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Objective: Vascular cognitive impairment (VCI) is a common complication in adult

patients with moyamoya disease (MMD), and is reversible by surgical revascularization

in its early stage of mild VCI. However, accurate diagnosis of mild VCI is difficult

based on neuropsychological examination alone. This study proposed a method of

dynamic resting-state functional connectivity (FC) network to recognize global cognitive

impairment in MMD.

Methods: For MMD, 36 patients with VCI and 43 patients with intact cognition (Non-VCI)

were included, as well as 26 normal controls (NCs). Using resting-state fMRI, dynamic

low-order FC networks were first constructed with multiple brain regions which were

generated through a sliding window approach and correlated in temporal dimension. In

order to obtain more information of network interactions along the time, high-order FC

networks were established by calculating correlations among each pair of brain regions.

Afterwards, a sparse representation-based classifier was constructed to recognize MMD

(experiment 1) and its cognitive impairment (experiment 2) with features extracted from

both low- and high-order FC networks. Finally, the ten-fold cross-validation strategy was

proposed to train and validate the performance of the classifier.

Results: The three groups did not differ significantly in demographic features

(p > 0.05), while the VCI group exhibited the lowest MMSE scores (p = 0.001).

The Non-VCI and NCs groups did not differ significantly in MMSE scores (p

= 0.054). As for the classification between MMD and NCs, the area under the

receiver operating characteristic curve (AUC), accuracy, sensitivity, and specificity

of the classifier reached 90.70, 88.57, 93.67, and 73.08%, respectively. While for

the classification between VCI and Non-VCI, the AUC, accuracy, sensitivity, and

specificity of the classifier reached 91.02, 84.81, 80.56, and 88.37%, respectively.
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Conclusion: This study not only develops a promising classifier to recognize VCI in

adult MMD in its early stage, but also implies the significance of time-varying properties

in dynamic FC networks.

Keywords: moyamoya disease, resting-state, fMRI, vascular cognitive impairment, functional connectivity, sliding

window, functional dynamics

INTRODUCTION

Moyamoya disease (MMD) is a cerebrovascular disease
characterized by both progressive stenosis of the terminal
portion of the bilateral internal carotid arteries, and extensive
network of cerebral collaterals (Suzuki and Kodama, 1983).
Initial presentations of MMD are categorized into symptoms
due to either cerebral ischemia (i.e., ischemic stroke) or
compensatory mechanisms responding to the ischemia (i.e.,
intracranial bleeding from fragile collaterals) (Scott and Smith,
2009). Vascular cognitive impairment (VCI) is a common
complication in adult patients with MMD, the diagnostic criteria
of which is based on a link between the cognitive disorder and
evidences of subclinical cerebral vascular damage or clinical
stroke (Gorelick et al., 2011). The occurrence of VCI in MMD
has been proved to be caused by subclinical cerebral vascular
defects or clinical stroke (Karzmark et al., 2012). Furthermore,
executive function is deemed to be predominantly impaired, and
other cognitive domains of memory, language, and visuospatial
functions may also be affected (Weinberg et al., 2011). As a
continuous process, the VCI is reversible in its early stage of mild
impairment through surgical revascularization (Gorelick et al.,
2011; Lei et al., 2017a). Thus, the detection of mild or suspected
VCI is considered as clinical significance. Neuropsychological
assessment with cognitive tests is commonly used, but is limited
to patients with disabilities, illiteracy, or uncooperativeness.
Therefore, an alternative measurement with high sensitivity,
reliability, and validity is needed.

In previous studies, the deterioration of intrinsic neural
interaction has been proved to be the pathophysiological basis of
VCI, and functional brain networks of executive-control, default-
mode, and salience networks are found to be abnormal in adult
MMD with VCI (Cocchi et al., 2014; Liang et al., 2016; Lei et al.,
2017b). Furthermore, the executive-control network is deemed
to be primarily deteriorated with disease progression (Schubert
et al., 2014; Lei et al., 2017b). Normally, these resting-state fMRI
studies are based on the setting that the blood oxygenation
level dependent (BOLD) signal is stationary across the whole
scanning session. This setting simplifies the computation and
results in static functional connectivity (FC) patterns among
brain regions. In detail, brain regions are commonly considered
as vertexes and their functional interactions are regarded as edges
for network construction.

However, the real neural synchronization is time-varying and
shifts quickly to meet cognitive demands (Cole et al., 2013; Allen
et al., 2014). These dynamic FC studies partition the entire time
series of BOLD signal into numerous segments of subseries on
the basis of sliding window approach, and a series of temporal
FC networks are constructed for each segment of the signal (Wee

et al., 2016). The adjacent networks are deemed to share a similar
topological pattern and connection strength, and any changes can
be recognized and utilized as discriminative information for VCI
detection. In detail, the relative fixed positions of brain regions
in each segment of the time series are deemed as vertexes, and
their functional interactions between each pairs of regions are
regarded as edges for a high-order FC network construction
(Chen et al., 2016). The high-order FC networks can provide
more neural interaction information and have been applied in
several fMRI-based studies covering Alzheimer’s disease (Chen
et al., 2017) and Autism spectrum disorder (Zhao et al., 2018).

Recent studies reveal that sparse representation-based
classification (SRC) outperforms some traditional classifiers like
the support vector machine (Zhang et al., 2011; Yuan and Yan,
2012). The sparse representation coefficients are able to share
some intrinsic relation among different features from one sample
and such a classifier performs well in solving the problem of
over-fitting (Cai et al., 2016). In this study, features from both
low-order and high-order FC networks were extracted through
this classifier, and trained to recognize MMD (experiment 1)
and its cognitive impairment (experiment 2). Simply put, the
aim was to develop an alternative to neuropsychological tests,
a sensitive and reliable tool to recognize the general cognitive
status of moyamoya patients.

MATERIALS AND METHODS

Participants
A total of 79 patients with MMD and 26 matched healthy
subjects as normal controls (NC) were enrolled in this study.
Inclusion criteria has been published in a previous study of ours
(Lei et al., 2020) and are detailed as follows: (i) right-handed
Chinese patients aged over 18 years; (ii) physically capable of
undergoing cognitive testing; (iii) no evidence of intracerebral
hemorrhage and cortical or subcortical infarct larger than 8mm
in maximum dimension on structural images (Karzmark et al.,
2012; Lei et al., 2014; Kazumata et al., 2015); (iv) no brain
surgery before recruitment; (v) absence of any situation that
could compromise cognition, such as diseases and drug use; and
(vi) absence of severe systemic or other cerebrovascular diseases.
Healthy young subjects with no memory complaints, mental
diseases, any cerebrovascular disease were enrolled in the normal
control group.

After assessed through the neuropsychological testing of
global cognitive state using the mini-mental state examination
(MMSE), 36 patients were diagnosed with VCI and the rest 43
patients were with intact cognition (Non-VCI) in accordance
with 2011 AHA/ASA statement of VCI (Gorelick et al., 2011).
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FIGURE 1 | The overall framework of the proposed method. Procedure with dashed lines indicates the construction of high-order FC network. The dotted arrows

mean extracting features from low-order and high-order FC networks, respectively, and the fused features consist of them.

In detail, the VCI is defined as 1.5 standard deviations below
the mean score of the matched NC group. This study was
approved by the Institutional Review Board in our hospital and
was conducted in accordance with the Helsinki Declaration. All
participants provided informed consent.

Image Acquisition and Preprocessing
Data were scanned and preprocessed with a similar protocol
of our previous study (Lei et al., 2020). Using a 3.0 TeslaMR
system (GE Healthcare, GE Asian Hub, Shanghai, China), the
fMRI data were obtained with gradient echo-planar imaging,
time repetition/time echo = 2000/30ms; flip angle = 90◦; field
of view = 220 × 220 mm2; slice thickness = 3.2mm. The scan
lasted for approximately 8min. Data preprocessing procedures
were performed with Statistical Parametric Mapping (SPM12;
http://www.fil.ion.ucl.ac.uk/spm) and Data Processing Assistant
for Resting-State fMRI (DPARSF) (Yan and Zang, 2010). Briefly,
data were corrected, normalized, and spatially smoothed. A linear
trend subtraction and temporal filtering (0.01–0.08Hz) were
performed to reduce the effect of low-frequency drifts and high-
frequency noise. The cerebrospinal fluid and white matter were
then regressed out as covariates. The Automated Anatomical
Labeling (AAL-116) template was used to partition the fMRI data
into 116 regions of interest (ROIs) (Tzourio-Mazoyer et al., 2002).
Since the first 10 volumes were discarded from the total 240
time-points, the mean time series containing 230 volumes of each
region was obtained by averaging the voxels within the region.

Construction of FC Networks
Figure 1 shows the overall framework of the proposed method,
and the dynamic low-order FC networks are constructed at
first. Primarily, the entire time series of BOLD signal were
partitioned into sub-series through the sliding window approach.
Specifically, the time series with T temporal image volumes
generates K = ⌊(T −W) /S⌋ + 1 sub-series, where W denotes
the length of sliding window and S is the step size. Provided that

x
(k)
i (n) ∈ RW is the k-th sub-series in the i-th ROI of the n-

th subject, then X(k) (n) =
[

x
(k)
1 (n) , x

(k)
2 (n) , . . . , x

(k)
Q (n)

]

∈

RW×Q represents the k-th sub-series in total Q brain regions
of the n-th subject, k = 1, 2, . . . ,K. A symmetric connectivity

matrix C(k)(n) = [c
(k)
ij (n)] ∈ RQ×Q, namely a low-order FC

network, can be constructed using X(k) (n), where each entry in
the matrix defines the Pearson’s correlation strength between two
different ROIs, that is:

c
(k)
ij (n) = corr

(

x
(k)
i (n) , x

(k)
j (n)

)

Let
{

x
(k)
i (n)

}

be the nodes and their correlation strength
{

c
(k)
ij (n)

}

stands for the weight of links between each pair of

nodes, then K dynamic low-order FC networks can be estimated
for n-th subject. Similarly, a static low-order FC network is the
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special case with K = 1. In this study, the length of sliding
windowW and the step size S were 90 and 1, respectively.

Afterwards, the dynamic high-order FC networks were
generated through correlation of low-order FC networks layer
by layer. As the correlation of correlations, a high-order FC
network reveals more complex interaction relationships among
brain regions. Firstly, a correlation time series of n-th subject

can be expressed as yij (n) =
[

c
(1)
ij (n) , c

(2)
ij (n) , . . . , c

(K)
ij (n)

]T
∈

RK , which takes out the i-j-th elements from K low-order FC
networks to record the variation of correlation between i-th
and j-th ROI. And the high-order correlation of n-th subject is
calculated as:

hij,rl(n) = corr(yij (n) , yrl (n ))

Since there are Q2 entries in a low-order FC network, which
results in the number of

{

yij (n)
}

being Q2, a high-order FC

network will be H(n) = [hij,rl(n)] ∈ RQ
2×Q2

. Such large-scale
network may not only lead to time consuming computation, but
also trigger the curse of dimensionality when extracting local
features from the network. Thus, a clustering method to group
correlation time series was used to achieve network reduction
(Chen et al., 2016).

In particular, we stacked all the
{

yij (n)
}

of the totalN subjects
together to form a new item Yij = [yij (1) , yij (2) , . . . , yij (N)] ∈
RK×N first. Then a hierarchical clusteringmethod withminimum
variance algorithm was implemented to generate V clusters that
members in the same cluster share the similar variation in
temporal dimension. Suppose that ϕv is the v-th cluster and |ϕv|

denotes the size of it, the mean correlation time series of the v-th
cluster for the n-th subject is as follows:

yv(n) =

∑

ij∈ϕv
yij(n)

|ϕv |

After that, a final high-order FC network after network reduction
is constructed by regarding

{

yv(n)
}

as the nodes and their

correlation strength
{

huv (n)
}

as the weight of links, where

huv (n) can be defined as:

huv (n) = corr(yv(n), yu(n))

Feature Extraction and Selection
After the construction of low-/high-order FC networks, two
weighted undirected graphs for each subject were generated. It is
noteworthy that even if each subject has K temporal low-order
FC networks, the final low-order FC network used in feature
extraction is their averaged FC network. The local clustering
coefficient, which was adopted to testify that the node’s neighbors
were still neighbors of each other, was calculated for feature
extraction from these networks (Rubinov and Sporns, 2010).
It indicates the prevalence of clustered connectivity around
individual nodes and its specific definition is as follows:

fi =

∑

j∈Ni
(wij)

1
3

1
2 |Ni| (|Ni| − 1)

where Ni denotes the neighbors of node i and wij is the weight of
link between node i and j. The denominator in the formula is the
total number of possible links among node i’s neighbors.

Thus, concatenated feature sets including Q and V features
from both low-order and high-order networks were generated
for each subject. However, not all features are significant
in classification due to their latent correlations. Besides,
excessive features may lead to over-fitting. Therefore, a sparse
representation (SR) and Locality Preserving Projection (LPP)-
combined feature selection method was adopted to reduce some
redundant features (Wu et al., 2019). The model is formulated as:

ŵ = arg minw

∥

∥

∥
y− wTX

∥

∥

∥

2

F
+ λ1tr

(

wTXLXTw
)

+λ2 ‖w ‖2,1

where y denotes the gold labels and X denotes the sample
feature set. The L is the Laplacian graph and λ2 corresponds
to a regularization item. Once the representation coefficient ŵ
is calculated, the importance of features can be obtained by
ranking the absolute value of each element in ŵ. Specifically,
the higher the absolute value is, the more important the feature
is. Then, a sequential forward selection algorithm is used to
decide the ultimate feature subset for classification. In this
algorithm, ranked features are added to the feature subset one by
one, followed by classifier training and validation, then subsets
with the highest classification performance are selected as the
final result.

Sparse Representation-Based
Classification
There are two main steps of the SRC, computing representation
coefficients and minimizing residuals between testing samples
and their estimated results (Wright et al., 2009). For each class
i, let δi be the characteristic function that selects the coefficients
associated with the i-th class, then the following formulas show
the corresponding steps mentioned above:

ŵ = arg minw ‖w‖1 s.t. Xw = y

identity(y) = arg mini ri
(

y
)

= arg mini
∥

∥y− Xδi(ŵ)
∥

∥

2

where X is the whole training set and y is a test sample.

TABLE 1 | Detailed demographics and cognitive testing of the subjects.

Variables VCI (n = 36) Non-VCI

(n = 43)

NC (n = 26) F/X2 value

(p-value)

Age (years) 43.89 ± 10.38 38.51 ± 10.57 41.27 ± 11.15 2.51 (0.0866)

Male (%) 16 (44.44) 20 (46.51) 12 (46.15) 0.0364 (0.982)

Education

(years)

8.58 ± 4.06 9.86 ± 3.86 8.96 ± 4.28 2.484

(0.2888)a

MMSE 21.14 ± 4.21 27.86 ± 1.52 28.23 ± 1.68 66.338

(0.001)a

MMSE, Mini-Mental State Examination.
aKruskal-Wallis test by ranks.
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Classifier Training, Validation, and
Evaluation
A ten-fold cross-validation strategy was adopted because of
the small sample size. The whole dataset was divided into 10
subsets, among which, nine-folds were used for training to find
the optimal hyper-parameters, while the rest fold was used to
test classification accuracy. Such procedure was repeated 10
times and the averaged results of these 10 rounds was deemed
the final classification result. To evaluate the performance of
the proposed method, metrics of the area under the receiver
operating characteristic curve (AUC), accuracy (ACC), sensitivity
(SEN), and specificity (SPE) were calculated.

Algorithm Implementation
Incorporating the aforementioned classification and training
strategies, details about algorithm implementation is shown
in Supplementary Table 1. And evaluation metrics can be
calculated using the predicted identity and its corresponding gold
labels. All of the experiments were performed in Matlab R2015b.

RESULTS

Participants
In experiment 1, all 79 patients with MMD were collected as
positive samples for diagnosis modeling, and the 26 healthy
subjects were used as negative samples. In the following
experiment 2, the 36 patients with VCI were selected as positive
samples, while the rest 43 patients with Non-VCI were used as
negative samples. Detailed comparison of their demographic and
cognitive features are showed in Table 1.

Low-Order FC Network Construction
Figure 2 illustrates the temporal variations of BOLD signal by
comparing a static low-order FC network covering the whole-
time volumes with several dynamic FC networks randomly
selected in different sliding windows in a patient with MMD.
Results indicate that in different sliding windows, the correlation
patterns among ROIs are not consistent, implying that dynamic
FC network analysis provides more temporal information than
the static network.

Afterwards, the averaged dynamic low-order FC networks
in all siding windows from all the corresponding subjects
were calculated and compared between the MMD and NC
groups (Figures 3A,B). Visual inspection indicates that there are
more correlations among ROIs in the NC group. Afterwards,
similar comparison was performed between the VCI and
Non-VCI groups, and generated less unremarkable difference
(Figures 3C,D).

High-Order FC Network Construction
For reducing computation complexity and other side-effect taken
by reluctant features, a bottom-up hierarchical clustering method
was adopted to divide correlated time series in all sliding windows
from all subjects into some clusters. In the process, similar
correlation information along the time series was included in the
same cluster, and discriminative dynamic patterns were divided
into different clusters.

The averaged high-order FC networks in all siding windows
from all the corresponding subjects were calculated and
compared between the MMD and NC groups (Figures 4A,B).
Although the two averaged networks still share similar patterns
of correlation, the NC group exhibits more clusters with positive

FIGURE 2 | Low-order FC network for a random patient with MMD. (A) Shows the static network constructed by covering the whole-time volumes; (B–G) Show

several dynamic networks in different sliding windows. Each element in the matrix is the correlation between two brain regions through the pairwise Pearson’s

correlation analysis. Element with light color indicates positive correlation, while the dark color shows a competitive or anti-correlation relationship between regions.
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FIGURE 3 | Averaged low-order FC networks for all MMD (A), NC (B), VCI (C), and Non-VCI (D) groups, respectively. Each averaged network is generated by

averaging networks of all sliding windows from all the corresponding subjects. Each element in the matrix is the correlation between two brain regions through the

pairwise Pearson’s correlation analysis. Element with light color indicates positive correlation, while the dark color shows a competitive or anti-correlation relationship

between regions.

correlations. Next, unremarkable difference is noted when
comparing averaged high-order FC networks of the VCI group
with those of the Non-VCI group (Figures 4C,D). However,
some latent and discriminative features can still be selected in the
following part.

Feature Selection
Since the 116 time series of ROIs were generated from the low-
order network and another 300 clusters were grouped from
high-order network construction after investigating the effect of
clustering number, a total of 416 features were extracted for each
subject. Using the SR and LPP-combinedmethod, followed by the
sequential forward selection algorithm, 20 features were selected
from experiment 1 and 2 as themost discriminative ones from the
total 416 features. Their normalized weight was listed together
and shown in Figure 5. In order to valid the discriminability
of these selected features, we implemented the independent-
sample T-test for each selected feature in two experiments and
chose three features which had the minimum p-value from both
low- and high-order sets to depict their boxplots (Experiment 1,
Figures 6A,B; experiment 2, Figures 6C,D).

Referring to the low-order network, the corresponding brain
regions from selected features in the two experiments are listed

in Figure 7 and Table 2. Results indicate that feature patterns
for experiment 1 and 2 are different. Referring to the high-
order network, a cluster may consist of many ROI pairs instead
of a certain brain region. Figures 7C,D Show the importance
of selected clusters rather than ROI correlation matrices. The
brighter the color is, the more important the cluster is.

Classifier Validation and Evaluation
For experiment 1, the AUC, ACC, SEN, and SPE are 90.7, 88.57,
93.67, and 73.08%, respectively. Afterwards, those matrices for
experiment 2 reach 91.02, 84.81, 80.56, and 88.37%, respectively.

DISCUSSION

In order to detect the VCI of adult patients with MMD in
its early and reversible stage, the present study proposes a
method to recognize the MMD (experiment 1) and its cognitive
impairment (experiment 2) by using the low- and high-order
features extracted from resting-state fMRI data. The promising
classification results of two experiments with ten-fold cross-
validation strategy clearly show that integrating time-varying
properties in dynamic FC networks from different orders has
great clinical significance.
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FIGURE 4 | Averaged high-order FC networks for all MMD (A), NC (B), VCI (C), and Non-VCI (D) groups, respectively. Each averaged network is generated by

averaging networks of all sliding windows from all the corresponding subjects. Each element in the matrix is the correlation between two clusters through the pairwise

Pearson’s correlation analysis. Element with light color indicates positive correlation, while the dark color shows a competitive or anti-correlation relationship

between clusters.

FIGURE 5 | Normalized weight of final selected features for experiment 1 [(A) MMD and NC] and 2 [(B) VCI and Non-VCI]. These features are selected from 116

low-order features to 300 high-order features. The red color indicates low-order features, while the blue color represents high-order features.

The MMD is commonly reported to be accompanied with
VCI, and surgical revascularization is proved to be beneficial at its
early stage through improving cerebral hemodynamics (Gorelick

et al., 2011; Karzmark et al., 2012; Lei et al., 2017a; Kazumata
et al., 2019). Thus, timely and accurate detection of VCI is with
clinical significance. Unlike neurodegenerative diseases such as
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FIGURE 6 | Boxplot of some features from both low-order (A,C) and high-order (B,D) networks for experiment 1 (A,B) and 2 (C,D), respectively. The lighter color

corresponds to negative samples while the darker color corresponds to positive samples.

Alzheimer’s disease and Parkinson’s disease, patients with VCI
are normally with neurological defects such as hemiplegia and
aphasia, and not suitable for regular neuropsychological testing.
Besides, it is not easy to distinguish between mild VCI and
normal cognition. Therefore, alternative measures with high
accuracy and sensitivity should be developed. Nowadays, the
resting-state fMRI is widely used to visualize brain functioning
in both healthy and diseased subjects by relating to cognitive
outcomes (Liang et al., 2016; Lei et al., 2017b). Specific to adult
MMD, functional deficits of both regional neurons and global
interactions are detected by comparing fMRI data of patients with
healthy controls (Lei et al., 2014, 2017b; Kazumata et al., 2019).
However, how to individualize and stabilize such measurement
has become the next problem.

For recognition of VCI in adult MMD, dynamic low-order
FC networks were primarily constructed and several features
were extracted with high discriminability. Among these features,
the anterior middle temporal gyrus is reported to be primarily
involved in the default mode network (DMN), semantic retrieval,
and sound recognition (Xu et al., 2015). The anterior cingulate
cortex is a key node of salience network (Seeley et al., 2007).
The gyrus rectus and left angular gyrus are both key nodes of
DMN and reported to be involved in the brain reward response
(Shott et al., 2015) and the retrieval of episodic and semantic
information (Bonnici et al., 2016), respectively. Referring to the

rest 4 features of cerebellum, they are also closely related to
cognitive function (Gatti et al., 2020; Mannarelli et al., 2020; Van
Overwalle et al., 2020).

Feature extraction from high-order FC networks is one
of the most important reasons for outstanding recognition
performance. After constructing dynamic low-order FC
networks which indicates the correlation between two brain
regions in a time-varying way, we assume that different pairs
of brain regions could also influence each other, and their
high-order correlation could contain more useful information
for diagnosis. Thus, the Ward’s linkage clustering is used for
constructing high-order FC network, aiming at both mining
the deeper interaction information and avoiding the curse
of dimensionality (Chen et al., 2016). Compared with the
low-order model, the high-order model discovers the dominant
dynamic pattern from all correlation time series by clustering
and obtaining more complex interaction relationships among
ROI pairs. Besides, high-order networks are invariant to the
chronological order of temporal low-order networks, and
contribute to more consistent and meaningful comparisons
across subjects. In the present study, we find out that there
are more visual differences between healthy subjects and
patients with MMD when comparing both the averaged low-
and high-order networks. Besides, among the final selected
features in experiment 2, high-order features present not only
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FIGURE 7 | Visualized ROIs selected from both low-order (A,B) and high-order (C,D) networks for experiment 1 (A,C) and 2 (B,D), respectively. For (A) and (B), the

size of nodes indicates the weight of corresponding ROIs. For (C) and (D), the brighter the color is, the more important a cluster is (C,D).

TABLE 2 | Features selected from the low-order FC networks.

Experiment 1 Experiment 2

ROI indexa Abbr ROI indexa Abbr

112 Vermis_6 88 Temporal_Pole_Mid_R

109 Vermis_1_2 107 Cerebelum_10_L

69 Paracentral_Lobule_L 31 Cingulum_Ant_L

71 Caudate_L 91 Cerebelum_Crus1_L

102 Cerebelum_7b_R 28 Rectus_R

84 Temporal_Pole_Sup_R 69 Paracentral_Lobule_L

18 Rolandic_Oper_R 65 Angular_L

39 ParaHippocampal_L 93 Cerebelum_Crus2_L

21 Olfactory_L 96 Cerebelum_3_R

77 Thalamus_L

8 Frontal_Mid_R

114 Vermis_8

aThe Automated Anatomical Labeling (AAL-116) template.

Abbr, abbreviation; ROI, region of interest.

higher weight but also greater numbers, suggesting outstanding
discriminability of high-order FC networks.

In most medical image researches, large number of features
but small sample sizes are key issues which may lead to

unsatisfactory results. To address this problem, some sparse
representation (SR) methods were proposed in terms of feature
selection and classification. For example, Lin et al. (2014) and
Cao et al. (2014) used the SR for both fMRI and single nucleotide
polymorphisms features selection in schizophrenia, while Yuan
and Yan (2012) and Zhang et al. (2011) applied the SR into
the final classification. In our study, two SR-related strategies
are adopted which includes a SR and LPP-combined method
for feature selection, and a SR-based classifier. The promising
final recognition results validate the effectiveness of this proposed
strategy. For feature selection, the SR regression is used to
select discriminative features by giving inter-class the largest
variance while intra-class the lowest variance. And the LPP is
used to preserve the neighborhood structure of high-dimensional
features even if they are projected into a new low-dimensional

space, and improve the selection result by keeping the structural

information. For classification, the SRC regards the test data as
a combination of training data, and effective sparse coding will

boost the final classification (Zhang et al., 2011). In addition,

since medical images are associated with different kinds of

uncertainty such as noise, low contrast, inadequate brightness,

and so on, the SRC has advantages in handling such errors
(Ghasemi et al., 2020).
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Some limitations of this study should be addressed. Primarily,
the generalization ability of the proposed method may be limited
by the small sample size even though some SR techniques
have been utilized to avoid over-fitting. Next, the sliding
windowmethod in constructing low-order network is a common
and easy-implement way to generate dynamic FC networks.
However, it simply divides the whole time series into several
sub-series with manually-set window length instead of those
special transition points obtained by exploring the intrinsic
fluctuations. And such method may lead to confusing or
less discriminative changes among different sub-series. Future
studies are needed with larger dataset and more engineering
strategies for improvement.
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