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Abstract: The clearance of apoptotic cells by macrophages (efferocytosis) is crucial to maintain normal
tissue homeostasis; however, efferocytosis of cancer cells frequently results in inflammation and
immunosuppression. Recently, we demonstrated that efferocytosis of apoptotic prostate cancer
cells by bone marrow-derived macrophages induced a pro-inflammatory response that accelerated
metastatic tumor growth in bone. To evaluate the microenvironmental impact of macrophages and
their efferocytic function, we compared peritoneal macrophages (P-MΦ) versus bone marrow-derived
macrophages (BM-MΦs) using an efferocytosis in vitro model. The capability to engulf apoptotic
prostate cells was similar in BM-MΦs and P-MΦs. Ex vivo analysis of BM-MΦs showed an M2-like
phenotype compared with a predominantly M1-like phenotype in P-MΦs. A distinct gene and protein
expression profile of pro-inflammatory cytokines was found in BM-MΦs as compared with P-MΦs
engulfing apoptotic prostate cancer cells. Importantly, the reprogramming of BM-MΦs toward an
M1-like phenotype mitigated their inflammatory cytokine expression profile. In conclusion, BM-MΦs
and P-MΦs are both capable of efferocytosing apoptotic prostate cancer cells; however, BM-MΦs exert
increased inflammatory cytokine expression that is dependent upon the M2 polarization stage of
macrophages. These findings suggest that bone marrow macrophage efferocytosis of apoptotic cancer
cells maintains a unique pro-inflammatory microenvironment that may support a fertile niche for
cancer growth. Finally, bone marrow macrophage reprogramming towards M1-type by interferon-γ
(IFN-γ) induced a significant reduction in the efferocytosis-mediated pro-inflammatory signature.

Keywords: bone marrow macrophages; peritoneal macrophages; prostate cancer; bone metastasis;
tumor associated macrophages; efferocytosis

1. Introduction

Macrophage efferocytosis of apoptotic cells is essential for human health as it maintains tissue
homeostasis by preventing the harmful effects of apoptotic cell accumulation and necrosis [1–3].
Conversely, efferocytosis of apoptotic cells in the tumor microenvironment, a perpetual process during
tumor growth, promotes a pro-inflammatory and immunosuppressive program [4–6]. Our group
recently identified that bone marrow-derived macrophage engulfment of cancer cells resulted in the
production of inflammatory cytokines to promote immunosuppression and tumor growth in bone [7].
However, it remains unclear how the pro-tumorigenic and immunosuppressive effects of macrophage
efferocytosis in bone metastasis are linked to uniqueness of the bone microenvironment.

Myeloid cells in the bone marrow provide a fertile microenvironment for cancer cells to stimulate
metastatic establishment. Millions of cells undergo apoptosis in the tumor microenvironment;
thus, macrophage-mediated efferocytosis of cancer cells has a crucial role in pro-tumorigenic and
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immunosuppressive mechanisms that lead to tumor progression and metastases [4,5]. Tumor-associated
efferocytic macrophages are typically M2 polarized pro-inflammatory macrophages that promote cell
growth through the production of IL-6, IL-23, and TNFα. They also drive tumor development through
immune suppressive factors such as TGFβ and IL-10 [8,9]. Moreover, increased expression of MerTK,
Axl, and Tyro3 receptor kinases by efferocytic macrophages in the tumor microenvironment stimulates
tumor metastasis and immune suppression through elevated secretion of immune suppressive
cytokines [10,11].

Although macrophages exhibit a high degree of plasticity [12,13], they are classified into two
simplified categories: M1 (classically activated) or M2 (alternatively activated) phenotypes. M1
macrophages express CD80 and CD86 to trigger inflammation and tissue damage, whereas M2
macrophages express the mannose receptor-1 (CD206) and macrophage scavenger receptors (CD204
and CD163) to promote tissue remodeling and fibrosis [14]. Interferon-γ (IFNγ) has the ability to
switch immunosuppressive tumor associated macrophages (TAMs), M2-like polarized macrophages,
into M1-like immunostimulatory cells in different types of cancers [15,16].

Peritoneal macrophages are commonly used to study efferocytic responses after being exposed to
apoptotic cells; yet, solid tumors like prostate cancer preferentially locate to the bone marrow versus the
peritoneum. Recently, we determined that bone marrow macrophage engulfment of cancer cells resulted
in a distinct profile of cytokine production. Engulfment of cancer cells, but not normal cells, resulted in
the production of C-X-C motif chemokine ligand 5 (CXCL5) and other pro-inflammatory cytokines,
which led to immunosuppression and rebounding tumor growth [7]. The possibility that tissue resident
macrophages at different sites encounter, engulf, or present differing post-engulfment profiles upon
apoptotic tumor cell efferocytosis is unknown. The prospect of considering the fundamental process of
efferocytosis as a molecular switch in programming or re-programming tumor associated macrophages
bears promise [17]. Such information could provide valuable new insights into the intervention of
tumor progression.

Using primary macrophages and an efferocytosis in vitro model, we investigated the differential
gene expression of inflammatory cytokines in response to apoptotic cancer cell clearance by bone
marrow-derived and peritoneal macrophages. We found that bone marrow-derived macrophages
have a very unique role in the efferocytosis-induced inflammatory gene expression profile, which is
likely critical in the acceleration of prostate cancer skeletal metastasis.

2. Materials and Methods

2.1. Cell Lines and Animals

Murine (Ras+Myc)-induced prostate cancer (RM1)cells were a gift from Timothy C. Thompson
(Baylor College of Medicine, Houston, TX, USA) [18,19]. C57BL/6J mouse primary prostate
epithelial cells (mPEC) were obtained from Cell Biologics (C57-6038). Both cell lines were certified
mycoplasma-free (RM1 cells were characterized by IDEXX BioResearch; mPECs were obtained from
Cell Biologics). All animal experiments were performed with approval from the University of Michigan
Institutional Animal Care and Use Committee. Immunocompetent C57BL/6J mice were purchased
from the Jackson Laboratory.

2.2. Macrophage and Apoptotic Cell Co-Culture

Bone marrow-derived macrophages (BM-MΦs) were isolated from wildtype 4–6 week old male
C57BL/6J mice by flushing the femur and tibia with minimum essential medium eagle - alpha
modification (αMEM) supplemented with L-glutamine, antibiotic-antimycotic 1× and 10% fetal bovine
serum (FBS). From the same mice, peritoneal macrophages (P-MΦs) were isolated by flushing the
peritoneal cavity with 5 mL of ice cold αMEM (L-glutamine, antibiotic-antimycotic 1×, 10% FBS).
BM-MΦs and P-MΦs were cultured in αMEM (L-glutamine, antibiotic-antimycotic 1×, 10% FBS) in the
presence of macrophage colony stimulating factor (M-CSF) (30 ng/mL, #315-02, Peprotech, Rocky Hill,
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NJ, USA). After three days in culture, macrophages were plated independently at 1.5 × 106 cells/well
in αMEM (L-glutamine, antibiotic-antimycotic 1×, 0.25% FBS) for co-culture experiments. RM1 and
mPEC cells were exposed to UV light for 30 min to induce apoptosis. Apoptotic (a) cells (>90% trypan
blue incorporation) were co-cultured with macrophages at a 1:1 ratio in αMEM (L-glutamine, 0.25%
FBS) for 16–18 h. For flow cytometric analyses, apoptosis was induced in RM1 cells and the cells were
labeled with CellTrace™ CFSE (ThermoFisher Scientific, C34554), and then co-cultured with BM-MΦs
or P-MΦs for 16–18 h. Efferocytosis inhibition was performed by incubation of cultures at 4 ◦C over 6 h.

2.3. Flow Cytometry

BM- and P-MΦs alone and co-cultured with RM1(a) cells were collected and incubated in
fluorescence-activated cell sorter (FACS) staining buffer (phosphate buffered saline-1×, 0.2% bovine
serum albumin). Antibodies and/or matched isotype controls were added and incubated for 1 h at 4
◦C. The following antibodies were used: allophycocyanin (APC)-F4/80 (CI:A3-1) (#ab105080, Abcam,
Cambridge, MA, USA); fluorescein isothiocyanate (FITC)-CD86 (GL-1) (#105006, Biolegend, San Diego,
CA, USA), FITC-CD206 (C068C2) (#141704, Biolegend, San Diego, CA, USA). Cells were analyzed
by flow cytometry using a BD FACSAriaTM III (BD biosciences, San Jose, CA, USA) and Amnis®

ImageStream®XMk II (Luminex, Austin, TX, USA).

2.4. Quantitative Polymerase Chain Reaction (qPCR)

Total RNA was isolated from BM- and P-MΦs alone, and co-cultured with RM1(a) or
mPEC(a) cells using the RNeasy® Mini Kit (#74104, Qiagen, Hilden, Germany) following the
manufacturer’s instructions. qPCR was performed using TaqMan gene expression master mix
(#4369016, AppliedBiosystems, Foster City, CA, USA) and the corresponding TaqMan probes: Cxcl1
(Mm04207460_m1), Cxcl4 (Mm00451315_g1), Cxcl5 (Mm00436451_g1), IL-6 (Mm00446190_m1), CD86
(Mm00444540_m1), CD206 (Mm01329362_m1), and 18S (Mm03928990_g1). Real time PCR was
analyzed on ABI PRISM 7700 (Applied Biosystems, Foster City, CA, USA). Relative expression levels
were calculated after normalization to 18S expression.

2.5. Macrophage Reprogramming

BM-MΦs were harvested and expanded as described above. On day four, macrophages were
stimulated for 24 h with 60 ng/mL of interferon-γ (IFN-γ, , 315-05, Peprotech, Rocky Hill, NJ, USA) in
αMEM (L-glutamine, antibiotic-antimycotic 1×, 10% FBS, M-CSF 30 ng/mL) to reprogram BM-MΦs
towards the M1-type. Efferocytosis assays were then performed by adding RM1(a) cells and co-cultured
16–18 h as described.

2.6. ELISA

CXCL1 and CXCL5 were quantitatively measured using RayBio® Mouse enzyme-linked
immunosorbent assay (ELISA) assay systems (#ELM-KC and #ELM-LIX, RayBiotech, Inc., Peachtree
Corners, GA, USA) using the conditioned media collected from BM- and P-MΦs alone and in co-cultured
with RM1(a) or mPEC(a) cells, and BM-MΦs alone and in co-culture treated with IFN-γ- and vehicle.

2.7. Statistics

Statistical analyses were performed using GraphPad Prism 6 (GraphPad Software, version 8.0.2, San
Diego, CA, USA) using one-way analysis of variance (ANOVA) with Dunnet’s multiple-comparisons
and unpaired t-tests with significance of p < 0.05.
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3. Results

3.1. Bone Marrow-Derived and Peritoneal Macrophages Display Effective Efferocytosis of Apoptotic Prostate
Cancer and Normal Prostate Cells

Efferocytosis of apoptotic cells by bone marrow-derived macrophages (BM-MΦs) and peritoneal
macrophages (P-MΦs) has been previously demonstrated by flow cytometry analysis [7,20–22]. The
ability of P-MΦs versus BM-MΦs to efferocytose apoptotic cancer and normal prostate epithelial
cells was analyzed using primary BM-MΦs, isolated from C57BL/6J mouse femurs and tibiae, and
P-MΦs, isolated from peritoneal exudates, in co-culture with apoptotic RM1(a) prostate cancer cells
and apoptotic normal prostate epithelial cells mPEC(a). In addition, efferocytosis of live RM1(l) cells
by BM and P-MΦs was also analyzed and compared with apoptotic RM1(a) cells. RM1 cells were
derived from the prostate epithelium of C57BL/6J mice and overexpress Ras and Myc oncogenes that
resemble the oncogene-specific gene expression signatures of prostate cancer patient samples, and
these are associated with prostate cancer progression [23,24]. RM1 cells have been used in vossicle
and intratibial mouse models, where cancer cells are implanted directly in the bone niche to study
the interaction between tumor and bone at the early stages of skeletal tumor development [7,25]. The
mPEC cells are primary prostate epithelial cells derived from the prostate tissue of C57BL/6J mice (Cell
Biologics). RM1 and mPEC cells were exposed to UV light to induce apoptosis, and then live RM1(l),
apoptotic RM1(a), and apoptotic mPEC(a) cells were pre-labeled with CFSE dye and co-cultured with
BM- and P-MΦs. After 16–18 h, the cells were collected; labeled with anti-F4/80-APC or its IgG isotype
control; and analyzed using FACS (BD FACSAria™ III) and ImageStream flow cytometry (Amnis),
which provides microscopic event images (model workflow, Figure 1A). Figure 1B,C depict the results
from double-labeled APC+CFSE+ cells, indicating partial or complete engulfment of live RM1(l),
apoptotic RM1(a) and mPEC(a) cells by BM- and P-MΦs. The double positive APC+CFSE+ (light blue
cells in flow scatter plots) represent the RM1(l), RM1(a), and mPEC(a) cells (CFSE+) that are engulfed
by F4/80-APC+ macrophages in the early (E-gate) and late (L-gate) internalization stages (Figure 1B).
BM- and P-MΦs engulfed a significantly higher percentage of mPEC(a) cells, however, the efferocytosis
efficiency was similar in P-MΦs and BM-MΦs. Engulfment of live RM1(l) cells by BM- and P-MΦs was
observed, however, the percentages were significantly lower when compared with apoptotic RM1(a)
cells. It is important to understand that dead cells are always present in live cell cultures, and that the
CFSE labeling procedure may have also caused RM1 cell death. Also, BM-MΦs (BM+) and P-MΦs
(P+) (red, APC+) internalization stages of apoptotic RM1(a) and mPEC(a) cells (green, CFSE+) were
corroborated by ImageStream, as shown in Figure 3C (late stage, L; early stage, E).

3.2. Bone Marrow-Derived Macrophages Display a Robust M2 Polarization

A previous study suggested that BM-MΦs are predominantly M2 (alternatively activated),
while P-MΦs are M1 (classically activated) macrophages [26]. The M2-like polarized macrophages
have been characterized by their ability to release anti-inflammatory cytokines [27], and recent
studies implicated efferocytosis of apoptotic tumor cells in accelerated tumor growth by inducing
M2 macrophage polarization [5,21]. To characterize M1/M2 polarization phenotypes in BM-MΦs and
P-MΦs, we compared the expression of the surface markers CD86 (M1-type) and CD206 (M2-type)
by flow cytometry. Ex vivo total bone marrow cells and peritoneal exudates were stained with
anti-F4/80-APC, anti-CD86-FITC, anti-CD206-FITC, and their respective IgG-isotype controls and
analyzed by flow cytometry. We found that approximately 1% of total bone marrow-derived cells
and 29% of peritoneal exudate cells were F4/80+ (phagocytic MΦs). BM-MΦs expressed low CD86
levels (<5%, F4/80+CD86+, Figure 2A) and high CD206 levels (>60%, F4/80+CD206+, Figure 2A);
in contrast, P-MΦs expressed high CD86 levels (>55%, F4/80+CD86+, Figure 2A) and low CD206
levels (<9%, F4/80+CD206+, Figure 2A), confirming that BM-MΦs and P-MΦs are predominantly
M2- and M1-like polarized macrophages, respectively. In addition, flow cytometric analysis of CD86
and CD206 expression was performed in BM-MΦs and P-MΦs cultured in vitro in the presence of
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M-CSF for three days and exposed to RM1(a) cells. In order to investigate how efferocytosis affects
macrophage polarization, at day four, apoptotic RM1 cells were added to BM-MΦs and P-MΦs and
cultured for 18 h. Interestingly, we found that approximately 50% of BM-MΦs and 70% of P-MΦs were
F4/80+ (Figure 2B). In vitro, F4/80+ BM-MΦs maintained significantly higher CD206 expression levels
(>80%, F4/80+CD206+, Figure 2B) when compared with P-MΦs (<14.5%, F4/80+CD206+, Figure 2B);
however, P-MΦs cultured in vitro with M-CSF decreased CD86 expression levels (<7%, F4/80+CD86+,
Figure 2B). Moreover, CD86 expression levels in BM-MΦ and P-MΦ co-cultured with apoptotic RM1
cells remained unchanged, although CD206 expression was slightly increased in P-MΦ co-cultured
with apoptotic RM1 cells (>15%, F4/80+CD86+, Figure 2B). These results suggested that BM-MΦs
maintained the M2-like phenotype, while P-MΦs showed neither M1- nor M2-like polarization in
the in vitro cultures. Moreover, efferocytosis of apoptotic RM1 cells by P-MΦs slightly changed their
polarization towards M2, whereas efferocytic BM-MΦs maintained their strong M2 polarization.

Figure 1. Efferocytosis of apoptotic prostate cancer cells and normal prostate epithelial cells by bone
marrow-derived (BM) and peritoneal (P) macrophages (MΦ). (A) BM-MΦ and P-MΦ isolation and
in vitro culture. Prostate cancer (RM1) and normal prostate ephitelial (mPEC) cells were exposed to UV
to induce apoptosis and RM1(l), RM1(a), and mPEC(a) were stained with cell-trace-CFSE. BM-MΦ and
P-MΦ were co-cultured with live prostate cancer RM1(l), apoptotic prostate cancer RM1(a) cells, and
apoptotic normal prostate epithelial mPEC(a) cells. The co-cultures were stained with anti-F4/80-APC.
(B) Flow cytometry analysis from A. Gates were adjusted to IgG isotype control. (C) Representative
images from ImageStream show macrophages (F4/80-APC+, red) engulfing RM1(a) and mPEC(a)
cells (CSFE+, green) in the early (E, red line) and late (L, black line) internalization stages. BF, bright
field; BM+, bone marrow macrophages; P+, peritoneal macrophages. Data are mean ± SEM, n =

4 per group; **p < 0.01, #p < 0.001, †p < 0.0001 (one-way analysis of variance (ANOVA); Dunnet’s
multiple-comparisons test).
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Figure 2. Ex vivo and in vitro M1 and M2 polarization of bone marrow-derived and peritoneal
macrophages. BM-MΦs and P-MΦs were isolated from C57BL/6J mice. (A) Freshly isolated bone marrow
and peritoneal exudate cells were stained for anti-F4/80-APC combined with either anti-CD86-FITC
or anti-CD206-FITC and analyzed by flow cytometry. (B) BM-MΦs and P-MΦs co-cultured with
RM1(a) cells for 18 h were stained with anti-F4/80-APC combined with either anti-CD86-FITC or
anti-CD206-FITC and analyzed by flow cytometry. BM, bone marrow; P, peritoneal. Data in A and B are
mean ± SEM, n = 3 per group; *p < 0.05, †p < 0.0001 (one-way ANOVA; Dunnet’s multiple-comparisons
test).

3.3. Bone Marrow Macrophage Efferocytosis of Apoptotic Prostate Cancer Cells Induces Unique
Pro-Inflammatory Cytokine Gene Expression

We previously demonstrated that BM-MΦ efferocytosis of apoptotic prostate cancer cells
orchestrates a pro-inflammatory response in prostate skeletal metastasis. In that study, cytokine
array analyses of efferocytic bone marrow-derived macrophages identified the upregulation of
pro-inflammatory cytokines such as CCL5, CXCL1, CXCL5, IL-6, and IL-12 [7]. We hypothesized that
BM-MΦs efferocytosis of apoptotic cancer cells may induce a different pro-inflammatory cytokine
response when compared with P-MΦs efferocytosis. To test this hypothesis, we assessed cytokine
expression in BM- and P-MΦs in co-cultures with apoptotic prostate cancer RM1(a) or non-cancer
prostatic epithelial mPEC(a) cells. Both BM- and P-MΦs were isolated from the same mice and cultured
under the same conditions. Relative mRNA expression was analyzed by qPCR for Cxcl1, Cxcl4, Cxcl5,
and IL-6, and macrophage responses to efferocytosis were compared. Figure 3A shows that Cxcl1,
Cxcl4, Cxcl5, and IL-6 were significantly upregulated in co-cultures of BM-MΦs and RM1(a) cells
in contrast to mPEC(a) cells. Conversely, Cxcl1 and Cxcl5 expression levels remained unaffected
in P-MΦs co-cultured with RM1(a) or mPEC(a) cells. Cxcl4 and IL-6 expression was significantly
increased in P-MΦs co-cultured with RM1(a) versus mPEC(a) cells, but was lower in comparison with
BM-MΦs (Figure 3A). In addition, CXCL1 and CXCL5 were evaluated by ELISA in the conditioned
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media from BM- and P-MΦs co-cultured with apoptotic prostate cancer RM1(a) or non-cancer prostatic
epithelial mPEC(a) cells (Figure 3B). Significantly higher levels of CXCL1 and CXCL5 were found in
BM-MΦs co-cultured with RM1(a) cells; however, no changes were observed with mPEC(a) (Figure 3B).
Interestingly, CXCL1 levels were increased in P-MΦs co-cultured with apoptotic RM1(a) or mPEC(a)
cells relative to P-MΦs alone, although the fold stimulation was significantly lower as compared with
BM-MΦs (Figure 3B). It has been shown that macrophage efferocytosis blockade of highly apoptotic
cancer cells at 4 ◦C reduces the expression of M2-like macrophage associated genes [21]. To confirm
that macrophage efferocytosis of apoptotic cancer cells drives the expression of pro-inflammatory
cytokines, BM-MΦs and P-MΦs were incubated alone and co-cultured with RM1(a) cells at 37 ◦C
and at 4 ◦C, where efferocytosis is inhibited. The gene expression of pro-inflammatory Cxcl1, Cxcl4,
Cxcl5, and IL-6 was quantified by qPCR. Figure 3C shows that BM-MΦs efferocytosis of RM1(a)
cells significantly increased Cxcl1, Cxcl5, and IL-6 gene expression under normal conditions (37 ◦C).
Moreover, efferocytosis inhibition at 4 ◦C significantly decreased Cxcl5 expression levels in BM-MΦs.
Basal gene expression levels of Cxcl1, Cxcl4, and IL6 in BM-MΦs alone increased at 4◦C; however,
no stimulation was observed with RM1(a) in Cxcl1 and IL-6 expression under inhibitory conditions.
Interestingly, it has been demonstrated that pro-inflammatory cytokines CXCL1, CXCL4, CXCL5, and
IL-6 trigger tumor progression in different contexts [7,28–30]. These results suggest that the higher
expression of inflammatory cytokines triggered by efferocytosis of apoptotic cancer cells is uniquely
associated with bone marrow-derived macrophages.

Figure 3. Differential gene expression of bone marrow-derived and peritoneal macrophages after
efferocytosis of apoptotic prostate cancer cells and normal prostate epithelial cells. (A) mRNAs isolated
from BM-MΦs and P-MΦs alone or co-cultured with apoptotic prostate cancer cells RM1(a) or apoptotic
prostate epithelial cells mPEC(a) for 18–20 h were analyzed by quantitative PCR (qPCR) for the specified
genes. (B) Conditioned media from (A) were analyzed by ELISA for total CXCL1 and CXCL5 levels.
(C) qPCR analysis of BM-MΦs and P-MΦs during efferocytosis permissive (37 ◦C) or inhibitory (4 ◦C)
conditions. Graphs show the gene expression quantification of inflammatory cytokines normalized to
respective MΦs alone. Data are mean ± SEM, n = 3 per group; *p < 0.05, **p < 0.01, #p < 0.001, †p <

0.0001 (one-way ANOVA; Dunnet’s multiple-comparisons test).

3.4. M1 Bone Marrow Macrophage Repolarization by INF-γ Reduces Pro-Inflammatory Cytokine Expression

Bone marrow macrophages have the capacity to switch phenotypes in response to interferon-
γ (INF-γ) and/or lipopolysaccharides (LPS) [28,29]. We hypothesized that M1 repolarization of
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BM-MΦs (predominantly M2 polarized) would affect the inflammatory cytokine profile induced after
efferocytosis of RM1(a) cells. To test this, BM-MΦs were isolated from long bones of C57BL/6J mice
and cultured in the presence of M-CSF for 72 h. IFN-γ was then added and incubated for 24 h, at
which point RM1(a) cells were added and co-cultured with BM-MΦs for 16–18 h (workflow, Figure 4A).
To confirm the BM-MΦs’ reprogramming, we performed a flow cytometric analysis of BM-MΦs
co-cultured with apoptotic cells in the presence of IFN-γ or vehicle control. Cells were labeled using
F4/80-APC (MΦs) in combination with CD86-FITC (M1) or CD206-FITC (M2) and control IgG antibodies
(Figure 4B). BM-MΦs treated with IFN-γ showed significantly higher CD86 (>35%, F4/80+CD86+,
Figure 4B) and lower CD206 (~45%, F4/80+CD206+, Figure 4B) expression levels when compared
with those vehicle treated (<12% F4/80+CD86+; >92% F4/80+CD206+; Figure 4B). This confirmed the
BM-MΦs’ repolarization towards an M1 profile. BM-MΦs’ responses to efferocytosis of apoptotic
cells in IFN-γ- and vehicle-treated cultures were analyzed by relative mRNA expression for CD86,
Cxcl1, Cxcl4, Cxcl5, and IL-6 (Figure 4C). Figure 4C shows that IFN-γ treatment of BM-MΦs alone
and BM-MΦs co-cultured with RM1(a) cells significantly increased CD86 expression, in correlation
with the flow cytometric analysis (Figure 4B). With the exception of IL-6 (no change), gene expressions
of the inflammatory cytokines (Cxcl1, Cxcl4, and Cxcl5) were significantly reduced in BM-MΦs
alone and BM-MΦs co-cultured with RM1(a) cells when treated with IFN-γ (Figure 4C). Moreover,
pro-inflammatory cytokine detection was performed by ELISA for CXCL1 and CXCL5 using the
conditioned media from BM-MΦs alone and co-cultured with RM1(a) and IFN-γ- and vehicle-treated
cultures. The results confirmed the gene expression data from Figure 4C. CXCL1 and CXCL5 expression
was significantly decreased in BM-MΦs alone and BM-MΦs co-cultured with RM1(a) after IFN-γ
treatment (Figure 4D). Altogether, these results suggest that BM-MΦ repolarization towards M1 profile
mitigates the inflammatory response mediated by efferocytosis of apoptotic prostate cancer cells and
suggest the dependence of this response on the M2-activation stage of macrophages.

Figure 4. Effect of interferon-γ (IFNγ)-M1 polarization of bone marrow-derived macrophages in
inflammatory cytokine expression. (A) Workflow: BM-MΦs were isolated and enriched in M-CSF
for three days, and then treated with vehicle or IFN-γ and cultured alone or co-cultured with
RM1(a) cells for 16–18 h. (B) BM-MΦs alone and in co-culture with RM1(a) cells were stained for
anti-F4/80-APC combined with either anti-CD86-FITC or anti-CD206-FITC and analyzed by flow
cytometry. (C) mRNAs from (A) were isolated and analyzed by qPCR for the specified inflammatory
cytokine genes. (D) Conditioned media from (A) were analyzed via ELISA for total CXCL1 and CXCL5
levels. Data are mean ± SEM, n = 3 per group; *p < 0.05, **p < 0.01, †p < 0.0001 (one-way ANOVA;
Dunnet’s multiple-comparisons test and unpaired t-test).



Cells 2020, 9, 429 9 of 12

4. Discussion

Recent investigations have indicated that bone marrow-derived macrophage efferocytosis of
apoptotic cancer cells stimulates bone metastasis through pro-inflammatory and immunosuppressive
responses [7,30]. It remains unclear how the bone marrow microenvironment shapes these metastatic
responses and how bone marrow macrophages uniquely mediate the efferocytosis-accelerating tumor
growth. An in vitro efferocytosis model was used to evaluate the differential responses of bone
marrow-derived and peritoneal macrophage efferocytosis of apoptotic cancer cells and demonstrated
that bone marrow-derived macrophages activate a unique pro-inflammatory response upon apoptotic
cancer cell clearance.

Few studies have identified key differences between bone marrow-derived and peritoneal
macrophage properties in different contexts. In 2013, a study demonstrated that bone marrow-derived
macrophages are more proliferative and have higher phagocytic rates when compared with peritoneal
and spleen macrophages [31]. However, in the current study, similar efferocytosis efficiencies of
apoptotic prostate cancer cells were found in bone marrow-derived versus peritoneal macrophages.
The ImageStream analysis identified early (high CFSE intensity) and late (low CFSE intensity) stages of
cancer apoptotic cell engulfment by F4/80+ macrophages. Additionally, they identified that in vitro
generated bone marrow-derived macrophages have higher expression of TGF-β and IL-10, intimating
their M2-like phenotype [31]. These data were corroborated in 2016 by a study that demonstrated
that bone marrow-derived macrophages display higher CD206 (M2-like marker) compared with
peritoneal macrophages, which was also confirmed by lower oxidized low-density lipoprotein receptor
(LOX-1, M1-like marker) and higher peroxisome proliferator-activated receptor-γ (PPARγ, M2-like
marker) expression in the bone marrow-derived macrophages [26]. Similarly, we found that bone
marrow-derived macrophages consistently expressed a higher percentage of F4/80+CD206+ (M2-like)
in ex vivo and in vitro experiments, whereas peritoneal macrophages expressed a higher percentage
of F4/80+CD86+ (M1-like) ex vivo, but with no clear phenotype in vitro. This may be explained by
the presence of M-CSF in the media, which is known for its effect in promoting M2 polarization in
macrophages [20]. Interestingly, another study demonstrated that bone marrow-derived macrophage
efferocytosis of apoptotic colon cancer cells resulted in an increase of M2-like macrophages promoting
tumor metastasis [32]. Efferocytosis performed by tumor-associated macrophages (TAMs) promotes
their polarization toward an M2-like wound healing phenotype triggering immunosuppressive signals
within the tumor microenvironment [4,21,33]. In contrast, we found that P-MΦs co-cultured with
apoptotic RM1 cells showed a slight increment in the percentage of F4/80+CD206+, likely owing to their
polarization towards M2 induced by efferocytosis. The strong CD206 expression (M2 polarization) of
BM-MΦs remains unchanged, which may be because of their already high percentage of F4/80+CD206+

(~90%) under basal conditions.
Bone marrow-derived macrophage efferocytosis of apoptotic cancer cells, but not apoptotic normal

cells, resulted in increased gene expression of Cxcl1, Cxcl4, Cxcl5, and IL-6 inflammatory cytokines in
comparison with peritoneal macrophages. In line with these results, ELISAs measuring CXCL1 and
CXCL5 cytokines revealed elevated levels in bone marrow-derived macrophages upon apoptotic RM1
cancer cell engulfment. A significantly reduced stimulation was observed by efferocytic peritoneal
macrophages, which could be explained by their polarization towards M2, as shown in Figure 2B.
Moreover, efferocytosis inhibition of bone marrow-derived macrophages (4◦C) resulted in decreased
Cxcl5 and unchanged Cxcl1 and IL-6 expression, which confirmed that the pro-inflammatory response of
bone marrow-derived macrophages is produced by efferocytosis of apoptotic cancer cells. Upregulation
of Cxcl1 and IL-6 gene expression in bone marrow-derived macrophages alone at 4◦C may be the
result of acute cold stress, which decreases IFN-γ expression [34]. These results correlated with recent
in vitro and in vivo clinical data, where bone marrow-derived macrophage efferocytosis of cancer cells
promotes the expression of CCL5, CXCL1, CXCL5, and IL-6 pro-inflammatory cytokines that accelerate
tumor progression in the bone microenvironment [7]. The roles of these cytokines have been previously
associated with tumor inflammation mechanisms and metastasis in various cancer types [7,35–38]. In
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accordance with this hypothesis, we found that inducing bone marrow macrophage repolarization with
IFN-γ towards M1-type resulted in a significant downregulation of Cxcl1, Cxcl4, and Cxcl5 expression
in efferocytic macrophages, which was corroborated by the CXCL1 and CXCL5 ELISA results. M1
polarized macrophages have been described as anti-tumorigenic macrophages that remove tumor
cells and produce high levels of immunostimulatory cytokines [13]. Macrophages treated with IFNγ,
LPS, and IFNγ + LPS promote M1-like macrophage polarization [13,39]. Macrophage polarization
(M1/M2) plasticity is ideal for immunomodulation of these cells in diseases involving macrophage
dysregulation, such as cancer. Novel studies are reporting the use of macrophage-reprogramming
agents to promote M1-like TAMs polarization that reduce tumor growth [40–42]. Similarly, the findings
presented here suggest that efferocytic macrophages in the tumor bone microenvironment may be
reprogrammed towards the M1 phenotype to reduce inflammation and tumor progression [17].

In summary, bone marrow macrophage efferocytosis of apoptotic prostate cancer cells drives
a unique inflammatory response. This response as well as their polarization stage differs from
the response of other site-specific macrophages such as peritoneal macrophages. As shown before,
efferocytosis of apoptotic cancer cells accentuates M2 polarization of bone marrow macrophages [21],
which accelerates tumor promoting inflammation and immunosuppression, suggesting that bone
marrow macrophages may play a critical role during progression of skeletal metastasis. Bone
marrow macrophage reprogramming towards M1 reduces the efferocytosis-mediated pro-inflammatory
phenotype. We are currently pursuing studies to characterize the exact molecular mechanisms mediating
bone marrow macrophage efferocytosis of apoptotic cancer cells in order to identify novel drug targets
to be used as coadjuvant therapies to treat skeletal metastasis.
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