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Background: The prediction of aneurysm treatment outcomes can help to optimize the

treatment strategies. Machine learning (ML) has shown positive results in many clinical

areas. However, the development of such models requires expertise in ML, which is not

an easy task for surgeons.

Objectives: The recently emerged automated machine learning (AutoML) has shown

promise in making ML more accessible to non-computer experts. We aimed to

evaluate the feasibility of applying AutoML to develop the ML models for treatment

outcome prediction.

Methods: The patients with aneurysms treated by endovascular treatment were

prospectively recruited from 2016 to 2020. Treatment was considered successful if

angiographic complete occlusion was achieved at follow-up. A statistical prediction

model was developed using multivariate logistic regression. In addition, two ML models

were developed. One was developed manually and the other was developed by AutoML.

Three models were compared based on their area under the precision-recall curve

(AUPRC) and area under the receiver operating characteristic curve (AUROC).

Results: The aneurysm size, stent-assisted coiling (SAC), and posterior circulation were

the three significant and independent variables associated with treatment outcome. The

statistical model showed an AUPRC of 0.432 and AUROC of 0.745. The conventional

manually trained ML model showed an improved AUPRC of 0.545 and AUROC of 0.781.

The AutoML derived ML model showed the best performance with AUPRC of 0.632 and

AUROC of 0.832, significantly better than the other two models.

Conclusions: This study demonstrated the feasibility of using AutoML to develop a

high-quality ML model, which may outperform the statistical model and manually derived

ML models. AutoML could be a useful tool that makes ML more accessible to the

clinical researchers.
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INTRODUCTION

Endovascular therapy is widely used in the treatment of
intracranial aneurysms (1). Despite a remarkable advancement
of the endovascular coiling for intracranial aneurysms, there
still exists a high rate of recurrence and recanalization. It
has been reported that the recanalization rate for coiling
and flow diversion are 20.8 and 10.2%, respectively (2, 3).
Approximately up to 50% of patients who succumbed to
recurrence or recanalization necessitated further treatment,
which may place an additional financial burden on the
patients. Moreover, recanalization puts patients at increased
risk of a thromboembolic event or aneurysm rupture. Many
studies have tried to study the risk factors for recanalization.
The aneurysm size, morphologies, treatment strategies, and
hemodynamics have been found to be associated recanalization
(4–9). Some studies have tried to develop the models or
grading scales to predict treatment outcome (4, 10–12). However,
evaluation of some of the grading scales showed relatively poor
performance (13).

In recent years, the machine learning (ML) models, as an
alternative to the conventional statistical model, have shown
promise in many clinical areas (10, 14, 15). ML models can learn
complex relationships from a large amount of data. Compared
with a regression model that focus on statistically significant
variables, the ML models can discover non-intuitive patterns
from variables which may be overlooked by statistical test (16).

Although the ML models have shown outstanding
performance, the development of such models requires expertise
in ML. Despite the existence of open-source code libraries, such
as Scikit-Learn, PyTorch, and Tensorflow, their use still requires
significant experience in programming and knowledge of ML.
In addition, a high-quality model usually requires expertise to
tune and train. All these problems pose a great challenge for the
clinical researchers hoping to adopt ML in their research.

The recently emerged automated machine learning (AutoML)
has found a way to close the gap between ML and non-artificial
intelligence (non-AI) experts. The emergence of AutoML
automates the process of building anMLmodel which in the past
relied on data scientists. This lowers the learning threshold for
using ML and allows people without expertise in ML to apply ML
to their own area. It has recently been reported that AutoML has
helped the physicians to develop the ML models that achieved
good performance in the field of medical image analysis and
disease risk prediction (17, 18). However, such success has not
been reported in the field of stroke treatment.

Therefore, in this study, we aimed to evaluate the feasibility of
using AutoML to develop theMLmodels for aneurysm treatment
outcome prediction. Treatment was considered successful if
angiographic complete occlusion was achieved at follow-up.
We developed the prediction models for treatment outcome
using three different methods: a statistical multivariate regression

Abbreviations: AutoML, automatic machine learning; ML, machine learning;

AUPRC, area under precision-recall curve; AUROC, area under receiver-operating

characteristic curve; SAC, stent-assisted coiling; FD, flow diversion.

model, a manually derived ML model, and an AutoML derived
ML model, and compared their performance.

METHODS

Patient Cohorts
The patients were recruited according to the protocol of a
prospective cohort (19). The primary endpoints of the cohort
study are an evaluation of the safety and efficacy of interventional
treatment for 6 months after surgery, with each participant
completing at least 1 year of follow-up. Approval for this
study was obtained from the local Institutional Review Board.
The data used in the current study were anonymous and the
requirement for informed consent was therefore waived. From
the prospective cohort, we included the aneurysm cases treated
by endovascular treatment. Dissecting aneurysms and fusiform
aneurysms, aneurysms with prior treatment, or the cases with
missing clinical information were excluded. A total of 395
patients were identified from our center. However, due to loss
to follow-up or incomplete record, only 182 patients and 218
aneurysms with complete record of angiographic follow-up were
used in the current study.

Data Acquisition
The morphological parameters were measured and calculated
from three-dimensional digital subtraction angiography (DSA)
images prior to treatment. The measurements were done
by two independent neurosurgeons and the average of their
readings were used. The clinical symptoms, such as feeling
of headache, nausea, vomit, and dizziness were recorded. The
blood tests were also performed for the patients prior to
treatment to measure lipid level and blood clotting function.
Additionally, the patient demographics, medical history, and
lifestyle behaviors were recorded. Treatment related parameters,
such as treatment method, number of coils stent metal
coverage rage (MCR) were included. Immediate angiographic
outcome after treatment and follow-up angiographic outcome
were also recorded according to the Raymond–Roy Occlusion
Classification scale (20). Treatment was considered successful
if complete occlusion was achieved at follow-up. The average
follow-up time for the coiling and stent-assisted coiling
(SAC) cases is 9.4 and 14.2 months for flow diversion
cases. The complete list of collected variables is shown in
Table 1.

General Procedures of ML
The general procedures of ML include the following steps:
feature selection, feature engineering, ML model selection,
and hyperparameter tuning, as shown in Figure 1. In feature
selection, the features that are relevant to the prediction target
are selected based on various criteria, such as ANOVA F-
value, chi-squared statistics, univariate statistical significance P
value, and information gain. Feature selection help to identify
and focus on the useful features. In feature engineering,
raw features can be normalized, binarized, decomposed, or
combined to create new features, which might help to
better model the data. In model selection, various ML
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TABLE 1 | Result of univariate analysis.

Variable Occluded

(N = 194)

Recanalized

(N = 24)

P

Gender (Female) 127 15 0.748

Age 54.9 ± 10.9 54.4 ± 11.7 0.931

Dizzy 90 9 0.409

Headache 110 11 0.312

Nausea 159 15 0.025*

Vomit 161 15 0.016*

Alcohol 25 5 0.286

Smoking 26 4 0.661

Labor work 10 1 0.835

Lack of sleep 21 5 0.297

Height 161.7 ± 7.5 164.7 ± 7.4 0.137

Weight 59.7 ± 9.0 58.3 ± 9.6 0.586

Systole 130.6 ± 18.6 129.1 ± 20.1 0.766

Diastole 80.8 ± 10.1 79.3 ± 12.3 0.890

Glucose 5.5 ± 1.8 5.6 ± 1.6 0.455

GHb 5.8 ± 0.7 5.7 ± 0.6 0.571

WBC 7.3 ± 3.1 7.7 ± 3.3 0.378

Platelet 239.0 ± 57.9 261.6 ± 65.9 0.141

Triglyceride 1.4 ± 1.4 1.1 ± 0.6 0.144

Cholesterol 4.6 ± 0.9 4.4 ± 0.8 0.639

LDL 2.7 ± 0.8 2.9 ± 0.9 0.443

HDL 1.3 ± 0.3 1.3 ± 0.3 0.997

Fibrin 3.3 ± 0.8 3.6 ± 1.1 0.238

APTT 35.7 ± 3.5 36.9 ± 3.8 0.169

PT 12.9 ± 0.7 13.1 ± 0.9 0.771

Hcy 10.7 ± 3.9 11.1 ± 6.1 0.531

Multiple 74 10 0.738

Rupture 161 20 0.966

Hypertension 55 9 0.530

ICA 121 11 0.118

MCA 26 2 0.484

ACA and AComA 26 4 0.661

PComA 12 2 0.686

Posterior circulation 9 5 0.002*

Irregular shape 33 8 0.054

Aneurysm size 4.9 ± 3.2 7.8 ± 4.5 0.003*

Sac width 4.6 ± 3.2 7.0 ± 4.5 0.013*

Sac height 4.4 ± 2.9 6.9 ± 4.2 0.009*

Neck width 4.0 ± 1.8 4.6 ± 2.2 0.094

Vessel angle 100.1 ± 29.2 111.2 ± 36.0 0.232

Parent artery 3.1 ± 0.9 3.1 ± 0.8 0.699

Size ratio 1.7 ± 1.3 2.5 ± 1.5 0.006*

Aspect ratio 1.1 ± 0.6 1.5 ± 0.8 0.011*

Previous SAH 20 0 0.256

SAC 137 9 <.001*

FD 19 0 0.109

Neck metal coverage 17.5 ± 10.5 12.8 ± 5.7 0.161

Post-procedure Angiographic

Occlusion

30 4 0.023*

mRS 0.62 ± 1.01 0.51 ± 0.77 0.116

*indicates statistical significance, P < 0.05.

algorithms are evaluated on the dataset and the best is
selected. Common ML algorithms, to list a few, include
Support Vector Machine, K-Nearest Neighbors, Decision Tree,
Artificial Neural Network, Random Forest, and Naïve Bayes.
All these algorithms have a wide range of hyperparameters
that require careful adjustment to suit different tasks and
datasets. For example, Random Forest have more than a dozen
of hyperparameters, such as maximum number of tresses,
maximum tree depth, maximum number of features, and
minimum samples in leaf. In hyperparameters tuning, the
optimal hyperparameters are usually found using grid-search or
randomized grid-search over millions of possible combinations
of hyperparameters.

A pipeline consists of a combination of specific methods
for feature selection, feature engineering, ML algorithm, and a
specific set of hyperparameters. To build a good ML model,
one needs to identify an optimal pipeline that achieves best
performance on the dataset.

Automated Machine Learning
Automated machine learning automates the above pipelines and
explores different choices of algorithms, feature selection and
feature engineering technique, and hyperparameters. Since each
major step in the pipeline involves dozens to millions of choices,
complete exploration of all possible pipelines is inefficient and
impractical. To speed-up the search process, we employed an
algorithm called Tree-based Pipeline Optimization (TPOT) to
automate the pipeline search. TPOT is based on the evolutionary
algorithm which uses genetic programming to search for optimal
pipeline (21). Genetic programming mimics the way of natural
selection. Briefly, in each optimization run (generation), TPOT
randomly generates multiple pipelines (population). These
pipelines were evaluated based on their accuracy (fitness to
survive). The best few pipelines (scored by accuracy) were
selected into the next optimization run (selection). The selected
pipelines were then randomlymodified (mutation and crossover)
in which a few of the pipeline elements (e.g., ML models, feature
selection methods, and feature processing method) are changed.
Several generations are run and the pipeline that performed best
on the training set is selected as the optimal pipeline.

In the current study, AutoML was used on the training set to
obtain an optimal pipeline. To avoid overfitting, 10-fold cross-
validation was used. For the setting of AutoML, the number of
generations to run was set to 10 and the population size at each
generation was 100. Increasing the number of generations or the
population size can result in higher chance of discovering better
pipelines but at the cost of computational time. In the current
study, the program was run on a desktop computer (CPU: Intel
i7 8700) for∼1 h.

After obtaining the optimal pipeline, the derived model was
evaluated on the test set. To further avoid overoptimistic results
due to random split of the training and test set, the above
procedures were repeated 20 times and each time with a different
split of training and test set. The average performance from the
20 repeats was reported. The training and evaluation procedures
are shown in Figure 2.
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FIGURE 1 | General pipeline of training a machine learning (ML) model (left) and training using an automated machine learning (AutoML) (right).

FIGURE 2 | Training and evaluation procedures for manual ML (A) and AutoML (B).

Conventional ML
For comparison purposes, an ML model was trained manually
using a typical method found in the literature. Random forest
is one of the most popular algorithms used in the literature
and is often found to have better performance than logistic
regression (22–24). To represent a typical scenario in which
a non-ML-expert develops an ML model for clinical research,
we applied the same training procedures as described in the
work of Rubber et al. The manual pipeline started with feature
processing using normalization, and model building using the
random forest algorithm. The hyperparameter of the algorithm
(number of trees) was tuned between 5 and up to 5,000
(24). The hyperparameters were tuned using 10-fold cross-
validation on the training set and the model was tested on
the test set. The above procedures were repeated 20 times
and each time with a different split of training and test set.
The average performance of the 20 repeats was reported. The
training and evaluation procedures that were used are shown in
Figure 2.

Statistical Model Building
All variables of the successful and unsuccessful cases were
compared using the univariate analyses. For binary or categorical
variables, the Fisher’s exact test or chi-square test was performed.
For continuous variables, they were first examined with the
Shapiro–Wilk test to determine normality, followed by Student’s
t-test (for normally distributed variables) or Mann–Whitney
U-test (for non-normally distributed variables). The variables
with P < 0.05 in the univariate analysis were further selected
into multivariate analysis using a backward conditional stepwise
method. The statistical analyses were performed using SPSS (IBM
Corporation, NY, USA). The variables that remained statistically
significant (P < 0.05) in multivariate analysis were used for
the statistical model building. For a fair comparison with other
methods, a logistic regression model was fitted on the training
set and evaluated on the test set. The training and evaluation
procedures were also repeated 20 times and each time with a
different split of training and test set. The average performance
from the 20 repeats was reported.
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TABLE 2 | Result of multivariate analysis.

Variable OR P

Aneurysm size 1.242 (95% CI 1.090-1.416) 0.001

SAC 0.208 (95% CI 0.079-0.546) 0.001

Posterior circulation 4.383 (95% CI 1.046-18.370) 0.043

Aneurysm Recanalization Stratification
Scales (ARSS)
For comparison with the currently used method, we chose the
Aneurysm Recanalization Stratification Scales (ARSS) proposed
by Ogilvy et al. (25). The scale was calculated by assigning
different weights to different risk factors. Aneurysm-specific
factors include size (>10mm), 2 points; rupture, 2 points;
presence of thrombus, 2 points. Treatment-related factors
include stent assistance, −1 point; flow diversion, −2 points;
Raymond-Roy 2 occlusion, 1 point; Raymond-Roy 3 occlusion,
2 points. We evaluated the same test set used in the other three
methods for assessing the averaged performance in 20 repeats.

Model Comparison
Though unsuccessful cases only consist of a small portion (11%)
of the dataset, it is more important to identify the unsuccessful
cases than the successful cases. To avoid bias introduced by
imbalanced data, besides the commonly used receiver operating
characteristic (ROC) curve, we also used the precision-recall
curve (area under the precision-recall curve [AUPRC]) as the
evaluation metric, which is more informative than ROC when
evaluating classifier on imbalanced data (26). The precision-
recall curve plots precision, also termed as positive predictive
value (PPV), against recall (sensitivity). The AUPRC is a balanced
measure of the capability of a model to predict unsuccessful cases.
The comparison of the performances of three models in the 20
repeats was examined byWilcoxon signed ranks test as suggested
by a previous study (27).

RESULTS

A total of 182 patients with 218 aneurysms were included.
The average aneurysm size was 5.3mm. The majority of
them were located on the internal carotid artery (ICA),
followed by the middle cerebral artery (MCA) and anterior
communicating artery (AComA). At follow-up, only 24 cases
remained unoccluded. The baselines for the successfully treated
and unsuccessfully treated group are summarized in Table 1.
In the univariate analysis, aneurysm size, aneurysm width,
aneurysm height, presence of nausea, presence of vomit,
use of SAC, aneurysm location in the posterior circulation,
and the immediate post-procedure angiographic outcome
showed statistical significance. In the multivariate analysis, only
aneurysm size, use of SAC, and posterior circulation remained as
significant variables, as shown in Table 2.

The sensitivity, positive predictive value, area under the
receiver operating characteristic curve (AUROC), AUPRC, and

TABLE 3 | Summary of model performance.

Statistical Manual ML Auto ML ARSS

Sensitivity 1.000 1.000 1.000 1.000

PPV 0.167 0.342 0.408 0.142

AUROC 0.745 0.781 0.823 0.771

AUPRC 0.432 0.545 0.632 0.496

F1-score 0.286 0.508 0.578 0.378

F1-score of the three models are summarized in Table 3. The
statistical model achieved an AUPRC of 0.432 (95% CI 0.373–
0.491), as shown in Figure 3. The manually derived ML model
achieved better performance, with a value of 0.545 (95% CI
0.458–0.632). The ARSS model achieved an AUPRC of 0.496
(95% CI 0.418–0.574). The AutoML derived model achieved the
best performance with an AUPRC of 0.632 (95% CI 0.585–0.679).
The AUPRC of AutoML derived model was significantly higher
than that from the statistical model (P < 0.001) and that from
manual derived ML model (P = 0.021) and that from the ARSS
model (P = 0.011).

The procedures of applying AutoML in clinical settings are
shown in Figure 4. The surgeons first prepare data and then
run the few lines of code of AutoML and get an automatically
generated Python file that contains the optimal pipeline to
build a high-quality ML model. The surgeons can then use the
generated python code to train an ML model and predict the
risk of recanalization. In the current study, the optimal pipeline
obtained started with feature selection using recursive feature
elimination with Extra-Trees classifier, followed by feature
preprocessing using Normalization. The algorithm used to build
the model was the Gradient-Boosting classifier.

DISCUSSION

Recanalization and recurrence are the Achilles’ Heel of
endovascular treatment. This can only be confirmed by a long-
term follow-up study. Thus, the question is raised: are there
any methods to predict the long-term outcome of embolization?
Recently, the ML models have emerged as alternatives to
the traditional statistical models used to predict disease risk
and therapeutic effect. However, ML is often recognized as
complicated technology accessible only to a small fraction
of medical researchers and data scientists. The advantage of
AutoML is that it allows non-ML experts to utilize theMLmodels
without prior expertise. In this study, we found that AutoML,
with the only minimum amount of code, could develop an ML
model that performed significantly better than the commonly
used statistical model in predicting treatment success.

Comparison of the AutoML Model and
Statistical Model
While the statistical models are easy to derive and understand,
they have several limitations. They assume linear independence
between the variables which may fail to account for interactions
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FIGURE 3 | (A) Precision-recall characteristic curves of a statistical model (LR), manually derived ML model (Manuel), AutoML derived ML model (AutoML), and

Aneurysm Recanalization Stratification Scale (ARSS); (B) the receiver operating characteristic (ROC) curves of statistical model (LR), ManualML, AutoML, and ARSS.

FIGURE 4 | General procedures to apply AutoML in the clinical settings.

between the variables. The prescreening of variables using P
values may also miss important variables which may not appear
statistically significant in a univariate test (28). In contrast, the
ML models can learn nonlinear and interactive patterns between
variables and thus producing a more accurate prediction model.
Many studies have reported that an ML model outperformed the
statistical models (22–24). However, there are several drawbacks
that limit the use of the ML model in clinical research. One
is the black-box problem of an ML algorithm yet this can be
improved by applying model interpretation techniques, such as
SHAP (29) to explain the predictionmade by theMLmodels. The
other problem is that the development of the ML model requires
expertise in ML and usually requires the time-consuming tuning

of dozens of parameters.We have shown in the current study that
this can be improved by using the recently emerging AutoML
technique. AutoML canmakeMLmodel trainingmore accessible
to non-ML experts without compromise in model performance.

Comparison of an AutoML Model and
Manually Derived ML Model
We have demonstrated that an AutoML derived model can
achieve better performance than a manually derived ML model.
The MLmodels need a careful selection of algorithms and tuning
of hyperparameters to achieve their best performance. However,
in many clinical studies that apply ML, such tuning is usually
not carried out. Therefore, the developed model may not fully
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exploit the power of ML. In this study, we followed the same
procedures mentioned in the literature to manually develop an
ML model. This represented a typical scenario in which a non-
ML-expert used an open-source library to train an ML model.
As a result, the manually developed model is not optimal. In
contrast, AutoML can perform extensive searching of different
pipelines and tuning of hyperparameters, which resulted in a
better model. It has been reported that AutoML outperformed
a conventional ML model manually developed by a researcher
with a master’s degree in computer science. Moreover, AutoML
only took less than an hour to train but achieved similar or even
better performance than a manually derived ML model which
took days to tune (17). Another distinctive advantage of AutoML
compared with the conventional ML procedure is that it is much
easier to use for surgeons with limited background in ML. As we
have shown, the use of the AutoML model requires only a few
lines of code, which makes it more accessible to clinical doctors.

Limitations
In the current study, all the cases were from a single center
and the number of cases was relatively small. Nevertheless, we
have demonstrated that the use of AutoML can help clinical
researchers develop high quality ML models that outperformed
the statistical models and manually trained ML models. Though
the current study is a single-center study with limited cases
and follow-up time, the AutoML method presented in the
current study can be easily generalized to a study with a larger
sample size and longer follow-up time. In the current study,
the treatment strategies, such as clipping, liquid embolization, or
flow disruption were not assessed. To further test the applicability
of our model, more cases from multiple centers with longer
follow-up should be analyzed.

CONCLUSIONS

We have demonstrated the feasibility of using AutoML to
develop high quality MLmodel for aneurysm treatment outcome
prediction. The AutoML derived model accurately predicted the
outcome of treatment, which may facilitate treatment planning.
AutoML may outperform the conventional statistical model and

manually derived machine learning model. The emergence of
AutoML simplifies and automates the process of building an ML
model, which lowers the learning threshold of ML and allows
non-AI experts to apply ML to their research.
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