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A Two Dimensional Tunneling 
Resistance Transmission Line Model 
for Nanoscale Parallel Electrical 
Contacts
Sneha Banerjee1, John Luginsland1,2 & Peng Zhang1

Contact resistance and current crowding are important to nanoscale electrical contacts. In this paper, 
we present a self-consistent model to characterize partially overlapped parallel contacts with varying 
specific contact resistivity along the contact length. For parallel tunneling contacts formed between 
contacting members separated by a thin insulating gap, we examine the local voltage-dependent 
variation of potential barrier height and tunneling current along the contact length, by solving the 
lumped circuit transmission line model (TLM) equations coupled with the tunneling current self 
consistently. The current and voltage distribution along the parallel tunneling contacts and their overall 
contact resistance are analyzed in detail, for various input voltage, electrical contact dimension, and 
material properties (i.e. work function, sheet resistance of the contact members, and permittivity of 
the insulating layer). It is found the existing one-dimensional (1D) tunneling junction models become 
less reliable when the tunneling layer thickness becomes smaller or the applied voltage becomes larger. 
In these regimes, the proposed self-consistent model may provide a more accurate evaluation of the 
parallel tunneling contacts. For the special case of constant ohmic specific contact resistivity along the 
contact length, our theory has been spot-checked with finite element method (FEM) based numerical 
simulations. This work provides insights on the design, and potential engineering, of nanoscale 
electrical contacts with controlled current distribution and contact resistance via engineered spatially 
varying contact layer properties and geometry.

Nanoscale electrical contacts have attracted substantial attention due to the advancements in nanotechnology, 
material sciences and growing demands for miniaturization of electronic devices and high packing density. 
Contact resistance and their electro-thermal effects have become one of the most critical concerns of very large 
scale integration (VLSI) circuit designers, because of the excessive amount of Joule heating being deposited at 
the contact region1–6. The electrical contact properties have been extensively studied in metal-semiconductor7–9, 
metal-insulator-semiconductor and metal-insulator-metal10–13 junctions. The growing popularity of novel elec-
tronic circuits based on graphene, carbon nanotubes (CNTs) and other new materials has made contact engi-
neering crucial. CNT based devices, in particular, experience significant challenges because of the inter-tube 
connections. On macroscopic level, the exceptional intrinsic electrical properties14,15 of CNTs become elusive3,14,16. 
Contact resistances between CNTs profoundly affect the electron transport and reduce the electrical conductivity 
of carbon nanofiber (CNF)15–17, and greatly limit the performance of CNT thin film based Field Effect Transistors 
(FETs)18–21. One can naturally expect these issues also arising from other novel two-dimensional materials (boron 
nitride, molybedenum sulfide, black phosphorus, etc) as well as new nano-composites. While the work presented 
here is generalizable to these other material systems, here we choose carbon materials as examples.

Tunneling type of electrical contacts11,22–25 are commonly found for CNT-CNT16,22,26–30, CNT-Metal31–33 
and CNT-graphene34,35 contacts, where the contacting members are separated by very thin insulating layers. 
Tunneling effects in contact junctions significantly lower the electrical conductivity of the CNT/polymer com-
posite thin films23. It is also found that tunneling resistance plays a dominant role in the electrical conductivity of 
CNT-based polymeric or ceramic composites27.
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For decades, the basic models of tunneling current between electrodes separated by thin insulating films have 
been those of Simmons36–38 in 1960s. Simmon's formula have since been used for evaluating tunneling current in 
tunneling junctions24,29,39. Though there have been attempts to extend Simmons’ models to the field emission and 
space-charge-limited regimes11,40,41, it is always assumed that the tunneling junctions are one-dimensional (1D), 
i.e. there is no variations on the voltages drops along the length of the tunneling junction and the insulating film 
thickness is uniform. Thus, these existing models of tunneling junctions give no hint on the variation of tunneling 
current along the contact length and the importance of current crowding near the contact area when the two con-
tacting members are partially overlapping (cf. Fig. 1). On the other hand, the widely used transmission line mod-
els (TLM) for electrical contacts typically assume the contact resistivity of the interface layers are constant10,42–44. 
It is questionable to apply these models to study the tunneling contacts, as the tunneling resistance depends on 
the junction voltage that varies spatially along the contact length.

In this paper, we propose a two-dimensional (2D) transmission line model for partially overlapped paral-
lel contacts with spatially varying specific contact resistivity. Spatial dependence of specific contact resistivity 
of the contact interface may be introduced by many factors, such as nonuniform distribution of the resistive 
contaminants, oxides, or foreign objects at the contact interface, formation of contact interfaces with spatially 
varying thickness, or the presence of tunneling contacts between contact members. In the latter case, because 
of the nonlinear current-voltage characteristics of the tunneling junctions11,36, the specific resistivity along the 
contact length will become spatially dependent, even for a tunneling layer with uniform thickness (Fig. 1). For the 
tunneling-type contacts, the model considers the variation of potential barrier height and tunneling current along 
the contact length, by solving the TLM equations coupled with the tunneling current self consistently. We provide 
comprehensive analysis of the effects of contact geometry (i.e. dimension of the contact, and distance between 
the contact electrodes), and material properties (i.e. work function, sheet resistance of the contact members, and 
permittivity of the insulating layer) on the spatial distributions of currents and voltages across these contacts, and 
the overall contact resistance of parallel contacts.

The formulation of our 2D contact resistance TLM model is given in the next section. We would like to point 
out that, albeit an application of the standard transmission line theory based on the Kirchhoff 's laws, the TLM 
has been used extensively with great success to characterize mesoscale and nanoscale electrical contacts10,30,42,43. 
Here we further extend the TLM model with the effects of spatially dependent contact resistivity. In the results 
and Discussion section, we consider three cases of parallel contacts: (1) constant specific contact resistivity, (2) 
linearly varying specific contact resistivity, and (3) tunneling contact resistivity depending on local junction volt-
ages along the contact length. The first case of uniform specific contact resistivity along the contact length has 
been verified with COMSOL45 2D simulations. For the last case, for simplicity, we use the Simmons’ model36–38 
to determine the local current-voltage characteristics across the tunneling junction. Though full scale quantum 
mechanical calculations may have to be used to accurately evaluate the nanoscale circuits, our model based on 
Simmons formula reveals the fundamental scalings and parametric dependence of current and voltage profiles, 
as well as electric contact resistance of tunneling contacts. Summary and suggestions for future research are given 
in the last section.

Note that, although this paper is focused on the normal Schrödinger tunneling type electrical contacts, the 
proposed TLM with spatially varying contact resistivity can be used for many other types of electric contacts, 
such as nanoscale Schottky contacts based on 2D materials heterostructure46,47, and Klein tunneling junctions48.

Formulation
Consider a parallel contact formed between two nanowires or nanotubes or between two conducting thin films 
or layers, as shown in Fig. 1(a,b), respectively. The distance between the two contact members is D, and the 
contact length is L. A thin resistive interface layer is sandwiched between them. Both contacts in Fig. 1(a,b) 
can be described by a two-dimensional (2D) model, as shown in Fig. 1(c). Note that the proposed formulation 

Figure 1.  A parallel, partially overlapped electric contact. The contacts are formed between (a) nanotube or 
nanowire 1 and 2, and (b) thin film 1 and 2; (c) side view of the contact; (d) its transmission line model. In (a–c) 
a thin resistive interface layer (or a tunneling layer of permittivity εr) is sandwiched between the two contacting 
members.
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is generally applicable to parallel Cartesian nanojunctions with different shape of the electrodes, for example, 
electrical contact between a nanowire and a thin film. In the 2D model, the effects of the transverse dimension 
(perpendicular to the paper) can be included in the effective sheet resistances Rsh1 and Rsh2 for conductor 1 and 2, 
respectively, such that there is no variation along the width w in the transverse dimension. The spatial dependent 
specific interfacial resistivity (also termed specific contact resistivity) is ρc(x), which is either predefined, or cal-
culated from the local tunneling current in case of insulating tunneling layer36–38. We use the DC equivalent lump 
circuit transmission line model (TLM)10,42–44, as shown in Fig. 1(d), to model the 2D parallel contact in Fig. 1(c).

In the contact region PQNM in Fig. 1(c,d), using Kirchoff 's laws for current and voltage, we get the following 
equations,

ρ
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where I1(x) and I2(x) represent the current flowing at x through the lower contact member, MN and the upper 
contact member, PQ respectively, and V1(x) and V2(x) the local voltage at x along MN and PQ, respectively, and w 
is the effective transverse dimension of the contacts. When Δx → 0, Equation (1) becomes,
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where Jc(x) = Vg(x)/ρc(x) and Vg(x) = V1(x) − V2(x) are the local current density and the local voltage drop across 
the contact interface at x, respectively.

Note that, from Eqs (2a) and (2c), I1(x) + I2(x) = Itot = constant, where Itot is the total current in the circuit, to 
be determined from the boundary conditions. The boundary conditions for Eq. (2) are,

= =V x V( 0) , (3a)o1

= =I x( 0) 0, (3b)2

= =I x L( ) 0, (3c)1

= =V x L( ) 0, (3d)2

where, without loss of generality, we assume the voltage of the upper contact member at x = L is 0, and the exter-
nally applied voltage at x = 0 of the lower contact member is V0. Note that I1(x = 0) = Itot. From Eqs (2) and (3), it 
is easy to show = = −′V x I R w( 0) /tot sh1 1 , = =′V x L( ) 01 , = =′V x( 0) 02 , = =′V x L( )2  −I R w/tot sh2 , where a prime 
denotes a derivative with respect to x. For the contact model in Fig. 1(d), the contact resistance is defined as,
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It is convenient to introduce non-dimensional quantities, =x x L/ , ρ ρ ρ=x x( ) ( )/c c c0, =R R R/sh sh sh2 2 1, 
=I x I x I( ) ( )/ o1 1 , =I x I x I( ) ( )/ o2 2 , =J x J x LW I( ) ( ) /c c o, =V x V x V( ) ( )/ o1 1 , =V x V x V( ) ( )/ o2 2 , =V x V x V( ) ( )/g g o, and 

=R R R/c c c0, where we define Io = wV0/Rsh1L, ρc0 = V0wL/Io, and Rc0 = Rsh1L/w. In normalized forms, Eq. (2) can 
be recast into the following second order differential equations,
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where ρ=J x V x x( ) ( )/ ( )c g c , and = −V x V x V x( ) ( ) ( )g 1 2 . The corresponding boundary conditions to Eq. 5(a–c) are 
respectively,

α= = = = − = = =′¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯V x V x V x V x( 0) 1, ( 0) and ( 1) ( 1), (6a)g1 1 1

α α′ = = − ′ = =V x V x R( 0) , ( 1) , (6b)g g sh2

α= = = =I x I x( 0) , ( 1) 0, (6c)1 1

where the unknown constant α = Itot/Io is the normalized total current in the circuit, and prime denotes a deriva-
tive with respect to x . Note that integrating Eq. (5b) subject to Eq. (6b) gives ∫ α=J x dx( )c0

1 , which means that 
the total current is conserved across the contact interface.

Equations (5) and (6) are solved to give the voltage and current distribution along and across the contact inter-
face as well as the total contact resistance, for a given electrical contact (Fig. 1) with spatially dependent interface 
specific contact resistivity ρ x( )c . An example of the procedure to solve Eqs (5) and (6) numerically is as follows. 
For an initially guess on α, Eq. (5b) is solved using the shooting method, subject to Eq. (6b). Next, Eq. (5a) is 
solved with the initial values of V(0)1  and ′V (0)1  from Eq. (6a). It is then checked whether V(1)1  is equal to V (1)g , as 
in Eq. (6a). The above-mentioned process repeats for different input α until the condition =V V(1) (1)g1  is satis-
fied. Finally, Eq. (5c) is solved to get I1 (and I2).

In principle, Eqs (5) and (6) can be solved numerically for arbitrary spatial dependence of specific contact 
resistivity ρ x( )c . Here, we focus on a few special cases of practical importance. We first consider the case of con-
stant ρc, where analytical solutions can be obtained, which also serve to validate our numerical approach. We then 
consider the effects of spatially dependent ρ x( )c  on the parallel electrical contacts. We focus on two situations: 
linearly varying specific contact resistivity along x, and thin tunneling junction with uniform thickness, where 
analytical solutions to the TLM current and voltage equations are no longer available, and Eqs (5) and (6) are 
solved numerically.

Results and Discussion
Case 1: Constant specific contact resistivity ρc along the contact length L.  For the special case 
of constant specific contact resistivity ρc, the TLM equations, Eqs (5) and (6), can be solved analytically to give,
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Figure 2 shows the current and voltage distributions along the contact length and across the contact interface 
for various specific contact resistivity ρc , for a parallel contact formed between similar contact members, 

= =R R R/ 1sh sh sh2 2 1 . The voltage along both contact members V1 and V2 decrease with x , as shown in Fig. 2(b,c), 
respectively. The current I1 in contact member 1 decreases with x  (Fig. 2(e)), whereas I2 in contact member 2 
increases with x  (Fig. 2(f)), with the total current +I x I x( ) ( )1 2  being kept a constant along x . The profiles of both 
normalized voltage drop V x( )g  and current density ¯J x( )c  across the interface layer, are symmetric along the contact 
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length, with the minimum at the center of the contact structure x  = 0.5 and the maximum at the contact edges, as 
shown in Fig. 2(a,d), respectively. The current crowding effects near the contact edges are well-known phenom-
ena42,49, as the current density is distributed to follow the least resistive path (i.e. minimum overall resistance). It 
is important to note that as the specific contact resistivity ρc decreases, the interface current density Jc  becomes 
more crowded towards the contact edges, as shown in Fig. 2(d). In other words, the less resistive the contact inter-
face layer, the more severe of the current crowding effects, which is in agreement with previous studies using both 
TLM42,44 and field theory10,49,50.

Figure 3 shows the current and voltage distributions along the contact length and across the contact interface 
for various parallel contacts formed between dissimilar materials, Rsh2 = Rsh2/Rsh1, with fixed specific contact resis-
tivity ρc = 1. The voltage V1,2 and the current I1,2 along the two contact members show similar behaviors as those 
in Fig. 2. However, the voltage drop across the interface layer V x( )g  and the contact current density J x( )C  are no 
longer symmetric, as shown in Fig. 3(a,d), respectively. When Rsh2 < 1, the maximum of V x( )g  and J x( )c  occurs at 
x  = 0; when Rsh2 > 1, the maximum of V x( )g  and J x( )c  occurs at x  = 1. This current crowding effect can again be 
explained by the fact that current flows are self-arranged to take the least resistive path in the circuit by adjusting 
the current distribution according to the local resistance.

The normalized contact resistance, Rc calculated from Eq. (8) is plotted in Fig. 4 for various ρc and Rsh2. It is 
clear that Rc increases with both ρc and Rsh2. In general, the contact resistance Rc depends more strongly on the 
the specific contact resistivity of the interfacial layer ρc than on the sheet resistance ratio of the contact members 
Rsh2. For the special case of Rsh2 = 0, Eq. (8) becomes,

=R q
q

coth ,
(9)c

with λ ρ= =q L/ 1/ c0 , which is also plotted in Fig. 4. Note that Eq. (9) is identical to the expression typically 
used for metal-semiconductor contact10,42.

To verify the results obtained from our analytical solution, we performed numerical simulations using the 
COMSOL multiphysics software45, for various combinations of Rsh2 and ρc on the geometry shown in Fig. 1(c). 
The finite-element-method (FEM) based COMSOL 2D simulation results are included in Fig. 4 (cross symbols), 
showing excellent agreement with our theory. The convergence iteration error in the simulation was less than 10−9 
for each point.

Case 2: Specific resistivity ρc varies linearly along the contact length L.  We assume the specific 
resistivity varies linearly along the contact length (Fig. 1) as ρ = +x Ax( ) 1c . By solving Eqs (5) and (6) numeri-

Figure 2.  Voltage and current profiles along similar parallel contacts with uniform contact resistivity.  
(a) Voltage drop across the contact interface V x( )g , voltage along (b) contact member 1 (MN), V x( )1 , (c) contact 
member 2 (PQ), V x( )2 , (d) current density across the contact interface J x( )c , current along (e) contact member 1, 
I x( )1 , and (f) contact member 2, I x( )2 ,for different values of specific contact resistivity ρc, for Rsh2 = Rsh2/Rsh1 = 1. 
All the quantities are in their normalized forms defined in the Formulation section.
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cally, we obtain the current and voltage distributions along the contact interface, as shown in Fig. 5. As A 
increases, the overall contact interface becomes more resistive, therefore, the voltage drop V x( )g  across the inter-
face layer increases (Fig. 5a), whereas the current density J x( )C  across the interface layer decreases in general 
(Fig. 5d). The maximum Vg  occurs at the contact edge with the highest specific resistivity ρc (i.e., at x  = 0 when A 
< 0, and at x  = 1 when A > 0), while the maximum interface current JC occurs at the contact edge with the lowest 

Figure 3.  Voltage and current profiles along dissimilar parallel contacts with uniform contact resistivity.  
(a) Voltage drop across the contact interface V x( )g , voltage along (b) contact member 1 (MN), V x( )1 , and (c) contact 
member 2 (PQ), V x( )2 , (d) current density across the contact interface J x( )c , current along (e) contact member 1, 
I x( )1 , and (f) contact member 2, I x( )2 , for different values of Rsh2 = Rsh2/Rsh1, for ρc = 1. All the quantities are in 
their normalized forms defined in the Formulation section.

Figure 4.  Normalized contact resistance Rc of the parallel contact (Fig. 1). Rc as a function of (a) normalized 
specific contact resistivity, ρc and (b) normalized sheet resistance of contacting member 2, Rsh2. Dashed lines are 
for Eq. (9), the limiting case of Rsh2 → 0. The cross symbols are from COMSOL45 2D simulations. In the 
simulation, the length and height of both upper and lower contacting members are assumed to be 20 nm and 
10 nm respectively, and the thickness of the resistive interfacial layer is assumed to be 0.5 nm; the resistivities of 
the upper and lower contact members are in the range of Ω Ω− −–m m10 109 7 , and the resistivity of the interface 
layer is in the range of Ω Ω− −–m m10 109 5 .
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ρc (i.e., at x  = 1 when A < 0, and at x  = 0 when A > 0). The effects of A on the voltage V1,2 and the current I1,2 
along the two contact members are also shown in Fig. 5(b,c,e,f), respectively.

The normalized contact resistance, Rc  calculated from Eq. (4) for linear specific contact resistivity 
ρ = +x Ax( ) 1c  is plotted in Fig. 6. As A increases, Rc increases, since the contact interface becomes more resis-
tive. As Rsh2 increases, the contact resistance Rc depends more strongly on the linear constant A.

Case 3: Tunneling contact resistance.  Here, we assume the parallel contacts are formed through a tun-
neling interface layer between the two contact members. For simplicity, we have made the following assumptions: 
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Figure 5.  Voltage and current profiles along similar parallel contacts with linearly varying contact resistivity. 
(a) Voltage drop across the contact interface V x( )g , voltage along (b) contact member 1 (MN), V x( )1 , and (c) 
contact member 2 (PQ), V x( )2 , (d) current density across the contact interface J x( )c , current along (e) contact 
member 1, I x( )1 , and (f) contact member 2, I x( )2 , for linear specific contact resistivity ρ = +x Ax( ) 1c  with 
different linear constant A, for Rsh2 = Rsh2/Rsh1 = 1. All the quantities are in their normalized forms defined in 
Sec. II.

Figure 6.  Normalized contact resistance Rc of the parallel contact (Fig. 1) with linear specific contact resistivity 
ρ = +x Ax( ) 1c , for various value of Rsh2 = Rsh2/Rsh1.
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(1) the thickness of interfacial insulating film in the contact area is uniform, and (2) the insulating film is suffi-
ciently thin (in the nano- or subnano-meter scale) so that charge trappings are ignored51,52.

For dissimilar contact members, the (normalized) current density at any location along the contact from con-
tact member 1 to contact member 2 is calculated using Simmons’ formula37,

ϕ ϕ= 
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 − + 
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contacting member 1 and 2 respectively, χ is the electron affinity of the insulating layer, which is 0 for vacuum. 
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On the other hand, the definitions of ϕI, y1 and y2 for reverse bias (when higher work function contacting 
member is given positive bias) are, ϕ ϕ ϕ= + Δ − − λ+ .
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For the special case of the same material for contact members 1 and 236, in Eq. (10), V x( )I g
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0  for ϕ>¯ ¯ ¯V x( )g 0. Note that we use 
Simmon's formula, Eq. (10) here for simplicity, which is reliable only when the barrier height is relative high and 
the gap voltage is low in the direct tunneling regime11. More accurate results for the tunneling current may be 
calculated using quantum models by solving the coupled Schrodinger equation and Poisson equation with the 
inclusion of space charge and exchange-correlation effects11,25.

We keep the normalization consistent with our previous calculations in the Formulation section. For a given 
parallel tunneling contact (Fig. 1), the inputs of our model are the applied voltage V0, sheet resistance (Rsh1, Rsh2) 
and work function (W1, W2) of contacting members 1 and 2, permittivity (εr), thickness (D), and electron affinity 
(χ) of the interfacial insulator layer, and the contact length L. Using Eq. (10), the specific contact resistivity is 
obtained from ρ =x V x J x( ) ( )/ ( )c g c , which is inserted into the TLM equations, Eqs (5) and (6), to give a 
self-consistent solution to the voltage and current profiles, as well as the contact resistance for the parallel tunne-
ling contact.

We consider CNT-vacuum-CNT parallel contact as an example. Both contact members are made of the same 
single-walled CNTs. Using the typical value of linear resistivity of single-walled CNT ρL = 20 kΩ/μm53,54, and 
diameter (or the width w) of 3 nm, an equivalent sheet resistance for both CNT contact members are estimated as 

ρ= = = ΩR R w 60 /sh sh L1 2 , where the unit of the sheet resistance Ω/  means “ohm per square”10,42,49. The 
work function of CNTs is W1 = W2 = 4.5 eV55. The interfacial layer is assumed to be vacuum (relative permittivity 
εr = 1.0, and electron affinity χ = 0). The voltage drop Vg(x) across and the tunneling current density Jc(x) through 
the contact interface are shown in Fig. 7 for various contact length L, vacuum gap distance D, and applied voltage 
V0. The profiles of both Vg(x) and Jc(x) are symmetric about the center of the contact, as expected for similar con-
tact members (similar to Fig. 2a,d above). As the contact length L increases, the local voltage drop Vg(x) across the 
contact interface decreases, so does the tunneling current density Jc(x), as shown in Fig. 7a,b. However, the total 
current in the contact structure, ∫=I J x dx( )tot

L
c0

 increases with L, since the total contact resistance of the tunne-
ling junction decreases as the contact length increases (cf. Fig. 8a below). As shown in Fig. 7c,d, when the gap 
distance D increases, the voltage drop Vg(x) increases, but the current density Jc(x) decreases, which is because the 
tunneling junction becomes more resistive11,36. Figure 7e,f shows both voltage drop Vg(x) and current density Jc(x) 
increase when the applied voltage Vo increases. More importantly, both Vg(x) and Jc(x) exhibit a stronger spatial 
dependence as V0 increases. This strong voltage dependence of electrical properties of the tunneling junction is in 
sharp contrast with those of ohmic contacts, where the shape of the profiles of Vg(x) and Jc(x), and the total con-
tact resistance are independent of the applied voltage, and the current density scales linearly with the voltage drop, 
as discussed in Cases 1 and 2 above.

Also plotted in Fig. 7 are the analytical results from Eq. (7), by assuming constant tunneling contact resistiv-
ity across the contact length L (i.e. the typically assumed one-dimensional tunneling junction24), by (a), setting 
Vg = V0 and using Eq. (10) (dashed lines) and (b), using ohmic approximations for the tunneling junction, in the 
limit of Vg → 0 (dotted lines)36,37. In the latter case, the tunneling current density is a linear function of Vg.
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expression for Eq. (10) by setting Vg =  0. = λ
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2
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ϕ
.y 12

1 2

2
 for reverse bias; and = λ

ϕ
.y1

1 2

0
, = − λ

ϕ
.y 12

1 2

0
 for similar contacting 

members. λ , ϕΔ , ϕ2, ϕ1, ϕ0 have the same definition as in Eq. (10). It is found that both assumptions of constant 
contact resistivity are not sufficiently reliable, especially when the tunneling thickness D decreases or the applied 
voltage Vo increases. As the tunneling junction resistance becomes nonlinear in these cases, it is necessary to use 
the coupled TLM equations, Eqs (5) and (6), and the localized tunneling equation, Eq. (10), to provide more 
accurate predictions.

The total contact resistance Rc of the CNT-vacuum-CNT parallel contact is shown in Fig. 8, as functions of 
contact length L, vacuum gap distance D, and applied voltage V0. The total contact resistance Rc increases very 
rapidly with increasing insulating layer thickness, D, and decreases with contact length, L. For the low applied 
voltage regime (V0 < 0.3 V), Rc is almost independent of V0, as shown in Fig. 8c,d. When the applied voltage V0 > 
0.3 V, Rc decreases sharply with V0. This is because the junction is no longer ohmic and the tunneling resistivity ρc 
decreases nonlinearly with the junction voltage, as a function of position along the contact length. Ohmic approx-
imations (Eqs 8, 11) fail to give accurate results in the latter case and it is necessary to use the self-consistent 
numerical model. As L increases, the dependence of contact resistance on L becomes less significant. Similar pro-
files of contact resistance with L were observed in other experimental and theoretical works10,22,31,42,44. The contact 
resistance lies between 5 kΩ to 10 MΩ for the cases shown in Fig. 8, which agrees with previously reported experi-
mental and theoretical works24,26,29. The existing 1D models give an inaccurate estimation of the contact resistance 
because they do not consider the variation of tunneling current density along the contact length.

Next, we extend our calculations for contacts of CNT with different metals – calcium (Ca), aluminum (Al), 
copper (Cu) and gold (Au). The work functions of Ca, Al, Cu and Au are taken as 2.9, 4.08, 4.7 and 5.1 eV respec-
tively56. The work functions and dimensions of the CNT are kept same as before. In addition, the dimensions of 
the CNT and contacting-metal-2 are assumed to be same (width of 3 nm, thickness of 3 nm) for the simplicity of 
calculations. The resistivity of Ca, Al, Cu and Au are known to be 3.36 × 10−8 Ωm, 2.7 × 10−8 Ωm, 1.68 × 10−8 Ωm 
and 2.2 × 10−8 Ωm respectively56,57.

Figure 7.  Similar material CNT-vacuum-CNT parallel tunneling contacts. (a) Voltage drop across the contact 
interface Vg(x), and (b) tunneling current density across the contact interface Jc(x) for different contact length 
L, with fixed V0 = 1V, and D = 0.5 nm; (c) Vg(x) and (d) Jc(x) for different D, with fixed V0 = 1V and L = 50 nm; 
(e) Vg(x) and (f) Jc(x) for different applied voltage V0 with fixed D = 0.55 nm, and L = 50 nm. All the material 
properties are specified in the main text. Solid lines are for self-consistent numerical calculations using Eqs 5, 
6 and 10, dashed and dotted lines are for analytical calculations from Eq. 7, with ρc calculated using Vg = V0 in 
Eq. 10 and using ohmic approximations for the tunneling junction, Eq. 11, in the limit of Vg → 0, respectively.
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Figure 9 shows the effects of the work function of contacting member 2 (W2) and the permittivity of the thin 
insulating layer (εr), on the current and voltage characteristics in CNT-insulator-metal contacts. As the two con-
tact members are different, the voltage drop Vg(x) and the tunneling current density Jc(x) are no longer symmetric 
along the contact length L. Figure 9(a,b) show that the voltage drop increases and the tunneling current density 
decreases with increasing W2. Figure 9(c,d) show that the voltage drop increases and the tunneling current den-
sity reduces significantly when the relative permittivity of the insulating layer increases from 1 to 3.9. Analytical 
solutions obtained by assuming constant tunneling resistivity along the contact length are also included, similar 
to the previous cases of Fig. 7. In general, for the chosen value of D = 0.5 nm, the ohmic approximations using 
Eq. 11 do not yield accurate results. The constant tunneling resistivity approximation using Eq. 10 by setting 
Vg = V0 could be a good approximation for the self-consistent TLM model (Eqs 5, 6 and 10), for tunneling layers 
with higher permittivity εr.

Figure 10 shows the contact resistance (in Ω) for various contact metals and tunneling films for CNT-insulator-metal 
contacts. Contact resistance increases with insulating layer thickness D, insulating layer permittivity εr and work func-
tion of contacting member W2. It decreases with contact length L, as in the similar contacts in Fig. 8. The potential bar-
rier in the insulating layer increases with the increase of work function of the contact metal, resulting in lower tunneling 
current and higher contact resistance.

Summary
In this paper, we proposed a self-consistent model to characterize partially overlapped parallel contacts. Our 
model considers the spatial variation of contact resistivity along the contact structure. We solved the TLM equa-
tions for three cases: (1) constant specific contact resistivity, (2) linearly varying specific contact resistivity, and 
(3) spatial dependent specific contact resistivity along the contact length due to current tunneling. The analyt-
ical solutions for the first case have been verified with FEM based numerical simulations. Our study provides a 

(a) (b)

(c) (d)

Figure 8.  The total contact resistance Rc of the CNT-vacuum-CNT parallel contact. Contact resistance is 
plotted as a function of (a) contact length, L, for different insulating layer thickness, D, (b) D, for different L, 
for a fixed applied voltage, V0 = 1V; (c,d) applied voltage V0 for different L and D respectively, in CNT-vacuum-
CNT contacts. Solid lines are for self-consistent numerical calculations using Eqs 5, 6 and 10, dashed and dotted 
lines are for analytical calculations from Eq. 8, with ρc calculated using Vg = V0 in Eq. 10 and using ohmic 
approximations for the tunneling junction, Eq. 11, in the limit of Vg → 0, respectively.
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thorough understanding of the contact tunneling resistance, current and voltage distributions across nano and 
sub-nano scale metal-insulator-metal (MIM) junctions in parallel electrical contacts. The effects of contact geom-
etry (i.e. dimension of the contact, and distance between the contact electrodes), and material properties (i.e. 
work function, sheet resistance of the contact members, and permittivity of the insulating layer) on the spatial 
distributions of currents and voltages across these contacts, and the overall contact resistance are studied in detail. 
While predominately classical in nature, the inclusion of tunneling current starts to address quantum effects in 
these small scale objects.

It is found that in general the ohmic approximation of tunneling junctions (Eq. 11) is not reliable for predict-
ing the contact resistance of parallel tunneling contacts. The one-dimensional (1D) tunneling junction models 
(Eq. 10 with constant voltage across the whole junction) are good approximations of the parallel contacts only 
when the thickness D or the permittivity εr of the tunneling film is relatively large, or the applied voltage across 
the contact V0 is relatively small. When the 1D models become unreliable for small D or εr, or large V0, the 
self-consistent TLM equations coupled with the tunneling current (Eqs 5, 6 and 10) need to be used to accurately 
characterize the parallel tunneling contacts.

The parallel tunneling contact in this work may be considered as the basic building block to better understand 
the macroscopic electrical conductivity of CNT fibers, which contains a very large number of such parallel con-
tacts between individual CNTs. Furthermore, our study elucidates key parameters for parallel electrical contacts 
over a wide range of spatially dependent contact resistivity, which paves the way to strategically design of contact 
structures with controlled current distribution profiles and contact resistance, by spatially varying the contact 
layer properties and geometry.

In this formulation, we have ignored the effects of space charge and exchange-correlation inside the tun-
neling gap11,40. We have also ignored possible charge trapping inside contact junctions. The model is assumed 
two-dimensional, where the effects of the transverse dimension are neglected. These issues will be the subjects of 
future studies. It is important to note that the transmission line model (TLM) is only a simplified approximation 
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x x

x x

(c)

Figure 9.  Dissimilar material CNT-insulator-metal parallel tunneling contacts. (a) Voltage drop across the 
interfacial insulating layer Vg(x), and (b) tunneling current density Jc(x), in CNT-insulator-Metal contacts, for 
fixed D = 0.5 nm, L = 50 nm, V0 = 1V and different contacting metals (Ca, Al, Cu, Au). (c) Vg(x), and (d) Jc(x), 
in CNT-insulator-Al contacts, for different insulating layer permittivity εr, with fixed D = 0.5 nm, L =50 nm, 
V0 = 3V. Solid lines are for self-consistent numerical calculations using Eqs 5, 6 and 10, dashed and dotted 
lines are for analytical calculations from Eq. 7, with ρc calculated using Vg = V0 in Eq. 10 and using ohmic 
approximations for the tunneling junction, Eq. 11, in the limit of Vg → 0, respectively.
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of the 2D electrical contacts, where the current crowding and the fringing fields near the contact corners cannot 
be fully accounted for10,49. In order to accurately evaluate these effects as well as the impact of finite thickness in 
the contact members and the contact junction, and the possible parallel component of current flows in the inter-
face layer, field solution methods need to be used10,49,50,58. Future studies may also include the effects of various 
contact geometry, insulator layer non-uniformities and AC response on the electrical properties of tunneling type 
contacts. An additional feature might include the role of capacitance and inductance in nano- and micro-scale 
structures, especially when a large contact resistance coupled with these reactive effects might introduce new time 
scales into time-dependent dynamic problems.
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