonas. In addition to generating a three-dimensional

structural model of the GDE domain of AvrBs2 using the crystal

structure of a bacterial GDE, we demonstrated that the putative

GDE catalytic site of AvrBs2 could functionally replace the

catalytic site of the bacterial GDE from Borrelia hermsii (BhGlpQ).

We further demonstrated that Xe strains with mutations in the

putative GDE catalytic site of AvrBs2 had reduced bacterial

growth in susceptible bs2 plants, suggesting that glycerolpho-

sphodiesterase activity has an important virulence function in this

pathogen. An evolutionary analysis supports this conclusion and

demonstrates that the GDE domain in AvrBs2 is under strong

purifying selection. Interestingly, the catalytic mutations in GDE

did not interfere with the ability of the plant to recognize AvrBs2

through the cognate R protein Bs2 and trigger disease resistance.

This finding suggests that recognition of AvrBs2 is independent of

its GDE enzyme activity.

Genes with GDE domains have been identified in species across

the animal, plant, fungal and bacterial kingdoms [45–47].

Although the exact biological functions of most GDE genes are

unknown, it has been documented that GDE enzyme activity is

directly linked to bacterial pathogenesis in other systems [45–47].

For example, in Borrelia species, some but not all spirochetes carry

GDE genes. It has been demonstrated that spirochetes carrying

GDE genes were able to achieve high cell densities (.108/ml) in

the blood, whereas spirochetes lacking GDE genes grew too much

lower densities (,105/ml) [41,48]. These results clearly suggest

that the GDE gene product could contribute to bacterial virulence,

although the exact mechanism is still unclear [40]. Genes similar

to GDE have been identified in plants; their products may

contribute to plant cell wall biogenesis [49–51]. It is possible that

bacterial pathogens interfere with the functions of endogenous

plant GDEs by either blocking or competing for the same

substrates. This hypothesis could be tested in future studies as

more information is revealed about plant GDEs and their

endogenous substrates.

The AvrBs2 protein may require a plant cofactor to
activate its GDE enzyme activity

In this study, we purified the GST-AvrBs2 fusion protein from

E. coli and subjected it to a common procedure used to test

bacterial proteins for GDE enzyme activity [41]. However, GDE

enzyme activity was not detectable using the recombinant GST-

AvrBs2. This result could be due to the buffer conditions or the

substrates employed, which may not be optimal for AvrBs2

enzyme activity in vitro. Interestingly, the in vitro GDE enzyme

activity of the Arabidopsis putative GDE (AT4G26690) was not

confirmed by using a similar testing condition as described in this

report [51]. It may suggest that certain plant GDEs prefer different

substrates compared to E. coli GDE. Our results (Figure 1C and

1D) confirmed that AvrBs2 has a functional GDE catalytic site.

However, the amino acid sequences flanking the GDE catalytic

site may be important for substrate binding. Since the flanking

sequences in AvrBs2 are different from BhGlpQ, AvrBs2 could

have a different substrate specificity and not use glyceropho-

sphocoline as substrate.

It is also possible that AvrBs2 requires other plant co-factors to

activate its proper folding or its GDE enzyme activity. It is not

unusual for a bacterial TTSS effector protein to require plant co-

factors for full enzyme activity [1,6]. For example, the bacterial

TTSS effector AvrRpt2 requires plant cyclophilin to activate its

protease activity [1,6]. In this study, however, it was not possible to

test whether AvrBs2 required plant cofactors for its GDE enzyme

activity by mixing plant total protein extracts because of the high

background of endogenous plant GDE activity. By using chimeric

proteins, we confirmed that AvrBs2 did possess the functional

GDE catalytic site that is essential for GDE enzyme activity.

Because the GDE domain is required for the virulence function of

AvrBs2, it is possible that AvrBs2 fulfills its virulence function

through the GDE-activated hydrolysis of substrates in plant cells.

Further investigation to identify the substrates for AvrBs2 enzyme

function may help to elucidate the mechanism of the AvrBs2

virulence function and the modulation of Xe TTSS.

The virulence domain of AvrBs2 can be genetically
separated from the region that triggers the Bs2-
dependent plant immune response

We demonstrated that AvrBs2 carries a GDE domain with

catalytic sites required for promoting bacterial virulence. Howev-

er, GDE activity is not required for the activation of Bs2-

dependent disease resistance. Through further genetic analyses,

two overlapping AvrBs2 domains were identified: one correspond-

ing to the GDE homologous region and one to a minimal Bs2-

activating domain that includes the GDE domain and a C-

terminal region. We confirmed that the previously identified

mutations in this C-terminal region of AvrBs2 no longer activated

Bs2-dependent resistance [24] and several novel mutations were

identified that compromised Bs2 activation while having little

effect on bacterial virulence. These results show that Xanthomonas

can overcome Bs2 resistance without losing the virulence function

of AvrBs2. These findings are significant for optimizing the

deployment of Bs2 resistance in field studies because it is important

to understand how Xe strains can overcome Bs2 activation but

retain the AvrBs2 virulence function. For example, anticipatory

breeding could be used to identify new Bs2 alleles that recognize

the AvrBs2 loss-of-recognition mutants (R403P, A410E and

Y419A). This scheme would allow us to use molecular breeding

to stay ahead of evolving pathogens.

AvrBs2 activation of Bs2 leads to suppression of
subsequent Xe TTSS effector delivery to host cells

In this study, we used the AvrBs2/Bs2 system to identify a

potentially novel mechanism in plant disease resistance. AvrBs2-

dependent activation of Bs2 triggers an unknown plant immunity

mechanism, resulting in the suppression or modulation of the

TTSS of the bacterial pathogen. In host plants containing the two

R genes Bs1 and Bs2, we observed epistasis of the Bs2 activity with

a slow, 48-hour HR over the Bs1 activity with a rapid, 18-hour

HR when avrBs1 and avrBs2 were present in either a single Xe

strain or during co-infection into the appropriate pepper plants. A

Cya reporter assay demonstrated that this interference was most

likely due to the inhibtion of the bacterial TTSS following the

AvrBs2/Bs2 interaction. This general inhibition of the subsequent

Xe TTSS effector-reporter delivery could be detected as early as

one hour after inoculation of Xe delivering wild-type AvrBs2 to Bs2

pepper plants.
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Recently, it has been reported that the pre-inoculation of non-

pathogenic Pseudomonas fluorescens or flg21 (a 21-amino-acid peptide

from bacterial flagellin) induces PAMP-triggered immunity (PTI)

in Nicotiana tabacum (tobacco) plants [19]. The PTI subsequently

inhibited the HR triggered by the secondary inoculation with

Pseudomonas carrying TTSS effector genes [19]. Effector-Cya assays

confirmed that HR suppression was caused by the restriction of

injection of the TTSS effectors into plant cells. From this result,

the authors concluded that PTI could directly or indirectly inhibit

the injection of TTSS effectors into plant cells [19]. In this report,

we demonstrated that the effector-triggered immunity, which was

triggered by the interaction of Bs2 and AvrBs2, led to the

suppression of the delivery of TTSS effectors into plant cells. It

would be interesting to test whether the mechanism of the PTI-

based suppression of TTSS is similar to that of the AvrBs2/Bs2

interaction.

Because almost all Gram-negative pathogens, some symbiotic

bacteria and several phytopathogenic bacteria have similar

TTSS machineries [52–54], it is possible that the conserved

components of the TTSS machinery also serve as PAMPs that

are specifically recognized by plant extra- or intracellular

receptors, triggering plant immunity [55]. It would be intriguing

to test the hypothesis that the interaction of AvrBs2 with Bs2

directly or indirectly modifies the plant cell walls, subsequently

blocking the penetration of the TTSS pilus across the plant cell

walls. It would also be interesting to explore whether the TTSS

suppression triggered by AvrBs2/Bs2 is common in other R

protein/effector interactions in other plant species. Answering

these questions may reveal whether plants employ TTSS

suppression as a general immune response to help inhibit the

growth of invasive bacterial pathogens.

Materials and Methods

Strains and growth
Escherichia coli strains DH5a, Top10, BL21(DE3) and DB3.1 as

well as Agrobacterium tumefaciens strain C58C1 were grown on Luria-

Bertani agar containing the appropriate antibiotics at 37uC (for E.

coli) and 28uC (for A. tumefaciens). Xanthomonas strains were grown on

nutrient yeast glucose agar [56] containing the appropriate

antibiotics at 28uC. The Xanthomonas strains used were GM98-38

Xe (avrBs3), GM98-38-1 Xe (avrBs2, avrBs3) [24], 85–10 Xe (avrBs2,

avrBs1) [31] and 69–1 Xe (avrBs2) [25]. Various constructs in E.

coli were transferred to Xanthomonas and A. tumefaciens C58C1 by

tri-parental mating with DH5a (RK600) acting as helper strain

[57].

Electrolyte leakage of 1.5 cm2 pepper leaf disc post inoculation

with Xe strains at 26108 CFU/ml and rocked gently in 4 ml

water for 1 hour. Conductance was measured with an Thermo

Orion conductance meter (model 105A+) in microSiemens/cm

(uS).

Nicotiana benthamiana, tomato cv. VF36, Bs2 transgenic Nicotiana

benthamiana and VF36 and pepper lines ECW-0 (no R gene

control), ECW-20R (Bs2), ECW-10R (Bs1) and ECW-123R (Bs1,

Bs2 and Bs3) were grown in the greenhouse before and after

inoculation at 24uC under 16 hours light/8 hours dark cycles.

Homology-based modeling
The MODELLER software package [37] was used to create a

comparative protein structural model for AvrBs2 using the solved

crystal structure of 1o1z A as a template. The Chimera package

was used to perform structural alignments and generate molecular

graphics images [58].

avrBs2 GDE catalytic site subcloning and protein
purification

The full-length avrBs2 gene was amplified as a BamHI-SalI

fragment by using the following primer set: 59-caccGGATC-

CATGCGTATCGGTCCTCTGCAACCTTC-39 and 59-GTC-

GACATCCGTCTCCGTCTGCCTGGCCT-39. The resulting

PCR fragment was cloned into the same sites of the protein

expression vector pGEX4T-1 (GE Healthcare, NJ). The GDE

positive control gene Borrelia hermsii BhGlpQ was amplified from a

plasmid provided by Dr. Tom Schwan (University of Montana,

Missoula, MT, USA) by using the following primer set: 59-

caccGGATCCTGTCAGGGCGAAAAAATGAGTCA-39 and 59-

GTCGAC TGGTTTTATTTTTGTGATGAA-39. The PCR

product was cloned into the BamHI/SalI sites of pGEX4T-1 (GE

Healthcare, Piscataway, NJ). An overlap extension PCR method

was applied to generate the chimeric genes BhGlpQ-avrBs2-wt and

BhGlpQ-avrBs2-E304A/D306A. The catalytic domain of wild-type

avrBs2 was first amplified with the following primer set: 59-

caccGGATCCTGTCAGGGCGAAAAAATGAGTCA-39 and 59-

GCACGCCATCGGAACTGACTTCGACGTCCAGCTCTAG-

GTAGTCAGCTCCTAAGGCAT-39. The catalytic domain of

avrBs2-E304A/D306A was amplified with the following primer

set: 59-caccGGATCCTGTCAGGGCGAAAAAATGAGTCA-39

and 59-GCACGCCATCGGAACTGACTTCGACGGCCAGC-

GCTAGGTAGTCAGCTCCTAAGGCAT-39. The derived PCR

products were used as templates for another round of amplifica-

tion with the following primer set: 59-caccGGATCCTGTCA-

GGGCGAAAAAATGAGTCA-39 and59-GTTTGTTGTTGTA-

TCAAGTTCTGGATCGTGCATCAACACCGGCACGCCAT-

CGGAACTGA-39. The resulting product was the N-terminal

chimera with BhglpQ genes carrying the GDE catalytic domain

from either the wild-type or the mutant avrBs2 gene.

The other portion of the DNA sequence of the BhGlpQ gene was

amplified with the following primer set: 59-TCAGTTCC-

GATGGCGTGCCGGTGTTGATGCACGATCCAGAACTT-

GATACAACAACAAAC-39 and 59-GTCGACTGGTTTTATT-

TTTGTGATGAA-39. The resulting two portions of the chimeric

BhglpQ gene were re-amplified with the following primer set: 59-

caccGGATCCTGTCAGGGCGAAAAAATGAGTCA-39 and 59-

GTCGAC TGGTTTTATTTTTGTGATGAA-39. The PCR

products were purified by a gel-purification kit (Bioneer, CA)

and cloned into the BamHI/SalI sites of pGEX4T-1 (GE

Healthcare, NJ). The DNA sequences of all clones were confirmed

by sequencing.

The protein expression constructs were transformed into E. coli

strain BL21(DE3) by electroporation and were grown in liquid LB

medium supplemented with 50 mg/ml ampicillin at 28uC/

220 rpm to OD600 = 0.4; 0.5 mM IPTG was added to the culture

for 6 hours to induce protein expression. The cells were harvested

and disrupted by sonication in cold PBS buffer (147 mM NaCl,

2.7 mM KCl, 10 mM Na2HPO4, 2 mM KH2PO4, pH = 7.4)

supplemented with 1% Triton X-100. The cell debris was cleared

by centrifugation at 12,000 g for 20 min. The soluble GST fusion

proteins were purified using Glutathione Sepharose following the

protocol provided by the manufacturer (GenScript USA Inc., NJ,

USA). The fusion proteins were eluted in 50 mM Tris-Cl,

pH = 8.0, supplemented with 10 mM reduced glutathione. All

protein samples were stored on ice before the enzyme assays.

GDE enzyme assays
The enzyme activity of the purified GST-fusion proteins was

determined using an enzyme-coupled spectrophotometric assay

to measure the amount of G3P that was released by the

glycerophosphodiester phosphodiesterase reaction. The reaction
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mixture contained 0.2 M hydrazine-glycine buffer, pH = 9.0,

0.5 mM NAD, 10 U/ml G3P dehydrogenase (Sigma G6880),

10 mM CaCl2, 0.5 mM Sn-glycerol-3-phosphocholine (G5291),

and the GST-fusion proteins at several pre-set concentrations.

The reaction mixture was incubated at 30uC in a 96-well plate for

1 h until the oxidation of G3P by G3P dehydrogenase was

complete. The G3P concentration was determined from the

absorbance change at 340 nm by using the BioTek plate reader

(BioTek Instruments, Inc., VT, USA).

Site-directed mutagenesis of avrBs2 in the Xe genome
and construction of Cya fusions for TTSS effector delivery
reporters

Mutants formed by homologous recombination of the genomic

copy of avrBs2 in Xe were constructed as previously described

[18,59]. The avrBs2 open reading frame was first PCR amplified

with a SalI site at the 59-end and a BamHI site at the 39-end and

cloned directionally into pBluescript KS+. This intermediate

construct was mutagenized using the QuikChange Site-Directed

Mutagenesis kit (Stratagene, CA) to incorporate the two GDE

catalytic site mutations (E304A/D306A, H319A and Y419A)

using overlapping forward and reverse primers for the E304A/

D306A sequence (59-CAATCTGGCGCTGGCCGTCGAAG-

39), H319A sequence (59- GTGTTGATGGCCGATTTCAG-39)

and for the Y419A sequence (59- GCCAAGTACGCCA-

CGGGCGG-39). The resultant mutant constructs were digested

with Not1 and BamH1, and T4 DNA polymerase was used to

create blunt ends. The blunt-ended fragments were then cloned

into the suicide vector pLVC18L, which has a col E1 replicon and

contains the highly efficient mob region from pRSF1010 [18], cut

with XbaI and SmaI, and filled using T4 DNA polymerase to make

pLVC18avrBs2 (E304A/D306A, H319A and Y419A). The three

constructs were then mobilized into Xe (avrBs2, avrBs3) and rescued

by tetracycline selection of a single recombination event into the

genomic copy of avrBs2. Second-site resolution crossover events

were identified as tetracycline-sensitive single colonies from

cultures grown in the absence of tetracycline. PCR amplification

and sequencing were used to confirm a double homologous

recombination event for either the E304A/D306A, H319A or

Y419A. All bacterial growth assays in pepper and tomato were

performed as previously described [25].

Two mutant strains Xe (E304A/D306A and H319A) were

further modified by homologous recombination to add Cya as a C-

terminal translational fusion as previously reported [18].

Double homologous genomic recombination was used to delete

the avrBs2 locus in strains 85–10 Xe (avrBs2, avrBs1) and 69–1 Xe

(avrBs2) to make Xe (avrBs1) and Xe (no effector) respectively using

p815:avrBa2:GM as previously described [23].

Epitope-tagged AvrBs2 deletions and mutations and
Agrobacterium-mediated transient expression

All avrBs2 deletions and mutations were first cloned into

pENTR/D-TOPO (Invitrogen) as previously described [59]. Each

construct began with a start codon and ended without a stop

codon so that the HA epitope and stop codon of the destination

vector would be maintained after transfer. For Agrobacterium-

mediated transient expression from the 35S promoter and C-

terminal HA epitope tagging, pMD1 was first digested with Xho1.

The HA epitope and the stop codon linker (59- CTCGAG-

TATCCCTACGACGTACCAGACTACGCATAGCTCGAG-

39) were cloned in and then re-opened at the Sma1 site, and the

ccdB cassette A (Invitrogen) was cloned in to create the destination

vector pMD1-Des-HA. All pENTR-avrBs2 constructs were then

transferred to pMD1-Des-HA using LR clonase (Invitrogen).

For AvrBs1:HA and AvrBs2:HA Agrobacterium-mediated tran-

sient expression constructs both full length effectors were cloned

into pENTR/D-TOPO with N-terminal XbaI site and a

Cterminal HA epitope tag (59- GGATCCTACCCATACGAT-

GTTCCTGACTATGCGGGCTATCCCTATGACGTCCCGG-

ACTATGCAGGATAGGAGCTC-39) followed by a SacI site.

These were then subcloned into pMD1. The pMD1-AvrBs2:HA

construct was further modified by re-opening at the single BsaI site

and the ccdB cassette B (Invitrogen) cloned in to create a

destination vector. The HindIII-EcoRI 35S-nosTerminator frag-

ment was cloned into pENTR/D TOPO and then the AvrBs1:HA

XbaI-SacI fragment was subcloned in. This pENTR-35S-AvrB-

s1:HA was transferred into the pMD1-AvrBs2:HA destination

vector using LR clonase (Invitrogen) to create a double effector

binary vector for Agrobacterium transient expression.

The binary deletion and mutation constructs were transferred to

Agrobacterium (C58C1) for transient expression in Nicotiana benthami-

ana and pepper, as previously described [25].

Immunoblot analysis protocol was previously described [26].

Generating the Cya reporter fusion with the Xe effectors
avrBs1, avrBs2, avrBs3 and XopX

Two effector-Cya reporters from avrBs1 and avrBs3 were made

by directional cloning PCR products into Gateway-compatible

pENTR/D-TOPO (Invitrogen) and then translationally fused to

Cya by LR clonase (Invitrogen) into the suicide destination vector

pDDesCya [59]. The effector PCR products of 1352 base pair for

avrBs1 and 950 bp for avrBs3 included the promoter region and the

first 212 codons of AvrBs1 and the first 107 codons of AvrBs3 were

used to create AvrBs11-212-Cya and AvrBs31-107-Cya, respectively.

The two previously constructed pDDesCya effector-Cya reporters

for AvrBs21-98-Cya and XopX1-183-Cya, along with AvrBs31-107-

Cya and AvrBs11-212-Cya, were introduced into Xe by genomic

single recombination rescues of these constructs. This recombina-

tion still maintained the wild-type genomic copy of the particular

effector [18]. The pairs of effector-Cya reporter strains with and

without avrBs2 included the three-strain pairs of Xe (avrBs3) and Xe

(avrBs3, avrBs2) with either reporter AvrBs21-98-Cya, AvrBs31-107-

Cya or XopX1-183-Cya. Also included were the two-strain pairs of

Xe (avrBs1) and Xe (avrBs1, avrBs2) with either XopX1-183-Cya or

AvrBs11-212-Cya. Additionally the pDDesCya with AvrBs31-107-

Cya was introduced into strains Xe (avrBs2-E304A/D306A or

H319A) by genomic single recombination rescues of these

constructs.

The Cya was added to the C-terminus of Xe catalytic mutants of

AvrBs2 as previously described [18].

The 35S- avrBs2:Cya construct was made by replacing the

BamHI-SacI GFP fragment from pMD1- avrBs2:GFP [18]. with a

BamHI-SacI Cya fragment. This construct was introduced into

Agrobacterium for transient expression as previously described [26].

Plant cyclic AMP (cAMP) levels eight hours post-inoculation

were measured as previously described [18]. Sampling at eight

hours post-inoculation will avoid in planta multiplication of the

reporter strains. Eight hours post-inoculation is also long before

the development of any R gene-mediated HR.

Supporting Information

Supplemental Figure S1 Inoculation of near-isogenic
pepper (Bs2) and pepper (w/o Bs2) with high-density
suspensions of Xe (26108 CFU/ml). Bs2-dependent brown

necrotic HR detected at 96 hours post-inoculation for Xe (avrBs2)

strain GM98-38-1 and double homologous recombination mu-

tants for the putative GDE catalytic site Xe (avrBs2-E304A/
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D306A) and Xe (avrBs2-H319A). Also the AvrBs2 mutations

identified in Xe strains isolated from bacterial spot diseased pepper

(Bs2) were recombined into GM98-38-1 for Xe (avrBs2-R403P)

produced no HR, similar to the control Xe (w/o avrBs2). The other

mutant Xe (avrBs2-A410E) produced intermediate HR with light

brown necrosis detected. In pepper (w/o Bs2), only the strains w/o

avrBs2 or with putative catalytic site mutations gave an altered

high-density virulent phenotype.

(TIF)

Supplemental Figure S2 Confirm Xe strains with GDE
catalytic site mutations are not altered in TTSS delivery
to host and are not altered in Bs2 activated HR. A. The

TTSS effector reporter adenylate cyclase (Cya) was translationally

fused on the C terminus of the gemonic copy of AvrBs2 and the

AvrBs2 catalytic site mutants. These Xe TTSS reporter inocula-

tions on pepper were sampled 8 hours post-inoculation to avoid in

planta multiplication Xe and in planta cyclic AMP (cAMP) levels

were assayed. No alteration of AvrBs2 delivery for catalytic site

mutations. B. Inoculation of pepper (Bs2) and pepper (w/o Bs2)

with high-density suspensions of Xe (26108 CFU/ml) at 48 hpi.

No alteration in HR phenotype for Xe strains with Cya

translational reporters.

(TIF)

Supplemental Figure S3 Confirmation of protein expres-
sion for Agrobacterium transient constructs for mini-
mum domain and key amino acids mutations of AvrBs2
required for Bs2 activation. A. Immunoblot analysis with anti-

HA showing Agrobacterium-mediated transient protein expression of

HA epitope-tagged constructs of the various avrBs2 deletions and

mutations of the minimal Bs2-HR activation domain (,31 kDa).

Ponceau S staining of immunoblot as loading control. B. Near-

isogenic pepper with and without Bs2 inoculated for Agrobacterium

transient expression (48 hpi at 26108 CFU/ml) with the 35S-HA

epitope tagged constructs of the various AvrBs2 deletions and

mutations of the minimal Bs2-HR activation domain.

(TIF)

Supplemental Figure S4 Evaluation of loss of Bs2
activation mutant AvrBs2 (Y419A) in Xe. A. In planta

pathogen growth assay for Xanthomonas strains GM98-38 Xe (w/o

avrBs2), GM 98-38-1 Xe (avrBs2), and GM98-38-1 Xe (Y419A)

exchange mutant. Host plants pepper (w/o Bs2) and pepper (Bs2).

Exchange mutant Xe (Y419A) was unable to completely overcome

Bs2 resistance. B. Inoculation of near-isogenic pepper (Bs2) and

pepper (w/o Bs2) with high-density suspensions of Xe

(26108 CFU/ml). Exchange mutant Xe (Y419A) gave a light

brown necrotic HR on pepper (Bs2).

(TIF)

Supplemental Figure S5 Electrolyte leakage to confirm
the slower Bs2-HR (48 hpi) is epistatic to the faster Bs1-
HR (18 hpi) for high-density (1.56108 CFU/ml) Xe
inoculations of pepper lines with both R genes (Bs2
and Bs1). A. At 18 hpi electrolyte leakage of inoculated leaf disc

in water were measured with a conductance meter in microSie-

mens/cm (uS). High levels of electrolytes correlated with the

corresponding HR phenotypes reported in figure 4. B. At 26 hpi

electrolyte leakage of inoculated leaf disc in water were measured

with a conductance meter in microSiemens/cm (uS). High levels

of electrolytes also correlated with the corresponding HR

phenotypes reported in figure 4.

(TIF)

Supplemental Figure S6 The slower Bs2-HR (48 hpi)
from mixed high-density (1.56108 CFU/ml) inoculation

of independent Xe strains one with AvrBs1 and one with
AvrBs2 was epistatic to the faster Bs1-HR (18 hpi) for
pepper (Bs1, Bs2). A. Near-isogenic pepper lines with bacterial

spot resistance genes (Bs1, Bs2 and the combination of Bs1 and

Bs2), at 18 and 48 hours post-inoculation (hpi) with the mixed

strains Xe (avrBs1) and Xe (avrBs2). When the mixed strains Xe

(avrBs1) and Xe (avrBs2) were co inoculated on pepper (Bs1, Bs2)

the fast Bs1/AvrBs1 HR was again not detected at 18 hpi. B. All

pepper (no R-gene) control inoculations with single Xe effector,

either by individual or mixtures, gave the expected responses.

(TIF)

Supplemental Figure S7 Electrolyte leakage to confirm
slower Bs2-HR (48 hpi) from mixed high-density
(1.56108 CFU/ml) inoculation of independent Xe strains
one with AvrBs1 and one with AvrBs2 was epistatic to the
faster Bs1-HR (18 hpi) for pepper (Bs1, Bs2). At 18 hpi

electrolyte leakage of inoculated leaf disc in water were measured

with a conductance meter in microSiemens/cm (uS). High levels

of electrolytes correlated with the corresponding HR phenotypes

reported in Supplemental figure 6A.

(TIF)

Supplemental Figure S8 Bs2 activation dependent sup-
pression of the AvrBs1/Bs1 fast HR phenotype not
observed when expressed inside plant cells via Agro-
bacterium transient expression. A. Agrobacterium transient

expression strains containing 1. Agro 35S-avrBs1, 2. Agro 35S-avrBs1

+ 35S-avrBs2 and 3. Agro 35S-AvrBs2 were inoculated on pepper

plants containing the Bs1, (Bs1 and Bs2) and no resistance genes.

During the co-expression of AvrBs2 and AvrBs1 no epistasis was

observed as the phenotype of the Bs1 HR was not altered by the

co-expression of AvrBs2. B. Electrolyte leakage was observed for

the same combinations as shown in panel A. The electrolyte

leakage phenotype of the Bs1 HR was observed when both AvrBs2

and AvrBs1 were co-expressed in Agro confirming that there was

no epistasis when the genes are co-expressed in planta. C.
Immunoblot detection of AvrBs2-HA and AvrBs1-HA expressed

in pepper plants via Agrobacterium transient expression at 0 and

24 hpi. This result showed that the activation of Bs2-specified

resistance did not interfere with the detection of the Bs1 protein.

(TIF)

Supplemental Figure S9 Bs2 activation by AvrBs2
blocked subsequent TTSS delivery of multiple effectors
to host cells. TTSS effector delivery reporter constructs

consisted of the effector promoter and the secretion and

translocation signal peptides translationally fused to adenylate

cyclase (Cya). Pepper plants (no R genes, Bs2 or Bs3) were sampled

8 hours post-inoculation to avoid in planta multiplication of the

reporter strain pairs (with and without avrBs2) and assayed for

cyclic AMP (cAMP). Effector-Cya translational fusion and

calmodulin from the plant cell led to elevated levels of cAMP.

A. AvrBs21-212-Cya reporter in Xanthomonas strains GM98-38-1 Xe

(avrBs2 and avrBs3) and Xe (avrBs3) inoculated onto pepper plants

(no R genes, Bs3 or Bs2). In planta cAMP levels were assayed.

Student t-test was used to compare TTSS delivery of effector

reporter in an Xe strain with and without avrBs2 on Bs2 pepper

plants; p-values were ,0.01. B. AvrBs31-212-Cya reporter in

Xanthomonas strains GM98-38-1 Xe (avrBs2 and avrBs3) and Xe

(avrBs3) inoculated onto pepper plants (no R genes, Bs3 or Bs2). In

planta cAMP levels were assayed. Student t-test was used to

compare TTSS delivery of effector reporter in an Xe strain with

and without avrBs2 on Bs2 pepper plants; p-values were ,0.01. C.
XopX1-183-Cya reporter in Xanthomonas strains GM98-38-1 Xe

(avrBs2 and avrBs3) and Xe (avrBs3) inoculated onto pepper plants
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(no R genes, Bs3 or Bs2). In planta cAMP levels were assayed.

Student t-test was used to compare TTSS delivery of effector

reporter in an Xe strain with and without avrBs2 on Bs2 pepper

plants; p-values were ,0.01.

(TIF)

Supplemental Figure S10 Elevated levels of in-planta
cyclic AMP resulting from Agrobacterium transient
expression of 35S-avrBs2:Cya was not blocked by Bs2
activation. Also avrBs2 GDE catalytic mutations were
still able to block subsequent TTSS effector delivery to
pepper host. Also Bs2 activation does not change effector
protein levels in Xe. A. Agrobacterium transient expression of

35S-avrBs2:Cya in Nicotiana benthamiana with and without Bs2

sampled at 15 hpi were similar for elevated levels of cyclic AMP.

B. AvrBs3 (signal peptide):Cya TTSS effector reporter recom-

bined into Xanthomonas strains GM98-38-1 Xe (avrBs2, avrBs2-

E304A/D306A or avrBs2-H319A) had similar reduced levels of

cyclic AMP in the presence of Bs2 compared to pepper host

without Bs2. C. Immunoblot assays of high titer inoculation

(56108 CFU/ml) of pepper (w/o Bs2) and pepper (Bs2) at 8 hpi

with Xe (avrBs2), Xe (avrBs2-Cya), Xe (avrBs2-E304A/D306A:Cya)

and Xe (avrBs2-H319A:Cya) detected no reductions of protein

levels associated with Bs2 activation.

(TIF)
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