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The effects of heterogeneity on
stochastic cycles in epidemics

Francisco Herrerias-Azcué(® & Tobias Galla

Models of biological processes are often subject to different sources of noise. Developing an

. understanding of the combined effects of different types of uncertainty is an open challenge. In this
Accepted: 6 September 2017 . paper, we study a variant of the susceptible-infective-recovered model of epidemic spread, which
Published online: 11 October 2017 : combines both agent-to-agent heterogeneity and intrinsic noise. We focus on epidemic cycles,

: driven by the stochasticity of infection and recovery events, and study in detail how heterogeneity in
susceptibilities and propensities to pass on the disease affects these quasi-cycles. While the system can
only be described by a large hierarchical set of equations in the transient regime, we derive a reduced
closed set of equations for population-level quantities in the stationary regime. We analytically obtain
the spectra of quasi-cycles in the linear-noise approximation. We find that the characteristic frequency
of these cycles is typically determined by population averages of susceptibilities and infectivities, but
that their amplitude depends on higher-order moments of the heterogeneity. We also investigate
the synchronisation properties and phase lag between different groups of susceptible and infected
individuals.
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It is now widely recognised that noise and uncertainty play an important role in modelling biological systems.
Traditional approaches to modelling phenomena in biology' are often based on deterministic ordinary or partial
differential equations, and do not aim to describe stochasticity. In order to capture epistemic uncertainty, static
or dynamic noise variables are introduced in more modern mathematical biology. This randomness reflects the
lack of detailed knowledge about phenomena at finer scales than described by the model at hand; any modelling
approach necessarily operates at a set scale (e.g. cell, individual, or population), and does not capture in detail
the processes at smaller scales. These are ‘emulated’ through effective randomness. Different types of such noise
are frequently found in models of biological phenomena, including intrinsic demographic noise, extrinsic sto-
chasticity, parameter uncertainty or heterogeneity between different types of interacting entities>*. Some of these
random variables are static and do not evolve in time, others are described by dynamic time-dependent noise.
Intrinsic noise, due to the stochastic dynamics of a system, has lately been the focus of many studies (see for
example?®). Extrinsic or parametric noise, due to variations, heterogeneity or uncertainties in the parameters or
the environment surrounding the process, has received similar attention (e.g”~). To be able to adequately describe
biological systems, however, it may be necessary to account for both these uncertainties which contribute to the
noisy dynamics.

In the modelling of epidemics this is of particular importance. The infection process, driven by serendipitous
contacts, is inherently stochastic, and heterogeneity in susceptibility to a disease or infectiousness of different
individuals are known to exist and play a role in viral spread. Genetic differences that result in heterogeneous
susceptibilities to a disease have been suggested to play an important role!®!!, and variation in viral reproduction
from host to host have been observed in ref.'2. Behavioural, structural or contact differences between individuals
are inevitable, but we focus our study on the former type of heterogeneity. However, the better part of the existing
work focusing on heterogeneity of this type, does not explicitly seek to capture demographic noise. Instead one
often assumes infinite populations and deterministic dynamics. This approach is often taken outside epidemics
as well. Much existing work studies individual sources of uncertainty, heterogeneity and noise in isolation, but
not their interacting together. A notable exception is the modelling of gene regulatory networks, in which the
interaction of intrinsic and extrinsic noise is actively studied, see e.g. refs'>-1>.

The effects of intrinsic noise have been recognised in recent years. In models with demographic processes, for
example, intrinsic stochasticity has been seen to lead to sustained quasi-cycles'®' in parameter regimes in which
a deterministic model would converge to a stable fixed point. These quasi-cycles have been identified not only
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in models of epidemic spread, but also in other instances of population dynamics, including in genetic circuits,
evolutionary systems and in game theory?*-?*. Heterogeneity has been and is being considered in epidemics as
well. Age structure is studied for example in refs?**, seasonally changing infection rates in refs>®?’, variation in
infectivity and/or susceptibility are addressed in refs**-*2, spatial structure has been approached in refs**-*, and
epidemics on static and dynamic networks are studied in refs”*’~*!. Heterogeneity has been found to generate
outbreaks that propagate hierarchically***, grow faster than in homogeneous populations®, and have a lower
total number of infected individuals**4.

Much of this work, whether describing a well-mixed population, a compartmented or structured one, is
based on variants of the celebrated susceptible-infective-recovered (SIR) model. They can be described either by
deterministic differential equations, or as a stochastic process involving a population of discrete individuals. In
the former approach the population is effectively assumed to be infinite, so that the timing of stochastic infec-
tion, recovery or birth-death events ‘averages’ out, and smooth laws for the time evolution of the population are
obtained. The latter approach explicitly captures the intrinsic randomness of infection, recovery and demograph-
ics. The population is taken to be finite, and its state discrete. The model evolves through discrete events (e.g.
infections). In the simplest case this defines a Markovian random process, which often can be analysed further
mathematically, at least to a good approximation. Starting from the master equation in a well-mixed popula-
tion a set of stochastic differential equations can be derived in the limit of large, but finite populations*. These
can then be studied further within the ‘linear-noise approximation’ (LNA)*. The mathematics are tractable and
the corresponding theory is now well established. While remarkably powerful, this approach so far has mostly
been used for well-mixed populations. The linear-noise approximation has also been applied to networked sys-
tems with contact heterogeneity (see e.g refs'>*’), but progress is then much harder and often relies on further
moment-closure approximations.

The aim of our work is to introduce agent-to-agent heterogeneity into the SIR dynamics in a finite well-mixed
population. This provides a middle ground between homogeneous well-mixed models and an explicitly net-
worked population. At the same time, we maintain tractability and are able to characterise stochastic effects in
finite populations via the linear-noise approximation. This allows us to systematically investigate the combination
of parameter heterogeneity and demographic noise. We divide the population of agents into K different groups of
susceptible individuals, where members of different groups have different susceptibilities. Similarly, in our model
there are M classes of infective individuals, with each class representing a different propensity to pass on the
disease. This follows the lines of ref.*, but we explicitly focus on the combination of heterogeneity and intrinsic
noise. Intrinsic stochasticity had not been included in ref.*2.

Our paper is organised as follows: In the following section we describe our model in detail. As a baseline we
then construct the deterministic rate equations. They describe the deterministic dynamics in the limit of infinite
populations, and are required to carry out the LNA. The most natural deterministic description will generally
involve K+ M coupled non-linear equations (one for each subclass in the population). We discuss when and how
these can be reduced to a smaller set of equations for aggregate quantities. In the next section we perform then the
linear-noise approximation and use this approximation to characterise the fluctuations about deterministic fixed
points. In particular we set up the theory to obtain the spectra of noise-driven quasi-cycles. Using this theory we
then present our main results in the section titled “Consequences of heterogeneity”. We investigate in detail how
the heterogeneity in the population affects the properties of stochastic outbreaks of the disease. Finally, in the last
section we summarize our findings.

Model

We use an extension of the standard SIR model*, in a population of fixed size N. Broadly, each individual can be
of one of three types: susceptible (S), infective (I) or recovered (R). The spreading of the disease is described by
infection events. These occur either through contact of a susceptible with an infective individual, as described
below, or through spontaneous infection. Individuals recover at rate p, and they die at rate . The death rate is
assumed to be independent of the disease status of an individual. To keep the number of individuals in the pop-
ulation constant, any death event is immediately followed by a birth of a new susceptible individual. This is of
course an assumption, valid for large enough populations, so that fluctuations in the overall size can be neglected.
The assumption is mainly made for simplicity and is not uncommon (see e.g refs!®4%).

We introduce heterogeneity by dividing the groups of susceptibles and infectives into subclasses. We will write
S;and I, for these, withi = 1, ..., Kand a = 1, ..., M. Individuals in subgroup S, have susceptibility y; to the
disease, and infectives in class I, have infectiousness 3,, which describes the propensity of the infective to pass on
the disease to susceptible individuals. We write n; for the number of individuals of type S;, and m, for the number
of individuals in class I,.

The dynamics are illustrated in Fig. 1, and can be summarised in the following reaction scheme:

X,
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Figure 1. SIR model with heterogeneous susceptibility and infectivity. The diagram illustrates the different
processes described by the model. New (susceptible) individuals are born at a rate «, and they are assigned a
susceptibility of x; with probability p,. Susceptible individuals transition to an infected state either by
spontaneous infection or by contact with any of the infected classes. The former process occurs with rate x;, if
the susceptible is of type S;. Conact infection occurs at a rate y N3, where N B is the total infective power of the
population (see Eq. (3)). Once infected, the individual is assigned an infectiousness (3, with probability g,. All
infected individuals recover at the same rate p. At any stage, individuals die with a rate . To keep the total
population N constant, deceased individuals are immediately replaced by a new susceptible individual.

where {p } and {q } represent the probabilities of being assigned a susceptibility x, or infectiousness [, at birth or
upon infection, respectively. The first of these reactions describes spontaneous infection, converting an individual
in class S; into an individual of type I,. The per-capita rate of events of this type is {x g, where ¢ is an overall
inverse time scale for spontaneous infection, y, is the susceptibility of ; to the disease, and q_ is the probability
that the newly infected individual is in class I,,. éimilarly, the second reaction describes infection of an individual
of type S; upon contact with an individual of type I,. The newly infected individual is in class I,. Events of this
particular type occur with a rate proportional to 3, (the propensity of I, to spread the disease), to x;, (the suscep-
tibility of §;) and to g,. The third reaction describes recovery, and the final three reactions are birth/death events.
The newly born individual is assumed to be randomly placed into one of the classes S; (i = 1, ..., K), occurring
with respective probability p.. We note that our model does not describe potential correlations between the sus-
ceptibility of an individual and its infectivity after they become infected; our focus is on heterogeneity of suscep-
tibility due to physiological factors, and not primarily due to contact patterns. Extensions to include correlations
can however be constructed among similar lines.

The model defines a continuous-time Markov process, and can be simulated straightforwardly using for exam-
ple the celebrated Gillespie algorithm®'. The starting point for the analytical study of the model is the master
equation. Our analysis below will be based on approximating the solution to this master equation by performing
a system-size expansion*® and linear-noise approximation, leading to a stochastic differential equation describing
the dynamics in the limit of large, but finite population size. In order to do this, it is useful to first introduce

1
Y = X, and X = — ;.
¥ 2 o @)
The quantity Y is the mean susceptibility of a newly born individual, whereas NX describes the aggregate
susceptibility of the population. Similarly, we define

— 1

8 = B, and B==> Bm,
24 N )

where [3 represents the mean infectivity of a newly infected individual, and N3 the total ‘infective power’ in the

population. We note that ¥ and 3 are fixed in time, and are properties of the distributions {p, x}and{q , B} The

quantities X and B, on the other hand, are time-dependent and evolve as the composition of the population

changes.

Deterministic analysis
Dynamics. In the limit of an infinite population, the dynamics can be described by deterministic equations
for the quantities x; = limy_, . .#;/N and y = limy_,  m,/N. They are given by

% = Kp, — kx; — XX — XxXB,

Yo = 84X + 4. X8 = py, = Ky ()

These ordinary differential equations can be derived either by using direct mass-action kinetics, or from the
lowest-order expressions in an expansion of the master equation in the inverse system size*.
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Ultimately we will mostly be interested in aggregate quantities, i.e. the total density of susceptibles or infectives
in the population, irrespective of what subclass they belong to. We therefore introduce

S=>x and I=>y.
i a (5)
From Eqs (4) we find

$S=k— KS — £X — BX,

I=¢X+ %XB— pl — s (6)

This system is not closed due to the presence of X and B on the right-hand side. These quantities in turn evolve
in time according to

X = kY — 6% — (€ + B\
B=¢xF + BxXB— (p + r)B, @)

which again does not close the set of equations, due to the presence of the term X,(¢) = 3° iXizx,-(f)- Modulo nor-
malisation, and recalling that the {x;} are time-dependent, this object is recognised as the second moment of the
distribution of susceptibilities among the group of susceptibles at time t. It cannot be determined from Eqs (6)
and (7) alone. Instead we find

X, = rxX" = £E, = €+ DX, (8)

where we have introduced " = 3 p.x;"and X, = 3" x;x,". This indicates that the deterministic dynamics at the
aggregate level is described by an infinite hierarchy of equations. This set of equations does not close in the tran-
sient regime. However, as we will see next, closure can be achieved assuming the system settles down to a fixed

point in the long run.

Fixed point. We proceed by a brief analysis of the fixed points of the deterministic dynamics. We will label
these by a star. They can be obtained by setting &; = 0and y = 0in Eq. (4), leading to

P S
LR E+ B,
. (E+BHX7g,
‘ ptr ©)
Similarly, we find the fixed points of the aggregate quantities S, I, X and B from Eqs (6,7). After re-arranging
and using Eq. (9) we arrive at

S* = 1_MB__*,
kB
- B
B
 _ (p+n*)3_j)
E+8BMp
. Bk X,
B* = (— )

which is a closed set of equations, for a given set of model parameters {p,, x,, 4., 3}

We highlight that while the transient dynamics of the system described in terms of the four macroscopic var-
iables S, I, X and I3 generates an infinite hierarchy of equations, potential fixed points can be uniquely described
by a closed set of equations, assuming that the distribution of susceptibilities at birth and of the propensity of
newly infected individuals to pass on the disease are known. In other words, the fixed point can be obtained in
terms of the model parameters {g,, 3} and {p,, x }. While we cannot provide an analytical proof that the deter-
ministic system will always converge to a fixed point, we note that, for the range of parameter used, we have not
detected a single case in which numerically integrating Eq. (4) did not lead to a fixed point. In this context it is
useful to point out that, in a homogeneous model, any combination of susceptibility and infectivity within the
range of parameters used here would lead to a basic reproductive number above unity. For such models it is
known that stable fixed points are eventually reached>2.
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Figure 2. Population dynamics. Time series of the population density of total susceptible (panel (a)) and total
infected individuals (panel (b)). Noise-sustained oscillations are clearly seen. The insets show a zoom in on the
cycles. Labels A, B, ..., E are for later purposes (see below).

Linear-noise approximation

We now proceed to analyse the effects of stochasticity in the model, with a particular focus on the interaction
between heterogeneity of individuals in the population and the noise induced by the demographics of the finite
system.

We illustrate these effects in Fig. 2, and show an example of both the deterministic time-evolution of the
system (thick continuous lines) and a realization of an individual-based simulation (thin dashed lines); the latter
illustrates the intrinsic stochasticity of the process. Even after the deterministic model has reached a fixed point,
the individual-based model shows sustained oscillations around it. These oscillations arise from a combination of
complex eigenvalues of the underlying deterministic dynamics and the presence of intrinsic noise coming from
the Poissonian jump process of the master equation. We will focus our attention on these stochasticity-driven
periodic outbreaks in the remainder of this article, and build on the mathematical analysis via the linear-noise
approximation®. In particular we will study how the heterogeneity in the population affects the properties of
these cycles.

Stochastic Dynamics. In order to carry out an analysis of the stochastic dynamics, we write
n/N = x; + %/-/N,and m /N = y + v/ /N, where x(t) and »,(t) are the solutions of the deterministic equa-
tions (4) and the quantities with a tilde déscribe the stochastic fluctuations about the deterministic trajectory. The
above ansatz reflects the anticipation that these fluctuatons will have a relative magnitude of order N~ 2, We then
carry out an expansion in the inverse system size up to and including sub-leading order*. In the fixed point
regime of the deterministic dynamics we then arrive at

%= — K% — (£ + BYXE — xx' B+,

¥, = q,6X + XB" + X"B) — (p + K)J, + 1 (1)

The linear-noise approximation also applies during transients. All objects on the right-hand side of Eq. (11)
then become time dependent. Since we ultimately focus on the oscillations about deterministic fixed point, we
have not made this more explicit. The {n} and {1} are Gaussian white noise variables, with variance and
co-variance (across components) as described in more detail in the Supplement (see Sec. S1). Writing S = Y_ %,
and] = 3.7, we find the following dynamics of fluctuations at the aggregate level,

§ = —kS—(€+BHY-x"B+Y0,

T = +BYX+XB-(p+ n)fl+ S,

X o= —kX- X3B - (€+ B*)inza?i + Zxﬁi,
. ; i

€+ BYX+ BXB ~ (p+ 0B + YAy
a (12)

As in the deterministic analysis, this set of equations is not closed. It describes the dynamics of fluctuations
about the deterministic fixed point, but makes no assumption of stationarity of the fluctuations (for example, cor-
relation functions need not be time translation invariant). The lack of closure is due to the term $° iX,-Zfi in the

equation for X. However, we will show below that a closed set of equations in the stationary state (of fluctuations)
can be derived.

Fluctuation around the deterministic fixed point. We here show that although Egs (12) are not closed,
we can explore noise-induced oscillations around the deterministic fixed point. To this end, we introduce the
Fourier transforms (with respect to time) of the variables %; and 7. We will denote these by ¥; and 3. From the
Langevin equations (11) we find, after re-arranging,
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—X,xi*g+ m,
iw+ K+ €+ BYY,
€+ BYX +x"Blg, + 4,
= w+p+k ' (13)

=~

i

The noise variables n} and {1} are uncorrelated in time, and their variance and correlation across components
can be expressed in terms of known quantities (see Eq. (S3) in the Supplement). The variable w is the conjugate of
time under Fourier transform. Similarly, we find the following for the relevant aggregate quantities,

o 1 1w+DA
§ = ——- —Z@VﬁZn
iw+ K 3
~ 1 iw—+ D 1 ~ ~
I = — B - = U+ A
R B T
> 1 . D ~
X = _—C(zw-i-E)B—Zﬂaz/a,
a
73 X ; P
B ﬂcZiiuH—A- + XOd
zw+E+BCmZ‘A(W+A) (14)

where, for simplicity, we have introduced the notation

A = w+(E+ By,

C = ¢+ B

D = p+x&,

E = p+r-—pBX" (15)

Equations (14) constitute a closed set of equations for the Fourier transforms of the aggregate fluctuations
S, I, X and B in the stationary state. We thus make an observation similar to that in the deterministic analysis:
although we cannot describe the evolution of fluctuations in the transient regime, we can derive a closed descrip-
tion of the statistics of fluctuations about deterministic fixed points within the linear-noise approximation.

Power Spectral Density. Equation (14) can be used to describe the periodic cycles shown in Fig. 2; we will
now proceed to analyse these in more detail. Specifically, we will use the above results to compute the power spec-
tral density (PSD) of fluctuations. This allows us to identify the characteristic frequency of noise-driven epidemic
cycles, and to infer information about their amplitude.

The (average) power spectral density of a time series, z(t), generated from the stochastic individual-based
model, is given by P(w) = (|Z(w)[*), where (---) stands for an average over realizations of the stochastic dynam-
ics. The PSD can be computed analytically for all individual signals x;, y,, and for the aggregate variables S, I, X
and B. The resulting expressions are lengthy; for completeness we provide them in the Supplement (see Sec. S2).
As an illustration we here show the PSD of 3,

2X*C

— 3 DA, PPXX(A; + AW+ AA)
Po) = 27 - B Cig~ XA ) (HCHY pyit

D Tuw+ A} g T AAW + ADW + 4] (16)

with

2

— X P
g =|E + 6C”Zﬁ 1 - Bck Z
1

i

+ AD| (17)

As detailed in the Supplement (see Sec. S2) the power spectra of S, I and X can be expressed in terms of that of
B; many of the characteristics of the spectra of S, I and X are shared with those of B3, or directly related to it. We
note that the RHS of Eq. (16) is proportional to1/|g[, and the same is the case for the spectral densities of X, § and
I (see Eq. (S10) in the Supplement); as a result, some of the key properties of the power spectra are determined by
the behaviour of|g[?, as discussed in more detail below.

Test Against Simulations. To illustrate the model and test our analytical results, we sampled possible het-
erogeneous populations. Specifically, the simulations shown in Fig. 3 are for populations with five susceptible and
three infected subclasses. For each example, the probabilities p} and {g,} were drawn at random from a flat dis-
tribution over the simplexes }>,p, = land} q = 1. Susceptibilities and infectivities were assigned randomly in
the intervals 0.5 < y, < 2.5 and 0.3 < (3, < 1.3. Simulations are for N= 106 and the rates for recovery, birth/
death and 1mm1grat10n were setat p=0.07,x = 5.5 x 10 and ¢ = 5 x 10" ° respectively. The rates 3,, p, & and
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Figure 3. Power spectral densities of the fluctuations of (a) Susceptible and (b) Infected population for seven
different examples of the model, generated as explained in more detail in the text. In all cases theory and
simulations agree.

¢ have units of days™', whereas  , is dimensionless. The chosen rates are representative of childhood diseases such
as whooping cough, measles, rubella or chickenpox®’.

The resulting PSDs are shown in Fig. 3. The continuous thick lines show the analytical result, and dashed lines
are obtained from simulations, as an average over realizations of the individual-based model. As can be seen from
the figure, the predictions of Eq. (S10) precisely match the results from simulations. In all figures, axes labelled
‘frequency’ show f = w/2m, and have units of days™".

It is interesting to note that the power spectral density can remain non-zero at zero frequency. A more detailed
analysis reveals that its value is finite (i.e., not diverging), there is no evidence of e.g. a delta-peak at w=0. This
indicates that the area under the overall correlation function of fluctuations is non-zero, but finite, and there is no
discernible shift of the overall stationary equilibrium (such a shift would result in a diverging contribution to the
power spectrum at w=0).

Consequences of Heterogeneity

Having established an analytical description of quasi-cycles, we now use this theory to identify which properties
of the distribution of p;, x;, 4, and (3, are most relevant for the characteristics of stochastic quasi-cycles in hetero-
geneous populations. Specifically, we study how heterogeneity in the population affects the dominant frequency
of quasi-cycles, their amplitude and the sharpness of the spectra. We will then also discuss if and how the different
subgroups synchronise during the epidemic cycles.

Dominant Cycle Frequency. Numerical inspection of the different terms in the analytical solution of the
PSDs suggests that the dominating element is the factor1/|g|?, as briefly indicated above. The frequency for which
|gf? reaches its minimum roughly corresponds to the dominant cycle frequency, w,, in the PSDs. The minimum of
|g* can be found by differentiation of the expression in Eq. (17). Assuming that Cx; > k, we further approximate
the location of this minimum. This assumption is valid if infection processes occur on a time scale which is much
shorter than the life expectancy of an individual. Further, we assume thatw > A, i.e, that a susceptible individ-
ual typically lives through several epidemic events before it becomes infected. Both approximations are intuitively
plausible for childhood diseases, known to show periodic outbreaks®’. Making these assumptions we find that the
frequency for which |g|* is minimal can be approximated as
wy = XD . (18)

This implies that the characteristic frequency is determined (mostly) by the mean susceptibility at birth and
the mean infectivity at infection (% and 3) and the capacity of replenishment of the susceptible pool (k).

The validity of our approach is confirmed in Fig. 4(a), where we test the approximation against simulations for
a wide set of parameters. A perhaps more intuitive representation of our result can be found in Fig. 4(b), where we
show the power spectra of several sa_mple populations, each with different distributions of {p,, x, q,, 3.}, butall
with the same first moments y and 3. As seen in the figure, this produces spectra of different amplitudes but with
the same characteristic frequency. For comparison we include the homogeneous case K=M=1.

Amplitude of Stochastic Cycles. While we have found above that the dominant frequency of stochastic
cycles is largely determined by the first moments ¥ and 3, the results shown in Fig. 4(b) demonstrate that this is
not the case for the amplitude of the spectra at the dominant frequency. To investigate this further, we evaluate the
analytic expressions for the PSDs in Eq. (S10) at the approximation of w, in Eq. (18). Making the same assump-
tions as in the previous section, we find that the height of the peak in the power spectra can be approximated as

SCIENTIFICREPORTS |7: 13008 | DOI:10.1038/541598-017-12606-x 7



www.nature.com/scientificreports/

T 35 C
oos| @) P (b)
3 /”f
251
g - -
§ 0.002 + ) i Qa
2]
3 P / 15
: «'
P
0.001 - ’..f ible B sl
- ‘ ‘ Infecteq ‘ ‘ ‘ :
1 15 2 25 0 0.0005 0.001 0.0015 0.002 0.0025 0.003
v YB Frequency

Figure 4. Verification of approximation (18) for the dominating frequency of cycles. (a) Frequency f = w/27 at
the maximum of the PSD, determined from Eq. (S10) as a function of Jy_ﬁ_ , for fixed k. The black dashed line
corresponds to Eq. (18). Markers are from 200 different populations, each with 5 susceptible and 3 infected
subgroups, and with random choices of {p., Xp 4, B The values of x; and 3, were chosen from the interval
1.7£1.6999995; g, and p; from a flat distribution. This resulted in values of X and (3 in the range 0.3 to 3.3, and
for x* and 3° in the range 0.1 to 10. (b) PSD of the total infected population of different random distributions of
{p.» X 9, B;})> with equal values for ¥ and 7, but different values of y* and 3. As a consequence of Eqs (18)
and (19), the characteristic frequency is the same for all such samples, but the height of the peak in the PSD
varies considerably (the amplitude of the oscillations changes with the square root of the amplitude of the power
spectra). The dashed grey line corresponds to the homogeneous model, i.e. K=M = 1. The vertical dotted line is
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We note the presence of the second moments y* and 37, unlike in Eq. (18). This indicates that the spread of
susceptibilities and infectivities is relevant to the size of the fluctuations about the endemic equilibrium. We note
that the case K=M =1 in Fig. 4(b) is special, as it leads to zero variance of the disorder by construction. We have
experimented with the number of groups, K and M, and to a good approximation we find that the number of
groups only affects the height and location of the peak in the spectrum through the mean and variance of the
distributions of Fand x.

In Fig. 5 we plot results from the approximation in Eq. (19) against the maximum amplitude of spectra
obtained numerically from the full expression (within the LNA), see Eq. (S10) in the Supplement. The data con-
firms that the approximation is valid for a wide range of parameters. While we find slight deviations at large
amplitudes in the case of the infectives, the approximation is very robust for the susceptible population.

Sharpness of the Spectra. We now turn to the sharpness of the peak in the PSDs. The sharper the peak,
the closer the stochastic outbreaks are to perfect cyclic behaviour. Conversely, cyclic behaviour is less distinct if
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Figure 6. Sharpness of the power spectra as a function of the product of the mean susceptibilities and
infectivities at birth/infection. Data is for the populations described in Fig. 4.

the peak in the spectrum is shallow. This has been described before as the ‘coherence’ of the spectra’®. As we will
investigate a different notion of coherence in the following section and in order to avoid confusion, we will refer
to the concentration of power near the peak of the spectrum as ‘sharpness.

Following'é, we define the sharpness as the relative spectral power accumulated in an interval around the peak,

[42P(w) du

_ Yuw—Aw )
[ Pw) dw (20)

We compute the sharpness numerically, using the expressions in Eq. (S10). In order to evaluate the denomina-
tor in Eq. (20) we integrate up to an upper cutoff of w,,, = 7/100 days '. In the numerator we use
Aw = 0.05w,,,,. The choice of Aw can be illustrated using Fig. 4(b), where the sharpness S of the peak roughly
corresponds to the fraction of total power concentrated in the interval between frequencies of 0.0015 and 0.002
days™.

In Fig. 6 we show the sharpness of spectra for 200 random populations (as described in Fig. 4). It is clear from
the figure that there is a trend of increasing sharpness as the product of the mean susceptibility and infectivity at
birth approaches unity (in the dimensions used here). The spread of the markers on the vertical axis indicates that
there are significant effects of heterogeneity. It proves difficult, though, to find a functional dependence on higher
moments of the distributions of susceptibilities and/or infectivities which would further collapse the data. While
we do not show this data here in detail, we have also experimented with heterogeneity drawn from several distri-
butions (e.g. flat, normal, Gamma). Results suggest that-to a good approximation-the functional shape of the
spectra is determined by 7, ¥, 3% and x?, i.e. by the first two moments of the heterogeneity. Higher-order fea-
tures do not seem to play an important role. We have also tested the stronger property of full collapse upon
re-scaling by peak height and location of peak, i.e. whether there is a scaling property of the type
P(w) = P, % f(w/w,). This appears not to be the case.

Synchronization between Subgroups. We have established so far that introducing heterogeneity leads to
significant changes in the quasi-cycles of the aggregate numbers of susceptible and infective individuals. However,
we have not yet said much about the dynamics of the individual subgroups. In Fig. 7 we show the same example of
sustained oscillations as in the inset of Fig. 2, but instead of the total susceptible and infected population we now
highlight the time evolution of each of the subgroups.

In the upper two panels, (a) and (b), we show time series of the number of individuals in each subgroup nor-
malised by the total population size. More specifically, we show susceptible subclasses (n,/N) in panel (a), and
infective subclasses (11,/N) in panel (b). For each of these, stochastic oscillations can be observed. These cycles are
pronounced for the case of the infective subgroups, panel (b), and more shallow for the susceptibles, panel (a).
This is to be expected, given that the total number of susceptibles is more than an order of magnitude larger than
those of the infectives (see also Fig. 2). From Fig. 7(a), (b) it is clear that all subgroups undergo cycling of roughly
the same frequency. This is confirmed by the power spectra in Fig. 8.

We note that these statements rely on expressing number of individuals in each class as a fraction of the total
population, and not relative to the time-dependent total number of susceptibles or infectives, respectively. We
contrast the above with a representation in which we express the occupancy in each infective subgroup as a frac-
tion of the infectives only, and similarly for the susceptibles. To this end we replot the simulation run shown in
Fig. 7(a), (b), but now in terms of n,/(NS) and m,/(NI), respectively. The quantities NS = Z;”j and NI = >,m,
are the total number susceptible and infective individuals, respectively, and they are time-dependent themselves.
Results are shown in Fig. 7(c), (d). Although the overall number of infectives, NI, undergoes the noise-driven
cycles shown in Fig. 2, we find no discernible structure within the group of infectives; the time series m,/(NI) in
Fig. 7(d) are essentially flat noisy lines. This is what one would expect, since the allocation to each subgroup, I, of
infectives is random when an individual is newly infected, and the recovery rate is the same for all infective
subgroups.
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Figure 7. Stochastic cycles in subgroups of susceptibles and infectives. We show the same simulation run as
in Fig. 2, but now split up into the different subgroups. Panels (a) and (b) show the number of individuals in
each susceptible and infective subgroup normalised by the total population (N). In panels (c) and (d), we show
the number of individuals in each subgroup divided by the total number of susceptible or infected individuals,
respectively (NS and NI). Lines labelled A to E refer to points in the cycles of the aggregate variables S, I shown
in Fig. 2.
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Figure 8. Power spectra of fluctuations for different subclasses of susceptibles and infectives. We use the same
sample of the model parameters {x, p,, 3,, q,} as in Fig. 3. Simulations are averaged over multiple realizations of
the stochastic dynamics, at fixed model parameters. The vertical dotted lines are for later purposes and mark the
locations at which the power spectra take values approximately equal to half the maximum amplitude.

A more complex behaviour can be seen within the group of susceptibles. This group as a whole undergoes
stochastic cycles (see Fig. 2), but an interesting structure is observed within the group of susceptibles as well. The
time series n;/(NS) in Fig. 7(c) show cyclic behaviour, and-to a good approximation-any pair of these time series
is either in phase with each other, or they have a phase difference of .

To explore the phase lag between the different time series we use the so-called complex coherence function®.
This technique relies on computing the cross-spectrum (3?,.(0.;)55 H(w) > between time series x;(f) and x;(t). The phase
lag is then obtained as

Im (£()%f())

L, (w)=tan ——F.
e Re (%(wW)%}(w)) @1)
We stress that the subscript * denotes complex conjugation, and is not to be confused with *, used earlier to
indicate fixed points of the deterministic dynamics. Eq. (21) returns a phase lag for each spectral component, w.
Details can be found in the Supplement (see Sec. S3).

The phase lag between the different groups of susceptible individuals is shown in Fig. 9. The data in panel (a)
corresponds to Fig. 7(a). More precisely, in Fig. 9(a) we pick the time series n,/N as a reference, and show the
phase lag of all subgroups n;/N with respect to this reference time series. We find that the phase lag for frequencies
around the dominant frequency in the power spectra is small, consistent with Fig. 7(a); all time series n,/N
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Figure 9. Phase-lag of time series between different subgroups of susceptibles. Data is for the same setup as in
Fig. 7. We show the phase-lag between subgroups i and reference subgroup 1. Panel (a) depicts the case in which
time series are normalized with respect to the total population, N; in panel (b) input time series are normalized
with respect to the total number of susceptibles NS. As in Fig. 8, the vertical dotted lines mark the half-width of
the peaks in the corresponding power spectra.

oscillate (roughly) in phase with each other. In Fig. 9(b) we repeat this procedure, but now taking the time series
n;/(NS) as an input, corresponding to Fig. 7(c). One then finds a rather different picture; the phase lag around the
dominant frequency takes values either near zero, or close to £7. This indicates that the different classes of sus-
ceptible individuals fall into two groups. The time series in either group are in phase with each other, and in
anti-phase with those in the respective other group. A closer inspection shows that these two groups are formed
by the time series i with x; < $*/K and with x;* > §*/K respectively. This behaviour in turn can be understood
intuitively by revisiting Eq. (9). Assuming x < (¢ + B”)x;, for all i (a valid approximation for the cases analysed
here), we find x;* oc 1/, indicating that the more susceptible classes are less populated at the deterministic fixed
point than the less susceptible ones. During the increasing leg of a stochastic cycle, we expect the number of newly
infected individuals among class i to be proportional to x;" , suggesting that all susceptible classes are depleted
in equal absolute numbers. This in turn means that subclasses with x;* > $*/K will represent an even larger frac-
tion of the susceptible population as the total susceptible population decreases, while the subclasses with
x; < §*/K will represent a smaller fraction. This is what is observed in Fig. 7(c).

Conclusions

In summary, we have explored the SIR model in finite populations, including demographic processes and allowed
for agent-to-agent heterogeneity in both the susceptibility to a disease and the capacity to spread the disease.
This system combines the effects of intrinsic demographic stochasticity (due to random infection, recovery and
birth-death events), with quenched heterogeneity. The focus of our paper is to characterise the interplay between
these two types of stochasticity, and to investigate how the heterogeneity between individuals affects quasi-cycles
driven by intrinsic noise. Our analysis relies on the system-size expansion, which allows us to compute the prop-
erties of these cycles analytically in the linear-noise approximation.

Our principal results can be summarised as follows: (i) In the deterministic limit of infinite populations, no
closed set of equations for macroscopic quantities can be found in the transient regime. Fixed points for aggregate
quantities of this deterministic dynamics can however be fully determined from a set of closed equations for the
total susceptible ($*) and infected (I*) population, and weighted averages of the susceptibility (X*) and infectivity
(B™). (ii) Similarly, the Langevin equations in the linear-noise approximation do not close easily at the aggregate
level, but a closed set of equations for the spectra of fluctuations in S, I, X and B about the deterministic fixed
point can be found in the stationary state. These can be used to analytically describe the stochastic oscillations
about the fixed point. (iii) Within reasonable assumptions, the characteristic frequency of the noise-driven oscil-
lations is determined mostly by the mean susceptibility and infectivity at birth or infection (¥ and 3). However,
the amplitude of the oscillations and the sharpness of peaks in the power spectra will generally depend on the
higher moments of the distribution of susceptibilities and infectivities, in particular also on the agent-to-agent
heterogeneity. (iv) Finally, the number of individuals in the different subclasses of infectives and susceptibles
undergo stochastic cycles as well. If expressed in relation to the total population, these time series are synchro-
nised and in phase. Normalized against the time-dependent total number of infectives, however, the different
infective subclasses show no discernible oscillatory behaviour. Using a similar normalization within the suscepti-
ble population, we find that different subclasses are syncronized and either in phase with each other or have a
phase difference of +=7. These results are confirmed analytically. Regardless of the normalization, we find that the
periodic outbreaks do not follow a hierarchical infection process, and all subgroups have similar absolute deple-
tion/increase in absolute numbers. This is in contrast to what has been reported in single outbreak studies®**.
However, it is important to note that in this existing work the outbreak is tracked in an initial transient period.
Our results are valid after this period, at a deterministic fixed point, where the susceptible population is distrib-
uted in inverse proportion to their susceptibility (as explained above); this is a scenario different to the one stud-
ied in refs®®#2,
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We think our results can be relevant for future work in several ways. First, our work contributes to the ongo-
ing discussion about when and how a model with heterogeneity can be replaced or approximated by a homoge-
neous model. In previous studies, heterogeneous models were compared to homogeneous models with
susceptibility equivalent to the arithmetic® or harmonic mean** of the susceptibilities in the different groups.
More recently, the focus has been placed on equivalent basic reproduction numbers (R)*®. In the heterogeneous
model this requires estimating R, based on, for example, the outbreak size, and therefore the comparison is not
straightforward. Here we have shown that all models within the class we have looked at and with equal values of
X3 generate periodic outbreaks with the same dominating frequency. This characteristic frequency can be used
to define a unique homogeneous model to which models of varying degrees of heterogeneity can be compared.
Furthermore, the dependence of the spectra of oscillations on both the first and higher moments of the distribu-
tion of heterogeneity might provide an avenue towards estimating how heterogeneous a population is from the
observation of epidemic cycles. Finally, the formalism we have developed is versatile and can be applied to study
quasi-cycles in other areas in which heterogeneity might be relevant, for example in predator-prey dynamics or
evolution?*?>%7-%°_ Qur findings indicate that the frequency of quasi-cycles can, to a good approximation, be
obtained from the first moment of the distribution of heterogeneous agent properties, but that their amplitude
depends on higher moments of the disorder. We expect similar behaviour in other heterogeneous systems with
noise-driven cycles.

References

1. Murray, J. D. Mathematical biology, vol. 17 of Interdisciplinary Applied Mathematics (Springer-Verlag, Berlin Heidelberg, 2002), 3rd
edn.

2. Wilkinson, D. J. Stochastic Modelling for Systems Biology (CRC Press, Boca Raton, 2011), 2nd edn.

3. Goel, N. S. & Richter-Dyn, N. Stochastic Models in Biology (Academic Press, New York, NY, 1974).

4. Andersson, H. & Britton, T. Stochastic epidemic models and their statistical analysis, vol. 151 of Lecture Notes in Statistics (Springer
New York, New York, NY, 2000).

5. Elowitz, M. B. Stochastic gene expression in a single cell. Science 297, 1183-1186, https://doi.org/10.1126/science.1070919
(2002).

6. Paulsson, J. Summing up the noise in gene networks. Nature 427, 415-8, https://doi.org/10.1038/nature02257 (2004).

7. Moreno, Y., Pastor-Satorras, R. & Vespignani, A. Epidemic outbreaks in complex heterogeneous networks. The European Physical
Journal B 26, 521-529, https://doi.org/10.1007/s10051-002-8996-y (2002).

8. Raj, A. & van Oudenaarden, A. Nature, nurture, or chance: Stochastic gene expression and its consequences. Cell 135, 216-226,
https://doi.org/10.1016/.cell.2008.09.050 (2008).

9. Lafuerza, L. F. & Toral, R. On the effect of heterogeneity in stochastic interacting-particle systems. Scientific Reports 3, 1189, https://
doi.org/10.1038/srep01189 (2013).

10. Bauch, C. T., Lloyd-Smith, J. O., Coffee, M. P. & Galvani, A. P. Dynamically Modeling SARS and Other Newly Emerging Respiratory
Ilnesses. Epidemiology 16, 791-801, https://doi.org/10.1097/01.ede.0000181633.80269.4c (2005).

11. Smith, D. L., Dushoff, J., Snow, R. W. & Hay, S. I. The entomological inoculation rate and Plasmodium falciparum infection in
African children. Nature 438, 492-495, https://doi.org/10.1038/nature04024 (2005).

12. Heldt, E. S. et al. Single-cell analysis and stochastic modelling unveil large cell-to-cell variability in influenza A virus infection.
Nature Communications 6, 8938, https://doi.org/10.1038/ncomms9938 (2015).

13. Scott, M., Ingalls, B. & Kaern, M. Estimations of intrinsic and extrinsic noise in models of nonlinear genetic networks. Chaos: An
Interdisciplinary Journal of Nonlinear Science 16, 026107, https://doi.org/10.1063/1.2211787 (2006).

14. Swain, P. S., Elowitz, M. B. & Siggia, E. D. Intrinsic and extrinsic contributions to stochasticity in gene expression. Proceedings of the
National Academy of Sciences 99, 12795-12800, https://doi.org/10.1073/pnas.162041399 (2002).

15. Hilfinger, A. & Paulsson, J. Separating intrinsic from extrinsic fluctuations in dynamic biological systems. Proceedings of the National
Academy of Sciences 108, 12167-12172, https://doi.org/10.1073/pnas.1018832108 (2011).

16. Alonso, D., McKane, A. J. & Pascual, M. Stochastic amplification in epidemics. Journal of The Royal Society Interface 4, 575-582,
https://doi.org/10.1098/rsif.2006.0192 (2007).

17. Olsen, L. & Schaffer, W. Chaos versus noisy periodicity: alternative hypotheses for childhood epidemics. Science 249, 499-504,
https://doi.org/10.1126/science.2382131 (1990).

18. Black, A. J., McKane, A. J., Nunes, A. & Parisi, A. Stochastic fluctuations in the susceptible-infective-recovered model with
distributed infectious periods. Physical Review E 80, 021922, https://doi.org/10.1103/PhysRevE.80.021922 (2009).

19. Rozhnova, G. & Nunes, A. Fluctuations and oscillations in a simple epidemic model. Physical Review E 79, 041922, https://doi.
org/10.1103/PhysRevE.79.041922 (2009).

20. McKane, A. J. & Newman, T. J. Predator-prey cycles from resonant amplification of demographic stochasticity. Physical Review
Letters 94, 1-4, https://doi.org/10.1103/PhysRevLett.94.218102 (2005).

21. Bjornstad, O. N. & Grenfell, B. T. Noisy clockwork: time series analysis of population fluctuations in animals. Science 293, 638-643,
https://doi.org/10.1126/science.1062226 (2001).

22. Bladon, A. J., Galla, T. & McKane, A. ]. Evolutionary dynamics, intrinsic noise, and cycles of cooperation. Physical Review E 81;
https://doi.org/10.1103/PhysRevE.81.066122 (2010).

23. Samoilov, M., Plyasunov, S. & Arkin, A. P. Stochastic amplification and signaling in enzymatic futile cycles through noise-induced
bistability with oscillations. Proceedings of the National Academy of Sciences 102, 2310-2315, https://doi.org/10.1073/
pnas.0406841102 (2005).

24. Bolker, B. M. & Grenfell, B. T. Chaos and biological complexity in measles dynamics. Proceedings of the Royal Society B: Biological
Sciences 251, 75-81, https://doi.org/10.1098/rspb.1993.0011 (1993).

25. Schenzle, D. An age-structured model of pre- and post-vaccination measles transmission. Mathematical Medicine and Biology 1,
169-191, https://doi.org/10.1093/imammb/1.2.169 (1984).

26. Earn, D.]. D, Rohani, P, Bolker, B. M. & Grenfell, B. T. A simple model for complex dynamical transitions in epidemics. Science 287,
667-670, https://doi.org/10.1126/science.287.5453.667 (2000).

27. Stone, L., Olinky, R. & Huppert, A. Seasonal dynamics of recurrent epidemics. Nature 446, 533-536, https://doi.org/10.1038/
nature05638 (2007).

28. Diekmann, O., Heesterbeek, ]. & Metz, J. On the definition and the computation of the basic reproduction ratio R 0 in models for
infectious diseases in heterogeneous populations. Journal of Mathematical Biology 28, 365-382, https://doi.org/10.1007/BF00178324
(1990).

29. Hethcote, H. W. & Van Ark, J. W. Epidemiological models for heterogeneous populations: proportionate mixing, parameter
estimation, and immunization programs. Mathematical Biosciences 84, 85-118, https://doi.org/10.1016/0025-5564(87)90044-7
(1987).

SCIENTIFICREPORTS |7: 13008 | DOI:10.1038/541598-017-12606-x 12


http://dx.doi.org/10.1126/science.1070919
http://dx.doi.org/10.1038/nature02257
http://dx.doi.org/10.1007/s10051-002-8996-y
http://dx.doi.org/10.1016/j.cell.2008.09.050
http://dx.doi.org/10.1038/srep01189
http://dx.doi.org/10.1038/srep01189
http://dx.doi.org/10.1097/01.ede.0000181633.80269.4c
http://dx.doi.org/10.1038/nature04024
http://dx.doi.org/10.1038/ncomms9938
http://dx.doi.org/10.1063/1.2211787
http://dx.doi.org/10.1073/pnas.162041399
http://dx.doi.org/10.1073/pnas.1018832108
http://dx.doi.org/10.1098/rsif.2006.0192
http://dx.doi.org/10.1126/science.2382131
http://dx.doi.org/10.1103/PhysRevE.80.021922
http://dx.doi.org/10.1103/PhysRevE.79.041922
http://dx.doi.org/10.1103/PhysRevE.79.041922
http://dx.doi.org/10.1103/PhysRevLett.94.218102
http://dx.doi.org/10.1126/science.1062226
http://dx.doi.org/10.1103/PhysRevE.81.066122
http://dx.doi.org/10.1073/pnas.0406841102
http://dx.doi.org/10.1073/pnas.0406841102
http://dx.doi.org/10.1098/rspb.1993.0011
http://dx.doi.org/10.1093/imammb/1.2.169
http://dx.doi.org/10.1126/science.287.5453.667
http://dx.doi.org/10.1038/nature05638
http://dx.doi.org/10.1038/nature05638
http://dx.doi.org/10.1007/BF00178324
http://dx.doi.org/10.1016/0025-5564(87)90044-7

www.nature.com/scientificreports/

30.

31.

32.

33.

34,

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

Nold, A. Heterogeneity in disease-transmission modeling. Mathematical Biosciences 52, 227-240, https://doi.org/10.1016/0025-
5564(80)90069-3 (1980).

Hickson, R. I. & Roberts, M. G. How population heterogeneity in susceptibility and infectivity influences epidemic dynamics.
Journal of Theoretical Biology 350, 70-80, https://doi.org/10.1016/j.jtb1.2014.01.014 (2014).

Novozhilov, A. Epidemiological models with parametric heterogeneity: Deterministic theory for closed populations. Mathematical
Modelling of Natural Phenomena 7, 147-167, https://doi.org/10.1051/mmnp/20127310 (2012).

Keeling, M. J. The effects of local spatial structure on epidemiological invasions. Proceedings of the Royal Society B: Biological Sciences
266, 859-867, https://doi.org/10.1098/rspb.1999.0716 (1999).

Rohani, P. Opposite patterns of synchrony in sympatric disease metapopulations. Science 286, 968-971, https://doi.org/10.1126/
science.286.5441.968 (1999).

Hagenaars, T. J., Donnelly, C. A. & Ferguson, N. M. Spatial heterogeneity and the persistence of infectious diseases. Journal of
Theoretical Biology 229, 349-359, https://doi.org/10.1016/].jtbi.2004.04.002 (2004).

Yu, J., Jiang, D. & Shi, N. SIR model with random perturbation. Journal of Mathematical Analysis and Applications 360, 235-244,
https://doi.org/10.1016/j.jmaa.2009.06.050 (2009). Global stability of two-group.

Colizza, V., Barrat, A., Barthélemy, M. & Vespignani, A. The role of the airline transportation network in the prediction and
predictability of global epidemics. Proceedings of the National Academy of Sciences 103, 2015-2020, https://doi.org/10.1073/
pnas.0510525103 (2006).

Barthélemy, M., Barrat, A., Pastor-Satorras, R. & Vespignani, A. Velocity and hierarchical spread of epidemic outbreaks in scale-free
networks. Physical Review Letters 92, 178701-1, https://doi.org/10.1103/PhysRevLett.92.178701 (2004).

Keeling, M. J. The implications of network structure for epidemic dynamics. Theoretical Population Biology 67, 1-8, https://doi.
0rg/10.1016/j.tpb.2004.08.002 (2005).

Hufnagel, L., Brockmann, D. & Geisel, T. Forecast and control of epidemics in a globalized world. Proceedings of the National
Academy of Sciences 101, 15124-15129, https://doi.org/10.1073/pnas.0308344101 (2004).

Holme, P. Information content of contact-pattern representations and predictability of epidemic outbreaks. Scientific Reports 5,
14462, https://doi.org/10.1038/srep14462 (2015).

Barthélemy, M., Barrat, A., Pastor-Satorras, R. & Vespignani, A. Dynamical patterns of epidemic outbreaks in complex
heterogeneous networks. Journal of Theoretical Biology 235, 275-288, https://doi.org/10.1016/j.jtbi.2005.01.011 (2005).

Boylan, R. D. A note on epidemics in heterogeneous populations. Mathematical Biosciences 105, 133-137, https://doi.
0rg/10.1016/0025-5564(91)90052-K (1991).

Andersson, H. & Britton, T. Heterogeneity in epidemic models and its effect on the spread of infection. Journal of Applied Probability
35, 651-661, https://doi.org/10.1239/jap/1032265213 (1998).

. Gardiner, C. W. Handbook of stochastic methods (Springer-Verlag, Berlin Heidelberg, 2003), 3rd edn.
. van Kampen, N. G. Stochastic processes in physics and chemistry. 3rd edn, (Elsevier, Amsterdam, 1992).
. Rozhnova, G. & Nunes, A. Cluster approximations for infection dynamics on random networks. Physical Review E 80, 051915,

https://doi.org/10.1103/PhysRevE.80.051915 (2009).

Kermack, W. O. & McKendrick, A. G. A contribution to the mathematical theory of epidemics. Proceedings of the Royal Society A:
Mathematical, Physical and Engineering Sciences 115, 700-721, https://doi.org/10.1098/rspa.1927.0118 (1927).

Britton, T. & O’Neill, P. D. Bayesian Inference for Stochastic Epidemics in Populations with Random Social Structure. Scandinavian
Journal of Statistics 29, 375-390, https://doi.org/10.1111/1467-9469.00296 (2002).

Shulgin, B., Stone, L. & Agur, Z. Pulse vaccination strategy in the SIR epidemic model. Bulletin of mathematical biology 60,
1123-1148, https://doi.org/10.1016/S0092-8240(98)90005-2 (1998).

Gillespie, D. T. Exact stochastic simulation of coupled chemical reactions. The Journal of Physical Chemistry 81, 2340-2361, https://
doi.org/10.1021/j100540a008 (1977).

Keeling, M. J. & Rohani, P. Modeling Infectious Diseases in Humans and Animals (Princeton University Press, Princeton, NJ,
2008).

Anderson, R. M. & May, R. M. Infectious diseases of humans: Dynamics and control (Oxford University Press, Oxford, 1992).

Stoica, P. & Moses, R. Spectral analysis of signals (Pearson Prentice Hall, Upper Saddle River, 2004).

Ball, F. Deterministic and stochastic epidemics with several kinds of susceptibles. Advances in Applied Probability 17, 1, https://doi.
org/10.2307/1427049 (1985).

Yates, A., Antia, R. & Regoes, R. R. How do pathogen evolution and host heterogeneity interact in disease emergence? Proceedings
of the Royal Society B: Biological Sciences 273, 3075-3083, https://doi.org/10.1098/rspb.2006.3681 (2006).

Butler, T. & Goldenfeld, N. Robust ecological pattern formation induced by demographic noise. Physical Review E 80, 030902,
https://doi.org/10.1103/PhysRevE.80.030902 (2009).

Black, A. J. & McKane, A. J. Stochastic formulation of ecological models and their applications. Trends in Ecology ¢ Evolution 27,
337-345, https://doi.org/10.1016/j.tree.2012.01.014 (2012).

Cremer, J., Reichenbach, T. & Frey, E. Anomalous finite-size effects in the Battle of the Sexes. The European Physical Journal B 63,
373-380, https://doi.org/10.1140/epjb/e2008-00036-x (2008).

Mobilia, M. Oscillatory dynamics in rock “paper” scissors games with mutations. Journal of Theoretical Biology 264, 1-10, https://
doi.org/10.1016/j.jtbi.2010.01.008 (2010).

Acknowledgements

FHA thanks Consejo Nacional de Ciencia y Tecnologia (CONACyT, Mexico) for support. TG acknowledges
funding by the Engineering and Physical Sciences Research Council (EPSRC, UK) under grant number EP/
K037145/1. TG would like to thank the Group of Nonlinear Physics, University of Santiago de Compostela, Spain
for hospitality.

Author Contributions
EH.A. and T.G. conceived and designed the study. EH.A. carried out the analytical calculations and computer
simulations. EH.A. and T.G. interpreted results. EH.A. and T.G. wrote and reviewed the manuscript.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-017-12606-x.

Competing Interests: The authors declare that they have no competing interests.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

SCIENTIFICREPORTS |7: 13008 | DOI:10.1038/541598-017-12606-x 13


http://dx.doi.org/10.1016/0025-5564(80)90069-3
http://dx.doi.org/10.1016/0025-5564(80)90069-3
http://dx.doi.org/10.1016/j.jtbi.2014.01.014
http://dx.doi.org/10.1051/mmnp/20127310
http://dx.doi.org/10.1098/rspb.1999.0716
http://dx.doi.org/10.1126/science.286.5441.968
http://dx.doi.org/10.1126/science.286.5441.968
http://dx.doi.org/10.1016/j.jtbi.2004.04.002
http://dx.doi.org/10.1016/j.jmaa.2009.06.050
http://dx.doi.org/10.1073/pnas.0510525103
http://dx.doi.org/10.1073/pnas.0510525103
http://dx.doi.org/10.1103/PhysRevLett.92.178701
http://dx.doi.org/10.1016/j.tpb.2004.08.002
http://dx.doi.org/10.1016/j.tpb.2004.08.002
http://dx.doi.org/10.1073/pnas.0308344101
http://dx.doi.org/10.1038/srep14462
http://dx.doi.org/10.1016/j.jtbi.2005.01.011
http://dx.doi.org/10.1016/0025-5564(91)90052-K
http://dx.doi.org/10.1016/0025-5564(91)90052-K
http://dx.doi.org/10.1239/jap/1032265213
http://dx.doi.org/10.1103/PhysRevE.80.051915
http://dx.doi.org/10.1098/rspa.1927.0118
http://dx.doi.org/10.1111/1467-9469.00296
http://dx.doi.org/10.1016/S0092-8240(98)90005-2
http://dx.doi.org/10.1021/j100540a008
http://dx.doi.org/10.1021/j100540a008
http://dx.doi.org/10.2307/1427049
http://dx.doi.org/10.2307/1427049
http://dx.doi.org/10.1098/rspb.2006.3681
http://dx.doi.org/10.1103/PhysRevE.80.030902
http://dx.doi.org/10.1016/j.tree.2012.01.014
http://dx.doi.org/10.1140/epjb/e2008-00036-x
http://dx.doi.org/10.1016/j.jtbi.2010.01.008
http://dx.doi.org/10.1016/j.jtbi.2010.01.008
http://dx.doi.org/10.1038/s41598-017-12606-x

www.nature.com/scientificreports/

Open Access This article is licensed under a Creative Commons Attribution 4.0 International
CE | jcense, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2017

SCIENTIFICREPORTS |7: 13008 | DOI:10.1038/541598-017-12606-x 14


http://creativecommons.org/licenses/by/4.0/

	The effects of heterogeneity on stochastic cycles in epidemics

	Model

	Deterministic analysis

	Dynamics. 
	Fixed point. 

	Linear-noise approximation

	Stochastic Dynamics. 
	Fluctuation around the deterministic fixed point. 
	Power Spectral Density. 
	Test Against Simulations. 

	Consequences of Heterogeneity

	Dominant Cycle Frequency. 
	Amplitude of Stochastic Cycles. 
	Sharpness of the Spectra. 
	Synchronization between Subgroups. 

	Conclusions

	Acknowledgements

	Figure 1 SIR model with heterogeneous susceptibility and infectivity.
	Figure 2 Population dynamics.
	Figure 3 Power spectral densities of the fluctuations of (a) Susceptible and (b) Infected population for seven different examples of the model, generated as explained in more detail in the text.
	Figure 4 Verification of approximation (18) for the dominating frequency of cycles.
	Figure 5 Verification of approximation (19) for the peak-height of the spectral densities.
	Figure 6 Sharpness of the power spectra as a function of the product of the mean susceptibilities and infectivities at birth/infection.
	Figure 7 Stochastic cycles in subgroups of susceptibles and infectives.
	Figure 8 Power spectra of fluctuations for different subclasses of susceptibles and infectives.
	Figure 9 Phase-lag of time series between different subgroups of susceptibles.




