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Abstract: Many theories have been put forward that propose that developmental dyslexia is caused
by low-level neural, cognitive, or perceptual deficits. For example, statistical learning is a cognitive
mechanism that allows the learner to detect a probabilistic pattern in a stream of stimuli and to
generalise the knowledge of this pattern to similar stimuli. The link between statistical learning and
reading ability is indirect, with intermediate skills, such as knowledge of frequently co-occurring
letters, likely being causally dependent on statistical learning skills and, in turn, causing individual
variation in reading ability. We discuss theoretical issues regarding what a link between statistical
learning and reading ability actually means and review the evidence for such a deficit. We then de-
scribe and simulate the “noisy chain hypothesis”, where each intermediary link between a proposed
cause and the end-state of reading ability reduces the correlation coefficient between the low-level
deficit and the end-state outcome of reading. We draw the following conclusions: (1) Empirically,
there is evidence for a correlation between statistical learning ability and reading ability, but there
is no evidence to suggest that this relationship is causal, (2) theoretically, focussing on a complete
causal chain between a distal cause and developmental dyslexia, rather than the two endpoints of
the distal cause and reading ability only, is necessary for understanding the underlying processes,
(3) statistically, the indirect nature of the link between statistical learning and reading ability means
that the magnitude of the correlation is diluted by other influencing variables, yielding most studies
to date underpowered, and (4) practically, it is unclear what can be gained from invoking the concept
of statistical learning in teaching children to read.

Keywords: reading acquisition; individual differences; statistical power; simulation; causality

1. Introduction

In order to learn to read, a child needs to learn statistical regularities that are ingrained
in their orthography: any orthography contains regularities, such as the same visual
symbols mapping to the same sounds across words. It has been proposed that learning
such orthographic regularities (as well as other types of statistical regularities) relies on a
domain-general cognitive mechanism, called statistical learning. Statistical learning enables
individuals to detect a probabilistic pattern from an input stream and to be able to apply
this knowledge when they encounter a similar stimulus in the future [1].

As reading, almost by definition, requires sensitivity to regularities such as print-to-
speech-sound correspondences, research has investigated the role of statistical learning as
a predictor of reading ability. The idea is that a statistical learning deficit may be causally
related to developmental dyslexia (hereafter: dyslexia; e.g., the work of [2]). While some
researchers argue that statistical learning is causally related to reading [3,4], others remain
sceptical [5–8].
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The statistical learning deficit theory is by far not the only causal theory of dyslexia
that is controversial: other studies have proposed lower-level perceptual, neural, or cogni-
tive deficits as causes of dyslexia (e.g., auditory temporal sampling framework; pro: [9];
sceptical: [10]; visual magnocellular deficit hypothesis; pro: [11]; sceptical: [12]). Such
proposed deficits are distal causes of dyslexia [13,14]. In the distinction between distal
versus proximal deficits as causes of dyslexia, a proximal deficit refers to a deficit that
is located in the cognitive reading system, and thus specific to reading: for example, if
a child has poor knowledge of grapheme-phoneme correspondences, this is a proximal
cause of the resulting poor reading ability. Distal deficits are causes of proximal deficits
or causes of other distal deficits. In the case of statistical learning (as outlined in detail
below), a statistical learning deficit (distal) could result in reduced ability to learn which
letters can or cannot occur in one’s orthography (distal), which might prevent the build-up
of an orthographic lexicon (proximal). Thus, in a metaphorical chain between a distal
cause and dyslexia, each link acts as a distal cause except for the link(s) closest to the
end-state of reading ability. As another example of a distal cause theory, the temporal
sampling framework [9] proposes that a cause of dyslexia is a problem with neural syn-
chronisation to speech sounds at the temporal frequency of syllables (distal). This leads to
over-reliance on phonetic information (distal), which, in turn, reduces children’s ability to
perceive phonemic categories, such as hearing the /p/ in “pin” ([p]) and “spin” ([ph]) as
the same phoneme (distal). The failure to perceive phonemic categories affects the learning
of grapheme-phoneme correspondences (proximal), as this requires children to understand
that the phonemic categories map onto graphemes (in alphabetic orthographies).

We examine the statistical learning deficit theory as a case study of a distal deficit
hypothesis. First, we critically evaluate the evidence for a statistical learning deficit as a
cause of dyslexia. Then, we turn to the more general question of what issues need to be
resolved that are common to distal cause theories. Overall, this will provide directions for
future research aiming to provide a comprehensive theory of the causes of dyslexia.

2. Is Statistical Learning Related to Reading?

Before turning to the relationship between statistical learning and dyslexia, it is worth
asking a related question: what is the role of statistical learning in the cognitive reading process?
If statistical learning were to play no role in learning to read at all, we would not expect a
causal relationship between statistical learning and dyslexia: any correlations would be purely
epiphenomenal. Conversely, establishing a role of statistical learning in reading does not
necessarily imply that statistical learning is always or even sometimes a cause of dyslexia: it
may be that a minimal degree of sensitivity to statistical regularities, which all children possess,
is sufficient to develop sound reading skills. Nevertheless, it is important to understand the
relationship between reading and statistical learning, as it will unveil information about the
causal pathway(s) that may link statistical learning to dyslexia.

At this stage, it is important to consider how we define statistical learning. Definitions
tend to differ across authors (for discussions, see the work of [1,15]). Here, we adopt a
broad definition and assume three features that define statistical learning. First, statistical
learning occurs by routine exposure to input material. This is in contrast to rote learning,
such as memorising the spelling of an unfamiliar word out of context. (We remain agnostic
about whether statistical learning is strictly implicit in nature, such that it only occurs
when there is no conscious effort on the side of the learner to extract regularities and/or
awareness that such regularities exist.) A combination of both types of processes is likely
to underlie learning in most real-life settings: for example, learning to read involves rote
learning the letters and their pronunciations, and further learning more subtle regularities
via exposure: for example, English-speaking children are generally taught that the letter a
is pronounced /æ/ as in “cat”, but they learn via exposure that it is often pronounced /a:/
when it occurs at the end of a word, such as in the word “spa”. Second, when material is
learned by statistical learning, the knowledge about it should reflect the statistics of the
input. We focus on two types of statistics: frequency and consistency. In the context of
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reading, if a maps onto /æ/ across contexts, learning this correspondence will be easier
when we encounter many instances of this pairing, and if a consistently maps onto /æ/,
and not, say, 90% of the time onto /æ/ and 10% of the time onto /æI/. Third, statistical
learning allows for generalisation: the ability to apply the learned knowledge to instances
where it occurs in a different context. Thus, a child who has learned the pronunciations
of words such as “wasp” and “swan” will read the pseudoword wamp as /wOmp/ rather
than /wæmp/, by generalising the context-sensitive grapheme-phoneme correspondence
[w]a→/O/to this new context. This makes statistical learning a very potent mechanism,
especially for a highly complex process such as reading, as it allows the learner to break
down a large amount of unfamiliar material into familiar chunks.

If we accept that reading material consists, at least partly, of statistical regularities
and that a statistical learning mechanism is required to learn these regularities, it is true
by definition that reading acquisition relies on statistical learning. We define reading as
deriving phonology and meaning from an orthographic code. The relationship between
orthography and phonology and semantics has been described as quasiregular [16,17]:
In alphabetic orthographies, graphemes map onto phonemes in a systematic way (e.g.,
in English, t →/t/), though there are also instances where context needs to be taken
into account to derive the correct pronunciation of a letter (e.g., c→/k/ as in “cat”, but
c[i] →/s/ as in “circus”), or when the pronunciation is unpredictable altogether (e.g.,
the English word “Wednesday”, which has two silent letters). The relationship between
orthography and phonology is thus statistical: readers pick up more subtle regularities
by exposure [18–21] and are sensitive to how consistently a given letter cluster maps onto
corresponding phonology [22]. The nature of the relationship between orthography and
phonology varies across orthographies but is quasiregular in all orthographies studied to
date. For example, in Chinese, the link between print and speech is less transparent than
in alphabetic orthographies, but the pronunciation is often derivable from a phonological
radical, which is the right or bottom part of many characters (e.g., the work of [23]).

The quasiregular relationship between orthography and semantics is less obvious. In
alphabetic orthographies, the relationship between meaning and phonology (and hence the
orthography, which has been designed to closely represent phonology) has been described
as arbitrary. However, in inflectional and agglutinative languages, morphology provides a
(quasi-)systematic link [17], and as long as a word consists of familiar morphemes, readers can
infer its meaning even if they have never heard it before: for example, speech errors such as
“misunderestimate” or “irregardless” are understandable to English speakers. Morphology
and other letter clusters have been shown to provide information about word class to a reader,
which also helps to narrow down the meaning of an unfamiliar word [24–26]. In addition,
in Chinese, a non-inflectional language, orthography often explicitly represents semantics
in the form of a semantic radical, which is often the left or top part of a character. Beyond
morphology, a large-scale linguistic analysis has shown that there is a slight tendency for
words that sound similar to have a similar meaning. In English, an example are words such
as “glimmer”, “glisten”, and “glitter”. Such tendencies have been found in a wide range of
languages [27,28]. Thus, all orthographies studied to date have been shown to have some
degree of systematicity between print and meaning.

The relationship between meaning and print strengthens when we consider the sen-
tence context, where upcoming words can be predicted with some accuracy (e.g., the work
of [29]), and the meaning of an unfamiliar word can often be guessed from the context.
Overall, however, orthography-semantics statistical patterns are mostly not strong enough
for readers to be able to infer the meaning of an unfamiliar word, as any adult learner of
a foreign language can attest. Nevertheless, some degree of generalisation can occur: for
example, most readers can not only pronounce but also make some sense of Lewis Carroll’s
poem “Jabberwocky”, which consists almost entirely of pseudowords: “‘Twas brillig, and
the slithy toves/Did gyre and gimble in the wabe [...].”

Thus, it seems that learning the relationship between orthography, phonology, and
semantics relies on statistical regularities, and learning these should be indispensable for
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the reading process. In addition, reading relies on secondary skills, which are also heavily
reliant on statistical learning. Children’s reading skills are predicted by oral language skills,
such as phonological awareness [30] and vocabulary size [31], to name a few examples.
The ability to use transitional probabilities between syllables has been linked to spoken
word learning: even infants are able to discriminate between syllables that follow each
other often, signifying that they are likely to be part of the same word, versus syllables
that rarely co-occur, signifying that they are likely to be separate words [32]. This has
been proposed to help vocabulary learning [33]. Statistical learning ability has also been
linked to phonological awareness [34], and it has been considered in relation to grammar
skills [35].

As another secondary skill, visual processing may also be a link between statistical
learning ability and reading. Orthographic code consists of sequences of graphemes, and
the sequences themselves contain statistical information: some graphemes are more likely
to follow one another (e.g., in English, the letter bigram am, which occurs in 723 words; [36]),
and other letters never occur next to each other (e.g., in English, xm). Other statistical
patterns can also be used to make a word look nonword-like: for example, some letters are
more likely to occur in certain positions of words: English words never begin with ck as a
representation of the sound /k/, though this letter cluster often occurs in the middle or
end of words. Sensitivity to such graphotactic regularities might help with spelling: for
example, a child who is unsure how to spell the word “quick” can rely on her knowledge
of these regularities to decide that it is unlikely to be spelled “ckwikk” [37]. There are
several ways in which sensitivity to graphotactic regularities may aid the reading process,
for example, by allowing readers to use their statistical knowledge to predict the identity
of an upcoming letter that has not yet been processed (summarised in the work of [38], but
see also the work of [39]).

In summary, to the question of whether statistical learning, broadly speaking, plays
a role in reading, the answer is a clear “yes”. Given the preceding paragraphs, however,
a sceptical reader will be wondering if this is a meaningful question. The frequency and
consistency of input statistics affect learnability across all domains. Thus, much of the
material that humans (or, in fact, any animals) learn is learned statistically by our definition
above. Although statistical learning seems to occur across domains, it is unclear whether,
in practice, the process of statistical learning can be dissociated from the modality in which
it is observed [40,41]. Thus, an observed deficit in the statistical learning of reading-related
material may reflect a general processing deficit in this domain, rather than in the cognitive
structures responsible for extracting regularities (we thank an anonymous reviewer for
pointing this out).

To make the question, if statistical learning plays a role in reading, meaningful in the
context of dyslexia research, there are two ways to further specify it: (1) Is there a domain-
general statistical learning mechanism that affects, among others, reading acquisition and
which may cause dyslexia if impaired? (2a) Are there any cognitive components of the
reading process that are particularly reliant on statistics, and (2b) do children with dyslexia
have a problem in learning these statistics, which, in turn, affects their ability to read?

For the first question, it seems a priori unlikely (to a sceptic) that the answer should
be “yes”. After all, if statistical learning is involved in most (or all) learning tasks, we
would expect that children with dyslexia should also be impaired in domains ranging from
language [32] to social interaction [42] (see the work of [43] for a discussion of this issue).
While many correlates of dyslexia have been documented across domains (e.g., motor
procedural learning; [44]), it is possible, for example, for language disorders to occur in
the absence of any reading problems and vice versa [45]. It is not even clear that statistical
learning can be described as a single process: recent studies support a componential view,
where different types of statistical regularities and in different domains depend on different
processes [40,41].

In terms of providing evidence that would directly address the question, one would
need to find a correlation between reading ability and statistical learning in a non-reading-
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related domain or a group difference in statistical learning ability between individuals
with dyslexia and a control group. While such studies exist, the results are mixed (e.g.,
positive: [4]; negative: [6]), and systematic reviews and meta-analyses have concluded that
there is insufficient evidence for such a link [5,7]. Methodological issues include publication
bias and low reliability when it comes to most statistical learning tasks [15,46]. Due to
these theoretical and empirical issues, therefore, we consider it unlikely that studying this
question would yield fruitful results and focus, for the remainder of the article, on the
second question.

To address the second question about the specific components of reading that rely
on learning statistics, we do not need to rely on the controversial assumption that there
is a single domain-general statistical learning process. Instead, we can focus on different
aspects of the reading process that contain regularities and examine whether (1) individ-
ual differences in the degree of sensitivity to these specific statistical regularities predict
reading ability and (2) whether individuals with dyslexia show reduced sensitivity to these
regularities.

3. Making the Links in a Causal Chain

As discussed in the previous section, many aspects of reading rely on statistical
regularities. In order to identify a potential statistical learning deficit that causes dyslexia,
we need to consider causal pathways that would link a statistical learning process to the
behavioural outcome of poor reading ability. Between the cognitive statistical learning
process and the behavioural outcome of reading ability or dyslexia, there needs to be at
least one intermediate step in the form of knowledge, which is acquired via statistical
learning and that affects the reading acquisition process, either directly or via additional
links in a causal chain. In order to establish a causal link with dyslexia, one needs to show
that the absence of this knowledge impedes reading acquisition.

3.1. Graphotactic Knowledge as an Intermediary Link

Previous studies have focussed on empirically establishing parts of such causal chains.
One possible causal chain involves graphotactic knowledge as an intermediary: the knowl-
edge about letter clusters and the positions in which they can occur. It has been known for
decades that readers across different European orthographies are sensitive to such statistics
(e.g., the work of [47–49]). This knowledge must have been acquired via statistical learning,
as per our definition: First, reading instructions generally do not include explicit instruc-
tions about common letter clusters and positional regularities; therefore, this knowledge, in
most cases, must have been learned via exposure. Second, the knowledge is statistical, as it
reflects the frequency and consistency with which certain letter clusters co-occur. Third,
readers generalise their knowledge of graphotactic regularities, as they can determine
whether nonwords that they have never seen before contain illegal letter clusters.

While the link between statistical learning and graphotactic knowledge seems clear,
the next question is whether graphotactic knowledge is causally related to reading ability
and whether a lack of graphotactic knowledge leads to dyslexia. There are alternative
explanations for a correlation between graphotactic knowledge and reading ability: First, it
is possible that graphotactic knowledge is epiphenomenal to reading: by being exposed to
printed words, readers automatically extract knowledge about legal letter combinations
and positions, but this knowledge may play no causal role in how well they read. The
direction of causality would instead be from reading ability to graphotactic sensitivity: the
better readers with more exposure to print may be more sensitive to regularities due to an
increased input [50]. Second, it is possible that there is insufficient variability in children’s
graphotactic knowledge: a minimum level of knowledge might be sufficient to facilitate
reading acquisition, and this level may be so low that all children are able to reach it within a
short period of time. Empirically, a correlation between graphotactic sensitivity and reading
ability in beginning readers is well established [47–50]; in adults, the reading process seems
to be no longer facilitated by the presence of high-frequency clusters [39]. However, the
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correlational design does not allow us to draw causal conclusions: a correlation may
indicate that graphotactic sensitivity is epiphenomenal.

Several studies have circumvented this issue with correlational designs by using a
learning paradigm with artificial orthographies. In artificial orthography learning studies,
participants are exposed to symbol strings written in unfamiliar symbols. This has two
advantages: first, it allows for exact control over the statistical properties of the input
material, and second, the researcher can track the learning process as it occurs. In such
studies, the experimenter can vary the frequency with which certain letter clusters occur
in the training material. Participants are sensitive to this manipulation: in a subsequent
test phase, they are more likely to categorise a novel symbol string as familiar when it
contains a high-frequency cluster [51,52]. Furthermore, when participants also learned
the pronunciation of pseudowords, their degree of sensitivity to graphotactic regularities
correlated with their accuracy in subsequent reading aloud tasks of those pseudowords [51].
This suggests that knowledge of graphotactic regularities may facilitate the learning of print-
to-speech correspondences. However, as the frequency of the letter clusters correlated with
the frequency with which participants heard the letter-speech pairings during the training,
further studies are needed to establish how purely visual knowledge of graphotactic
regularities affects reading acquisition.

Establishing the role of graphotactic regularities in unimpaired reading is an important
first step in understanding the relationship between graphotactic sensitivity and dyslexia.
Taken together, the correlational and artificial orthography studies show that readers
are sensitive to graphotactic regularities and that such sensitivity is acquired easily after
exposure to a new script. Despite the experimental approach of the artificial orthography
learning studies, however, it is still unclear whether graphotactic sensitivity plays a causal
role in facilitating reading acquisition.

An additional open question is to what extent these studies inform us about the
relationship between dyslexia and statistical learning, as their focus is on reading ability in
unselected samples of adults and children. In studying graphotactic sensitivity in adults
and children with dyslexia, researchers have turned to the artificial grammar learning
task [53]. Here, participants are exposed to letter or symbol strings. These strings are
created by a set of rules about which symbol(s) can follow another. These rules thus create
graphotactic regularities. In a training phase, participants have been shown to learn these
graphotactic regularities: in a subsequent test phase, they can distinguish grammatical
from non-grammatical sequences, even when they did not occur in the training materials,
showing generalisation. If dyslexia is caused by a reduced ability to pick up graphotactic
regularities, participants with dyslexia should show lower learning performance than a
control group on this task. The classical artificial grammar learning task used letter strings
as stimuli: for dyslexia research, this creates a confound between letter processing and the
ability to pick up the regularities [54]. Studies on participants with dyslexia, therefore, use
non-letter symbols and show mixed results when it comes to a group difference between
participants with and without dyslexia (e.g., positive result: [55]; negative result: [56]). The
literature seems to be affected by publication bias and questionable research practices [5,7].
Thus, while a meta-analysis has shown an overall group difference, further evidence is
required to convince a sceptical researcher.

A recent study has assessed the role of graphotactic knowledge for spelling in a more
ecologically valid setting [37]. Spelling ability has previously been linked to orthographic
learning: orthographic learning refers to the knowledge of a written word form, which
is important for fluent reading [57,58]. Zhang and Treiman [37] asked preschool children
with no knowledge of letters’ phonology to perform a delayed copying task: the children
were visually presented with nonwords which either contained common letter bigrams
(e.g., CHED) or illegal bigrams (e.g., EHDC). After the nonword disappeared, the child
was asked to spell the word they had just seen. Indeed, children provided more accurate
spellings for nonwords with legal letter bigrams, suggesting that children are sensitive
to graphotactic regularities. Due to the use of the spelling task, this experiment provides
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evidence that is in line with a causal chain from sensitivity to graphotactic regularities to
spelling and reading ability. However, a limitation of the study is that the participants
were pre-readers. As such, it is not clear whether children who are already undergoing
reading instructions continue to rely on graphotactic knowledge for spelling. Once children
learn about the relationship between graphemes and phonemes, this new knowledge is
likely to become a stronger predictor of the likely spelling of a word. This may reduce the
extent to which they rely on graphotactic regularities. Thus, it remains an open question
how graphotactic regularities affect reading acquisition in children after they reach the
alphabetic phase of the learning process [59].

In summary, the first proposed causal pathway could lead from statistical learning to
graphotactic knowledge to spelling ability; spelling ability should lead to more efficient
orthographic learning, which, in turn, is important for fluent reading [57,58]. The existing
studies provide important building blocks: they unequivocally show that children and
adults become aware of graphotactic patterns already after a small amount of exposure.
They also provide evidence that this knowledge may be involved in reading and spelling
acquisition, especially at the beginning of the learning process. However, it is still unclear
whether variability in the degree of graphotactic sensitivity is related to reading acquisition
after children reach an alphabetic phase. Furthermore, and of critical importance to the
topic of the current article, there is, to date, no reliable evidence that would suggest that
low sensitivity to graphotactic regularities may lead to dyslexia.

3.2. Learning Orthography-Phonology Mappings

In the literature on dyslexia, the pseudoword reading aloud deficit is one of the few
consistent and uncontroversial findings: children with dyslexia perform consistently worse
than control groups at pseudoword reading aloud tasks [30]. Pseudoword reading ability
can be seen as a measure of the extent to which readers can generalise their knowledge
of grapheme-phoneme correspondences. In English, the basic correspondences (e.g., t is
pronounced /t/) are generally explicitly taught; the knowledge of such basic correspon-
dences is, therefore, a candidate of a type of knowledge that is not learned statistically, as
the exposure is deliberate rather than incidental. However, more subtle regularities are
picked up via incidental exposure [19,21]. In orthographies such as English, German, and
Dutch, the pronunciation of a given grapheme sometimes depends on the context [60]. This
can be described by context-sensitive correspondences: for example, in English, c→/k/,
but c[i]→/s/, or a→/æ/, but [w]a→/O/. Pseudoword reading aloud experiments have
consistently shown that adult readers often rely on such correspondences, for example,
by pronouncing the pseudoword wamp as /wOmp/ rather than /wæmp/ (e.g., the work
of [18,20]. Thus, generalisation can and does occur. A study in Dutch has shown that,
when asked, adult readers were unable to explain why they preferred a context-sensitive
pronunciation (/s/) for pseudowords starting with c[e,i], as opposed to the default pronun-
ciation for c,/k/[61]. This further strengthens the notion that such regularities are learned
implicitly and without explicit instruction. Thus, context-sensitive correspondences seem
to be learned via a statistical learning process.

We remain agnostic about whether knowledge about context-sensitive grapheme-
phoneme correspondences is stored in the cognitive system in the form of all-or-none
rules, as is implemented in the dual-route cascaded model of reading aloud [62], or if it is
graded and represents the statistical properties of letter clusters and their corresponding
phonology from the input material, as in connectionist models [16,63]: in either framework,
extracting knowledge about grapheme-phoneme correspondences across contexts can be
seen as a statistical learning process. The connectionist perspective can be reconciled more
easily with a statistical learning perspective, as the format of knowledge should reflect the
statistics of the input material, even in skilled adult readers. In a rule-based framework, the
statistics should play a role during the learning process, as a regularity that is encountered
often is more likely to be stored as a rule. However, after a rule is established, the frequency
or consistency with which this rule is complied with in the reading material becomes
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irrelevant. Sensitivity to statistics in the input materials, in the form of consistency effects,
is well-documented (e.g., the work of [22]). The consistency effect describes the finding
that when a word or pseudoword contains an orthographic unit that has several plausible
pronunciations (e.g., -int in mint versus pint), it takes longer to process than a word where
all sublexical units have a consistent pronunciation. The size of the consistency effect has
been shown to be correlated with reading ability in children [64].

In many orthographies, orthography-phonology regularities also exist on a supra-
segmental level. Lexical stress assignment has been studied in orthographies, ranging
from English (e.g., the work of [26]) to Russian [65] and Italian [66]. Readers have been
shown to rely on hierarchically organised regularities abstracted at multiple levels. On a
basic level, they show a tendential preference towards the most common stress pattern in
their language when reading aloud polysyllabic pseudowords. The most common stress
pattern, in many orthographies, varies as a function of word class; readers also pick up
on this regularity and, when the grammatical class of a pseudoword is indicated by its
morphology, prefer a pronunciation that is in line with the word class. Beyond morphology,
readers have a preference for stress assignment, which is the same as orthographically
similar words. This shows a level of regularity extraction and generalisation relying on
complex, subtle regularities.

Regularities underlying segmental orthography-phonology knowledge and stress
assignment do not exist in all orthographies: for example, stress assignment is fixed in
orthographies such as French, and, by definition, non-alphabetic orthographies have a
qualitatively different way of conveying the pronunciation of a word from its spelling.
However, all orthographies convey some regularities. For example, in Chinese, ortho-
graphic regularities exist in constraining the position of radicals within a character, where
semantic radicals tend to occur in the left or top position of a character, and phonetic
radicals tend to occur in the right or bottom position of a character. Children develop a
sensitivity to these regularities [67]. The current article does not provide an exhaustive list
of all orthographic and linguistic regularities that exist across languages; however, it is safe
to assume that the presence of such regularities is a global phenomenon.

It is intuitive that knowledge of context-sensitive correspondences and other orthography-
phonology regularities should, in turn, affect pseudoword reading aloud. A correlation
between the application of context-sensitive correspondences and overall reading ability has
been established [21]. As such, a possible causal chain could go from impaired ability to learn
the regularities between orthography and phonology to poor decoding ability. Decoding
is necessary for reading any word that is unfamiliar in its written form. As most words
are visually unfamiliar to a beginning reader, an impaired ability to decode should hamper
reading acquisition [68]. The evidence for a link between knowledge and application of context-
sensitive rules and reading ability, however, is correlational: thus, again, we cannot conclude
that reduced sensitivity to these regularities causes poor reading ability, or if poor reading
ability is associated with reduced exposure to text, and thus leads to reduced opportunity for
readers to extract such regularities. The involvement of sensitivity to orthography-phonology
regularities in dyslexia remains an open question: as this sensitivity seems to covary with
reading ability across a wide range of reading skills, it is unlikely that it has a unique role in
dyslexia.

3.3. Learning Orthography-Semantics Mappings

As discussed above, there are some subtle regularities between orthography and
semantics. Reliance on morphology has already been studied to a great extent, both in
relation to reading processes in general and to dyslexia. Knowledge of morphology is not
specific to reading: it provides a source of regularity both in the written (orthography-
semantics) and spoken (phonology-semantics) form: a speaker of English is likely to
understand pseudowords made of familiar morphemes, such as “misunderestimate”,
regardless of whether they hear someone use it orally or whether they see it written.
In alphabetic orthographies, the relationship between orthography and phonology is
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sufficiently close that we can consider the orthography-to-semantics and phonology-to-
semantics information to be mostly overlapping. It is important to bear in mind, however,
that children are exposed to morphological regularities before they start learning to read.

Across orthographies, morphological awareness seems to be related to reading ability,
with children who have higher scores on morphological awareness tasks showing better
reading ability (e.g., the work of [69,70]). When it comes to the literature on dyslexia, in
alphabetic orthographies, several studies found intact or even superior morphological
skills in adult samples with dyslexia, compared to control groups [71,72]. This suggests that
reliance on orthography-semantics regularities may develop as a compensatory mechanism
for poor reading ability.

Beyond morphological awareness, further studies provide some evidence for knowl-
edge of orthography-semantics mappings acting as a compensatory mechanism [64,73,74].
These studies used the imageability effect to assess reliance on orthography-semantics
mappings. The imageability effect refers to the finding that words for which the meaning is
easy to visualise (e.g., “piano”) are processed faster for words with more abstract meanings
(e.g., “music”). These studies found an inverse relationship between reading ability and
the size of the imageability effect, with poorer readers showing a bigger effect. As the
imageability effect does not measure knowledge of systematicity between orthography and
semantics, this finding alone cannot be taken as evidence for intact learning of regularities
on the orthography-semantic level.

The question of whether readers rely on semantic regularities beyond morphology is
only beginning to be answered (e.g., the work of [75,76]). This is partly due to the develop-
ment of novel ways to capture the relationship between orthography and semantics [77].
Thus, it is not yet clear how the sensitivity to learning orthography-semantic regularities is
related to reading ability or dyslexia.

Orthography-semantics knowledge can be acquired and stored in two ways: Any
arbitrary associations need to be learned by rote and thus do not represent a statistical
learning process. However, systematic relationships, such as those underlying morpho-
logically complex words, can be learned and stored via their underlying regularities. It
is an open empirical question in which experimental paradigms can be used to dissoci-
ate these two processes. Artificial language learning studies may be able to manipulate
whether the meaning of a pseudoword can be derived from the knowledge of similar pseu-
dowords. Further empirical investigations can assess whether psycholinguistic marker ef-
fects can be dissociated. Candidates for psycholinguistic marker effects reflecting statistical
orthography-semantics knowledge include the recently developed orthography-semantics
consistency measure: the extent to which words that have similar spellings have similar
meanings [77].

In relation to dyslexia, a first hypothesis is that orthography-semantics regularities are
not learned due to an underlying statistical learning deficit, and readers learn to rely on
their orthography-semantic rote knowledge to compensate both for their impaired knowl-
edge of orthography-semantic regularities and of orthography-phonology regularities. A
second hypothesis is that the causes of dyslexia are related specifically to the learning of
orthography-related material. Children are exposed to phonology-semantic regularities
even before reading acquisition starts: if the learning deficit associated with dyslexia is
limited to orthographic material, then children learning to read in alphabetic orthographies
should be able to directly transfer their knowledge of the phonology-semantics regularities
to relying on orthography-semantics regularities, provided they have reached a base level
of decoding ability.

The first hypothesis would predict that participants with dyslexia should be im-
paired at learning orthography-semantics regularities but may instead show stronger rote
knowledge, which they develop as a compensatory mechanism. According to the second
hypothesis, there should be a dissociation between knowledge of orthography-semantic
regularities and rote knowledge. As this distinction has not been explicitly and empirically
studied to date, we do not have the data to support one hypothesis over the other. From the
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morphology literature, it is unclear how to reconcile the finding of a positive relationship
between morphological awareness and reading ability in unselected samples of children,
but no group difference in morphological awareness between adults with and without
dyslexia. Future empirical studies should seek to resolve this inconsistency.

3.4. Interim Summary

We can conclude that, beyond doubt, (1) orthographies contain regularities, (2) readers
learn these regularities via a mechanism that, by our definition, qualifies as “statistical
learning”, and (3) their sensitivity to these regularities largely correlates with their reading
ability. However, we remain sceptical about the claims (1) that the relationship between
readers’ sensitivity to these regularities and their reading ability is causal, and (2) that a
statistical learning deficit is a cause of dyslexia in some or all cases.

4. Issues in Establishing Distal Causes: A Noisy Chain Hypothesis

The above section describes two possible causal chains between statistical learning
and reading ability or dyslexia. In both of these, statistical learning would act as a distal
cause of reading ability and a distal deficit associated with dyslexia. As noted in the
Introduction, other distal cause theories have been put forward, such as a procedural motor
learning deficit [44], an auditory temporal sampling deficit [9], and a visual magnocellular
deficit [11]. All of these theories remain controversial, and the evidence is mixed. In
contrast, theories that focus on proximal causes are less controversial: for example, it is well
established that children with dyslexia have problems with phonological processing (e.g.,
the work of [30,78]; though note that even here, it is controversial whether a phonological
deficit is causal to dyslexia; [79]). Furthermore, in treatment studies of children with
dyslexia, training children on cognitive mechanisms that have a proximal connection with
reading ability is generally more effective than treating distal deficits [14,80].

While the above section has focussed on methodological and empirical issues specific
to statistical learning, here we describe a theoretical-statistical issue that is relevant to all
distal cause theories. The acknowledgement of this issue can help shed light on why the
distal cause theories tend to be controversial. In a metaphorical causal chain between a
perceptual (e.g., auditory), neural (e.g., neural synchronisation to speech), or low-level
cognitive (e.g., statistical learning) process and reading, we expect the connection between
each link, representing a cognitive skill, will not be deterministic, in the sense that a deficit
in a link will not necessarily lead to dyslexia. For example, a child’s statistical learning
ability is unlikely to be the only determinant of their graphotactic sensitivity; one obvious
additional determinant is the amount of exposure to printed materials. This additional
determinant dilutes the correlation between statistical learning ability and graphotactic
sensitivity: even if we develop measures of both constructs that are completely free of
measurement error, we will not obtain a correlation of 1 between them. The same holds true
of the relationship between sensitivity to graphotactic regularities and spelling ability: even
if we assume that this relationship is causal, other factors, such as the child’s phonological
decoding ability, will additionally contribute to determining their spelling ability. Thus,
as we travel further down the chain, the relationship between our first distal cause (e.g.,
statistical learning or the perceptual impairment following a magnocellular deficit) and
reading ability or dyslexia will be diluted, which will be manifested as a reduced correlation
between increasingly distal skills.

Theoretically, it should be possible to identify all contributors of a single skill or link,
but we are still far from such a comprehensive understanding of the predictors of reading
ability and dyslexia. If we treat all unknown contributors of a skill as random noise, it
becomes possible to model the correlation between a distal skill and the end-state outcome
of reading under a range of assumptions. We expect that such modelling will show two
dependencies: (1) The greater the number of links between a distal cause and the end-state
of reading, the smaller the correlation between the most distal cause and reading ability,



Brain Sci. 2021, 11, 1143 11 of 19

and (2) the smaller the relative contribution of Link L-1 to Link L, the smaller the correlation
between the most distal cause and reading ability.

The extent to which Link L contributes to Link L+1, relative to the additional predictors,
is likely to vary. Some links may be very tight, such as knowledge of grapheme-phoneme
correspondences as a predictor of pseudoword reading ability: though other skills (such as
the ability to blend phonemes after successful conversion) are likely to affect pseudoword
reading ability, this error term will be relatively small. For other links, the causal rela-
tionship may be relatively weak: if we assume that knowledge of grapheme-phoneme
correspondences is affected by statistical learning ability, it will also be affected, for ex-
ample, by the amount of exposure, explicit instruction of basic or even more complex
grapheme-phoneme correspondences. We can model this by multiplying the contribution
of Link L-1 and the noise term by xL and yL, where xL + yL = 1. In the case of the link
between knowledge of grapheme-phoneme correspondences and reading ability, the con-
tribution of grapheme-phoneme correspondence knowledge (xL) might be 0.8, with the
remaining 20% (yL = 0.2) reflecting the influence of all other predictors. In the case of statis-
tical learning to the knowledge of grapheme-phoneme correspondences, this contribution
will be much smaller (e.g., xL = 0.2), with the remaining 80% reflecting the influence of all
other predictors (yL = 0.8)

We will model each Skill X as a standard normal distribution (Skill X ~ N(0,1)). Skill
A, denoting the most distal cause, is thus modelled by drawing numbers from a standard
normal distribution (µ = 0, σ = 1). Skill B is partly determined by Skill A and partly by
noise (ε), resulting from additional, unknown predictors, again, modelled as a standard
normal distribution (εn ~ N(0, 1)). Taken together, then, the model, for n amount of links,
including the most distal cause (Skill A), will look as follows:

Skill A ~ N(0, 1)

Skill B = x1 ∗ Skill A + y1 ∗ ε1, ε1 ~ N(0, 1)

Skill C = x2 ∗ Skill B + y2 ∗ ε2, ε2 ~ N(0, 1)

. . .

Reading ability = xn ∗ Skill n + yn ∗ εn, εn ~ N(0, 1)

We implemented this model in R (version 4.0.2; [81]); the code can be found on the
Open Science Framework: https://osf.io/epu8m/ (accessed on 1 June 2021). We varied
both the number of links (n) and the relative contributions of Link L versus the unknown
predictors (x and y). The number of links varied between a direction relationship (Skill
A→ reading) with no intermediate links, and 1 (Skill A→ Skill B→ reading), 2, 3, or 4
intermediate links.

For values of x, we arbitrarily chose different values for scenarios where the contribu-
tion of Link L to Link L+1 (xn) may be low (0.2), medium (0.5), or high (0.8). This value is
likely to vary for each link within a chain; however, to keep the number of simulations with
different parameters manageable, we kept it constant within each chain (i.e., for all links
within a chain, xn is either 0.2, 0.5, or 0.8). For each scenario, we simulated 1000 participants’
scores on Skills A to Skill n, as well as reading ability, and calculated the correlation between
Skill A (the most distal cause) and reading ability. We standardised each skill to retain the
interpretability of the scores as z-scores. To derive a confidence interval in addition to a
point estimate for the correlation, we repeated this process, for each scenario, 10,000 times
(the number of simulated participants and simulations were chosen within a trade-off
between getting reliable output values and computational restraints). This allowed us to
provide a point estimate for the correlation (average correlation across 10,000 simulations)
and an upper and lower bound of a 95% CI (bounds of the part distribution that contain
95% of the simulated data). These are depicted in Table 1. From the correlation coefficients,
it is trivial to provide a power calculation: how many participants are required to detect

https://osf.io/epu8m/
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the correlation with p < 0.05, 80% of the time, for the given correlation? These calculations
were conducted with the R package pwr (version 1.3-0; [82]).

Table 1. Results of simulations, showing the estimated correlation coefficient for different scenarios
of relationship strength and number of intermediates.

Relationship
Strength

Number of
Intermediate

Links

Correlation
Coefficient

Estimate

95% CI for
Correlation
Coefficient

Number of
Participants for

80% Power

Low (0.2) 4 <0.001 −0.061, 0.062 185,187,455
Low (0.2) 3 0.002 −0.061, 0.064 1,843,597
Low (0.2) 2 0.009 −0.053, 0.070 92,274
Low (0.2) 1 0.049 −0.012, 0.111 3235
Low (0.2) 0 0.243 0.182, 0.301 130

Medium (0.5) 4 0.054 −0.007, 0.115 2657
Medium (0.5) 3 0.108 0.046, 0.169 675
Medium (0.5) 2 0.213 0.151, 0.272 170
Medium (0.5) 1 0.408 0.356, 0.458 44
Medium (0.5) 0 0.707 0.675, 0.737 12

High (0.8) 4 0.721 0.690, 0.750 11
High (0.8) 3 0.803 0.780, 0.824 9
High (0.8) 2 0.873 0.857, 0.887 7
High (0.8) 1 0.928 0.919, 0.937 6
High (0.8) 0 0.970 0.966, 0.974 5

We note that the scenarios with a strong relationship between Link L and Link L+1 are
likely to be overly optimistic: in most real-life cases, additional skills would account for
more than 20% of performance on Skill L+1. Furthermore, the current simulations ignore
the role of measurement error for the sake of simplicity: measurement error further reduces
the correlations between any set of skills. The causal chains for statistical learning that
we have described above contain, as a minimum, two intermediate links: for example,
statistical learning (Skill A)→ sensitivity to complex grapheme-phoneme correspondences
(Skill B) → ability to read unfamiliar words (Skill C) → reading ability. In this case,
assuming a medium-strength relationship (which seems to us like the most optimistic but
still realistic case scenario), one would need 170 participants to detect a correlation between
statistical learning and reading ability. To name some recent examples, correlational studies
that have assessed this relationship tested 38 children and 37 adults [4], 84 adults [6],
65 children [83], 72 adults and children [84].

In dyslexia research, rather than calculating correlations, researchers select a sample
of dyslexia and compare their performance on Skill A to a matched control group. We
simulated this scenario to derive an effect size estimate: instead of calculating a correlation
between Skill A and reading, we divided the simulated participants into dyslexic partici-
pants (standardised reading score z < −2) and controls (standardised reading score z ≥ −2)
and derived a standardised effect size (Cohen’s d) by subtracting the mean simulated
performance on Skill A of the control group from the mean simulated performance on Skill
A of the group with dyslexia, and dividing the difference score by the overall simulated
population standard deviation (d = (Skill A mean dyslexia − Skill A mean control)/Skill A
standard deviation all). To increase the number of participants in the dyslexia group for
reliable statistics, we changed the number of simulated participants to 10,000. Otherwise,
the simulation and parameters were identical to the previous simulations. The results of
these simulations are presented in Table 2.
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Table 2. Results of simulations, showing the estimated standardised effect size estimate for different
scenarios of relationship strength and number of intermediates.

Relationship
Strength

Number of
Intermediate

Links

Standardised
Effect Size
Estimate

95% CI for
Effect Size
Estimate

Total Number
of Participants
for 80% Power

Low (0.2) 4 −0.002 −0.134, 0.132 9,431,501
Low (0.2) 3 −0.008 −0.139, 0.123 482,294
Low (0.2) 2 −0.034 −0.165, 0.096 27,156
Low (0.2) 1 −0.144 −0.275, −0.013 1511
Low (0.2) 0 −0.589 −0.716, −0.464 92

Medium (0.5) 4 −0.429 −0.558, −0.300 172
Medium (0.5) 3 −0.607 −0.735, −0.480 87
Medium (0.5) 2 −0.859 −0.979, −0.738 45
Medium (0.5) 1 −1.215 −1.327, −1.101 23
Medium (0.5) 0 −1.717 −1.813, −1.621 13

High (0.8) 4 −2.087 −2.161, −2.014 10
High (0.8) 3 −2.151 −2.220, −2.083 9
High (0.8) 2 −2.217 −2.281, −2.154 9
High (0.8) 1 −2.285 −2.345, −2.227 8
High (0.8) 0 −2.356 −2.408, −2.305 8

An optimistic-realistic-case scenario (medium-strength relationship, 2 intermediate
links) shows that, in order to detect a significant group difference between participants
with and without dyslexia in the most distal deficit, we would need 45 participants (ap-
proximately 23 participants per group). Again, most studies have a smaller sample size: in
a systematic review of artificial grammar learning studies in participants with and without
dyslexia, we have found a median sample size of 32 participants (16 per group), with a
minimum of 30 and a maximum of 223 in both groups [5].

5. Directions for Future Research

So far, we have identified both theoretical and statistical issues pertaining to the
statistical learning theory of dyslexia. Some of these can be applied to other distal theories
of dyslexia. From a statistical perspective, the noisy chain hypothesis and our simulations
thereof clearly show that most studies, to date, are underpowered to detect a correlation
between a distal cause and the end-state outcome of reading ability, or a group difference
in measures of the distal cause between participants with and without dyslexia. This is
an issue that is common to all distal theories of dyslexia. Across simulations, we showed
a wide range of correlations and effect sizes, resulting in vast differences in sample size
calculations for achieving adequate power. Future research could aim to narrow these
down by establishing plausible parameter values. These are likely to depend on the
particular research question.

For a researcher proposing a distal theory, the implication of this finding is that the
number of links in the causal chain should be taken into account when determining sample
size. This will improve the research on the causes of dyslexia in two ways. First, this will
force the researcher to specify an exact causal pathway. Second, it is likely that the sample
size required to find a link between the most distal cause and reading ability will be much
larger than what is generally used in this kind of research. The specification of the causal
pathway will have a theoretical benefit, as it will avoid ambiguity, which results in unclear
predictions, thus making it difficult to either support or falsify a given theory.

Improving sample size, overall, will improve our ability to draw conclusions from
mixed sets of findings. Low statistical power is problematic in most areas of psychology,
with no apparent improvement, on average, since the phenomenon was first described in
the 1960s [85,86]. A commonality between distal causal theories of dyslexia is the mixed
empirical results, with failures to replicate an initial, often positive finding of a group
deficit. By definition, we would expect that many studies would yield non-significant
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results when we have low statistical power. Thus, the false-negative rate is likely to be
high. However, other common issues in social and behavioural sciences increase the false
positive rate: for example, publication bias [87] and questionable research practices [88].
This leaves us in a situation where it is very difficult to interpret a mixed set of findings, as
both a true effect with false negatives due to low power and the absence of a true effect
with some false positives are plausible scenarios.

An obvious solution to the problem of low statistical power is to run larger studies.
Depending on the scenario, however, this may require sample sizes in the thousands or
even up to 200,000,000 participants. Due to the practical hurdles of testing such a big num-
ber of participants, this might not always be feasible. To circumvent this issue, researchers
may take a more experimental approach when possible. In artificial orthography learning
studies, we can minimise the effect of existing print-related knowledge, which, in itself,
is likely to be caused by a plethora of known and unknown, measured, and unmeasur-
able external variables. While such experiments lack external validity, they can lay the
groundwork for a follow-up study [89]: if a researcher can show a model of the causes of
dyslexia and support the links of their causal chain with experimental evidence, they can
use this knowledge to apply for an amount of funding that will allow them to perform an
adequately powered study.

Another recommendation is to focus on individual links in the causal chain instead of
focussing, from the very beginning of a new line of research, on the relationship between
the most distal skill and reading ability. The correlation between two adjacent links is
likely to be strongest. From a theoretical perspective, preliminary studies focussing on
only a part of a causal chain can be used to provide evidence for or against the proposed
theory before a large-scale observational study is conducted. The findings of the study
can also be used to estimate the parameters in the simulation above: the strength of the
relationship between individual links and the number of linking skills. This will allow for
a more accurate effect size estimate. Furthermore, the methods of preliminary studies can
be tweaked to minimise measurement error, leading to stronger correlations and a smaller
number of participants, which will be required for a large-scale observational study.

5.1. Establishing Causality for the Statistical Learning Deficit Theory

In the section on making links in a causal chain for the statistical learning deficit
theories of dyslexia, we have shown correlational evidence but concluded that evidence
for causality is missing. Again, this is an issue that is relevant not only for the statistical
learning deficit theory but also for other distal theories, which are often correlational.

In the case of statistical learning and dyslexia, previous studies have already provided
important puzzle pieces towards identifying the direction of causality between sensitivity
to orthography-related regularities and reading ability. Experimental studies with artificial
orthographies are able, in principle, to establish causality, but they are limited in their
ecological validity: it remains unclear to what extent adults learning an artificial script use
similar cognitive mechanisms as children learning to read. Correlational studies can be
conducted with children learning to read in a natural setting but cannot be used to establish
causality. The missing link to establish causality would be either a longitudinal study or a
training study. Such studies would need to be carefully designed to truly understand the
direction of causality: children who are inherently good at reading tend to read more [90],
which means that better readers have more exposure to texts and the regularities that they
contain [91].

A longitudinal study would be able to shed further light on the relationship between
statistical learning, knowledge of print-related regularities, and reading. Such a study
should start with preschool children, akin to Zhang and Treiman [37]. The first question is
whether individual differences in the ability to rely on graphotactic regularities in spelling
continue to predict reading acquisition after the onset of formal instruction. However,
even here, we cannot exclude the reverse direction of causality: even if children have
not started reading acquisition yet, their knowledge of graphotactic regularities must
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come from having been exposed to print. Such a study would therefore not provide an
unequivocal link between statistical learning ability and reading but would at best show
that knowledge of statistical regularities aids reading acquisition. A second question is
whether preschool children’s ability to extract regularities from an artificial orthography
would predict their later reading abilities in their native language. If a statistical learning
deficit causes dyslexia, one would predict that all children who are impaired in extracting
regularities will develop dyslexia after the onset of reading instructions. This combination
of experimental and observational research would help to establish a causal link between
the ability to learn regularities and reading acquisition.

What would be the implications of further research on statistical learning and dyslexia,
and what are the implications of the findings so far? The studies to date have provided
important theoretical insights into learning mechanisms that potentially underlie not only
reading but also other visual learning tasks [92]. Understanding the direction of causality
would shed further light on the cognitive mechanisms underlying reading acquisition.
This would help tighten the link between linguistics and educational psychology, as it
would open directions for linguistic research on relevant regularities that are present in
orthographies and spoken languages.

5.2. Practical Implications of the Statistical Learning Deficit Hypothesis

The practical implications of statistical learning and dyslexia research are likely to be
more limited. In general, identifying a causal deficit is associated with the promise of early
identification and treatment. To date, we lack any indication that general statistical learning
ability is causally related to reading ability. If such evidence is found in future studies,
it will be a challenge to devise statistical learning tasks for children with psychometric
properties that would allow for them to be used as a diagnostic test [46]. The link that
does have empirical support is between sensitivity to print-related regularities and reading
ability. Sensitivity to print-related regularities cannot develop without already having
had some exposure to print; thus, it is unclear whether anything is gained by taking into
account the sensitivity to regularities beyond simply assessing children’s reading ability.

In terms of treatment, there are three levels on which one could try to improve
children’s reading ability. The first would be to train a domain-general statistical learning
ability. To date, it is unclear whether this is possible or whether there would be any benefits
even if a reliable training method is found. Second, one could increase children’s sensitivity
to print-related statistical regularities by exposing them to more reading material. This
would seem to be a sensible strategy in any case, as the number of books in a child’s house
has been shown to be a predictor of reading ability, over and above genetic influences [93].

Third, one could explicitly teach children about regularities in their orthography. For
example, if a child spells a word with an implausible letter sequence, such as ckwick for
quick, one could explain that, even though ck is, indeed, a plausible spelling for the sound
/k/, in English, words never start with ck. Similarly, one can teach a child to consider
morphology in their spellings: if they spell, for example, magician as majishun, one can draw
their attention to the relationship of this word to the word magic and other words containing
the morpheme ian, such as mathematician. The focus is no longer on a cognitive statistical
learning process but rather on explicitly teaching children print-related regularities. This
raises the question of what is gained by invoking the concept of statistical learning in
research on print-related regularities. From a theoretical perspective, it is relevant why
a child has not been able to learn a particular regularity. From a practical perspective,
however, it is likely that the treatment will be identical, regardless of the reasons why a
child has not learned a given regularity: be it due to a statistical learning deficit, lack of
exposure to reading materials, or a lack of explicit instructions relating to these regularities.

5.3. Further Theoretical Implications of Statistical Learning

As discussed in the Introduction, print consists mostly of orthographic regularities,
and learning the statistical properties of these regularities is, by definition, necessary for
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reading acquisition. Thus, statistical learning is definitely critical for reading acquisition,
but as this describes the very nature of an orthography, referring to reading as “statisti-
cal learning” arguably serves as a one-word explanation, which has a less well-defined
meaning than the concept that it is proposed to describe, and shifts the focus away from
the underlying cognitive mechanisms [94]. From a sceptic’s perspective, therefore, we
propose to reserve the term “statistical learning” for the domain-general cognitive learning
mechanism that is likely to play a role in many, if not all, learning tasks.

6. Conclusions

In the current review paper, we discuss issues related to the statistical learning deficit
theory of dyslexia, some of which apply to distal deficit theories of dyslexia in general.
First, we reviewed the evidence for a statistical learning deficit in dyslexia. While we find
convincing evidence for a correlation, we argue that none of the existing studies establish
causality: this is a concern for theories of dyslexia in general, which are often based on
correlational or quasi-experimental evidence (i.e., differences in a given skill between
participants with and without dyslexia). This issue can be addressed, at least in part, by
future experimental and longitudinal work.

We then describe and model the noisy chain hypothesis, which could help in driving
future studies. The hypothesis builds on the assumption that the strength of the relationship
between a distal cause and reading ability or dyslexia is diluted with each intermediate
linking skill. Our simulations show that this leads to a decrease in correlation between
the most distal cause and reading ability with each additional intermediate link. Applied
to (statistically) predicting whether a given child will show symptoms of dyslexia rather
than predicting reading ability as a continuous variable, this should result in smaller group
differences between participants with and without dyslexia for distal causes. The dilution
of effect sizes is due to additional variables that influence each of the linking skills. This
means that a larger number of participants is required to reach adequate statistical power
compared to studies that test a proximal cause, which is closely linked to the end-state
outcome of reading ability. For theories of distal causes of dyslexia, this means that much of
the current research is likely to be underpowered. To circumvent issues with low statistical
power, we propose (1) well-defined theories, which specify the number and nature of the
intermediate links, (2) experimental research, where the influence of additional variables
is minimised, and (3) studies focussing on adjacent links, which can be used to minimise
measurement noise and to provide a proper effect size estimate to ultimately test the effect
of the distal cause on reading ability or dyslexia.
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