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Computational multiheterodyne spectroscopy
David Burghoff,*† Yang Yang,* Qing Hu

Dual-comb spectroscopy allows for high-resolution spectra to be measured over broad bandwidths, but an essential
requirement for coherent integration is the availability of a phase reference. Usually, this means that the combs’
phase and timing errors must be measured and either minimized by stabilization or removed by correction, limiting
the technique’s applicability. We demonstrate that it is possible to extract the phase and timing signals of a multi-
heterodyne spectrum completely computationally, without any extra measurements or optical elements. These
techniques are viable even when the relative linewidth exceeds the repetition rate difference and can tremendously
simplify any dual-comb system. By reconceptualizing frequency combs in terms of the temporal structure of their
phase noise, not their frequency stability, we can greatly expand the scope of multiheterodyne techniques.
INTRODUCTION
Dual-comb spectroscopy is essentially the simplest possible version
of multiheterodyne spectroscopy, and thus, they are usually
considered synonymous. A frequency comb is a broadband coher-
ent source that requires only two frequencies to fully describe it, the
offset and the repetition rate (1). In dual-comb spectroscopy, two
frequency combs are shined onto a common detector, and the het-
erodyne beating between different pairs of lines manifests at differ-
ent radio frequencies (RF) (2–8). Although the idea is simple, the
implementation is complicated by the fact that carrier-phase drift
of the combs precludes coherent averaging (5, 7, 9). When this drift
is known, its effect can be removed, but even measuring the abso-
lute frequency of a comb line can be challenging. The most rigorous
approach to measuring the carrier-envelope offset (CEO) directly is
by means of the f − 2f technique, which requires that the comb be
octave-spanning (10). Another approach is to beat the comb with a
stable continuous wave (CW) laser (11–13). As long as the CW la-
ser in question is moderately stable, this will provide a measure-
ment of the comb’s relative CEO. Yet another approach is to use
a narrowband optical filter, such as a fiber Bragg grating, to select
only a portion of the combs’ optical spectra and to extract out the RF
dual-comb beating of different portions (14). This approach requires
no extra frequency references and allows for the extraction of the
phase and timing fluctuations from multiheterodyne spectra, al-
though it does require reasonably stable combs and narrowband
optical filters.

Traditionally, optical frequency combs have been based on near-
infrared mode-locked lasers, whose output consists of a uniform train
of pulses. More recently, there has been a flurry of activity surround-
ing the development of novel chip-scale comb sources, including
combs based on microresonators (15, 16), combs based on interband
cascade lasers, and combs based on quantum cascade lasers (QCLs),
which can operate in the spectroscopically interesting mid-infrared
(17, 18) and terahertz (19–21) wavelengths. Dual-comb spectroscopy
based on these lasers (22–25) is promising for enabling compact spec-
troscopic systems. However, performing phase and timing correction
at these wavelengths is much more challenging. All of the previously
discussed approaches are viable for combs based on near-infrared
mode-locked lasers, which have a well-defined time-domain profile
and operate in relatively technologically mature wavelengths. By con-
trast, long wavelengths have their own challenges. For example, every
additional reference channel requires an additional optical detector,
but the highest-sensitivity high-speed detectors are often cryogenically
cooled (for example, mercury cadmium telluride in mid-infrared wa-
velengths and hot-electron bolometers in terahertz wavelengths). In
addition, the lasers themselves are often cryogenically cooled, partic-
ularly at terahertz wavelengths, meaning that every extra CW laser and
reference channel can greatly increase the size and complexity of the
optical system.

To overcome these challenges, we show here that nearly all of the
information needed to coherently correct a multiheterodyne spectrum
is contained within the RF spectrum itself, excluding information about
the average absolute frequency of the two combs. These techniques are
broadly applicable, applying to all sorts of combs, and, as we will show,
they apply even when the phase and timing errors are extremely large
and when little clear time- or frequency-domain structure is present.
RESULTS
For this demonstration, we consider the case of dual terahertz QCLs
biased to a regime of marginal stability (nearing negative differential
resistance). The lasers themselves are heterogeneous QCLs (21) that
lase around 2.8 THz and are dispersion-compensated (19), whereas
the detectors used are hot-electron bolometers and Schottky diode
mixers. This paper is focused on coherent correction [for information
on the terahertz spectroscopy performed with similar lasers, refer to
the study of Yang et al. (24)].

Figure 1A shows a simplified experimental setup. Comb lasers A
and B are shined onto a common detector, and the multiheterodyne
beating between them is recorded. The beatnotes associated with each
laser—the detected signal that contains the beatings between a comb’s
adjacent lines—are shown in Fig. 1B, as is the recorded dual-comb
signal. Ideally, because the beatnotes are separated by about DfA −
DfB = 35 MHz, their mutual beating should lead to an RF comb with
a repetition rate of 35 MHz. Unfortunately, because the lasers are op-
erated at a bias in which they are only marginally stable, it is to some
extent a stretch to call them combs. The beatnotes associated with
these lasers are quite broad, and in addition, laser A has very clear
sidebands (spaced by 140 kHz). As a consequence, the multihetero-
dyne signal obtained from these devices, shown in the time domain
in Fig. 1B, is of poor quality and has none of the periodicity that one
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would expect from dual combs. Consequently, in the frequency do-
main, shown in Fig. 1C, the multiheterodyne signal is broad and
has very little evidence of a downconverted dual-comb structure: Over
100 ms, the duration of the recording time, all features are completely
washed out. One can imagine that this is simply an issue of long-term
stability and that some structure might be obtained by processing the
signal over shorter time intervals; spectra over 1 ms are shown in Fig.
1D. Although the comb structure is now evident on some spectra, it is
not the case for all of them. There remain many instances in which
phase instabilities completely spoil the spectrum, no matter how short
the signal trace is cropped. As a result, no correction procedure that
relies on interferogram cropping and alignment will succeed here (26):
The signal must be corrected within the duration of an interferogram
by the instantaneous phase and timing signals.

Extracting the phase and timing errors from the observed multi-
heterodyne signal is essentially a nonlinear estimation problem.
Nevertheless, although we have no a priori knowledge of these errors,
we have a model of what the RF comb should look like. Specifically,
we expect it to take the form

yðtÞ ¼ ∑
N�1

n¼0
Ane

iðf0þnDfÞ ð1Þ
Burghoff, Yang, Hu Sci. Adv. 2016;2 : e1601227 11 November 2016
where y(t) is the measured signal,An ¼ E*
n;BEn;A is the dual-comb am-

plitude of the nth line, and f0 and Df are the phase corresponding to
the offset and repetition rate signals, f0;A � f0;B ¼ 1

2p
df0
dt and DfA �

DfB ¼ 1
2p

dDf
dt , respectively. In addition, the signal itself is corrupted

by additive detector noise, and the parameters are all perturbed by
multiplicative amplitude noise and phase noise. Although this estima-
tion problem may seem intractable, it has been known for some time
that if the measurement was a linear function of the parameters, it
would be exactly solvable by the celebrated Kalman filter (27). In
the case of a nonlinear measurement, one must linearize, resulting
in an inexact solution. Nevertheless, good results can still be obtained.
Essentially, we are fitting the measured multiheterodyne signal to the
dual-comb model with the regularization constraint that the dual-
comb amplitudes vary slowly (see Materials and Methods for more
detailed information). With this approach, we can continuously update
our estimates of the offset and repetition rates without any form of
cropping; this, in principle, makes it very amenable to real-time proces-
sing (11). Because the data have been recorded in this case, we addition-
ally perform Rauch-Tung-Striebel smoothing (28), which uses future
knowledge to refine the state estimate and to correct for the group delay
introduced by the standard filter. The resulting correction is superior to
the correction obtained from the causal Kalman filter.
A B

C D

Fig. 1. Multiheterodyne spectra of marginally stable combs. (A) Simplified experimental setup showing how multiheterodyne data are recorded. Two comb lasers are
shined onto a detector, and the multiheterodyne beating is recorded. (B) Top: Repetition rate beatnotes of the lasers at the biases used for this demonstration, collected over
20 ms and offset with respect to 9.1 and 9.1035 GHz. Bottom: Multiheterodyne signals in the time domain. Dashed lines would indicate one dual-comb period, but no 35-MHz
periodicity is present. a.u., arbitrary units. (C) Frequency domain multiheterodyne signal over an integration time of 100 ms. No peaks are spaced by 35 MHz. (D) Frequency
domain multiheterodyne spectra over 1 ms at different times. Peaks spaced by 35 MHz are sometimes (but not always) present.
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The physics of the comb enter primarily in the form of the mul-
tiplicative noise. Specifically, we assume that the comb complex am-
plitudes are perturbed only slightly at each time step (giving them a
long time constant), whereas the phase and timing errors are per-
turbed much more (giving them a short time constant). In other
words, we assume that the comb’s phase noise covariance is approx-
imately rank −2. The Kalman filter quite naturally provides a way to
test the validity of this assumption, because it makes a prediction
about what the next measurement will be at every time step. By simply
comparing the measured signal to the predicted signal, we can verify the
efficacy of the prediction. For all of the data shown in this paper, the
prediction residual is less than 8% of the signal power.

Figure 2 (A and B) shows the instantaneous repetition rate and off-
set frequency of the RF comb in Fig. 1. Several features are immediately
apparent. The first is that both frequencies suffer a perturbation that
recurs every 7 ms, which corresponds to the aforementioned 140-kHz
sidebands evident in the beatnote of laser A. In other words, the beat-
note undergoes a periodic instability that is imprinted onto the multi-
heterodyne spectrum. Second, the magnitude of the offset fluctuations
(phase error) greatly exceeds the magnitude of the repetition rate fluc-
tuations (timing error). This is not unexpected, because timing fluc-
tuations correspond only to group index, whereas phase fluctuations
Burghoff, Yang, Hu Sci. Adv. 2016;2 : e1601227 11 November 2016
also depend on phase index (29). Note also that the speed of the offset
fluctuations—as much as 140 MHz per 220 ns during the perturba-
tions, roughly 0.5Df per 1/Df—would be problematic for conventional
techniques, because it implies that the short-term linewidth of a comb
tooth greatly exceeds the spacing between comb teeth, a situation gen-
erally considered incompatible with dual-comb spectroscopy (5, 7, 9).
Stabilization by thermal tuning is out of the question because the per-
turbation occurs on time scales that are too short, and even techniques
that rely on measuring the beating with a CW laser would require
an additional fast detector. Figure 2 (C and D) shows the time-domain
multiheterodyne signals before and after the phase and timing cor-
rection, both during the instability (Fig. 2C) and away from it (Fig.
2D). During the instability, no clear periodicity or structure is ob-
vious in the raw data; away from it, some periodicity is evident. In
both cases, the signal predicted by the filter agrees very well with
the actual data. As a result, following the phase and timing correction
(discussed in Materials and Methods), the periodic comb structure is
recovered.

Figure 3 shows the results of the computational correction in the
frequency domain. The raw data from before are shown in Fig. 3A and,
once again, show no comb structure. The phase-corrected data are
shown in Fig. 3B; because phase correction removes the average offset
A

B

C D

Fig. 2. Phase and timing correction. (A) Repetition rate fluctuations of the demodulated RF comb. (B) Offset fluctuations of the demodulated RF comb. (C) Raw, predicted,
and corrected multiheterodyne signals during the instability. (D) Raw, predicted, and corrected multiheterodyne signals away from the instability.
3 of 7



SC I ENCE ADVANCES | R E S EARCH ART I C L E
frequency of the signal in addition to its fluctuations, the average offset
〈f0〉 has been readded to correspond with the raw data. Phase correction
reveals the individual multiheterodyne comb lines, although lines near
the center of the comb are better-corrected than lines near the edge
because of timing fluctuations that are still present. Finally, Fig. 3C
shows the phase- and timing-corrected spectra, with insets showing
zoomed views of several lines. All of the lines in the spectrum have been
corrected, with full width at half maxima near the uncertainty limit
of 10 kHz. Following the correction, some lines that were not apparent
in the raw data have appeared out of the noise floor, such as the one
shown in the rightmost inset. By filtering the data, one can verify
that this is real signal (that is, not a computational artifact), but
given detector dynamic range limitations, it may arise from detec-
tor nonlinearity rather than from heterodyne beating. Although the
laser has a large disparity in mode amplitudes and large phase errors, it
is possible to perform spectroscopy with these techniques (24).
Burghoff, Yang, Hu Sci. Adv. 2016;2 : e1601227 11 November 2016
DISCUSSION
Computational phase and timing correction has advantages beyond its
experimental elegance. As already shown, this approach can deal with
extremely large phase-timing fluctuations. Figure S1 shows an even
more extreme case in which the laser is biased in an even more un-
stable regime, causing the comb to chaotically switch between multiple
operating conditions. Even here, correction remains possible. As long
as the combs are coherent in the weak sense that the lines are evenly-
spaced (30), with computational correction they become coherent in
the strong sense that mutually coherent dual comb spectroscopy (9)
can be performed. Although we focused here on unstable combs, it is
also beneficial for stable combs and even combs operated in pulsed
mode (24). Because the extended Kalman filter used here makes only
weak assumptions about the evolution of the comb parameters (that
is, a random walk with a Gaussian prior), almost no assumptions are
needed to be made about the stationarity of the multiheterodyne signal.
A

B

C

Fig. 3. Corrected multiheterodyne spectra. (A) Raw multiheterodyne data. (B) Data following phase correction. The lines in the center of the spectrum are well-
localized but the lines toward the edge are not. (C) Data following phase and timing correction. All lines are well-localized. Insets: zoomed view of three comb teeth at
all three levels of correction, including a line initially buried by noise.
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Figure S1 is an example of a dual-comb signal whose signal is nonsta-
tionary in three separate ways: the aforementioned instability at mi-
crosecond time scales, the chaotic switching between regimes at
millisecond time scales, and a periodic fluctuation due to cryocooler
fluctuations at 2 kHz.

In addition, computational correction offers very good perform-
ance even in the case of low-signal reference measurements. For
example, fig. S2 shows a dual-channel correction based on the multi-
heterodyne signal from one of the channels, in this case, a Schottky
mixer with a raw signal-to-noise ratio (SNR) of less than 25 dB. Even
when the mixer’s noise is artificially boosted by 10 dB and practically
no signal remains, computational correction remains informative on
both channels. One may wonder whether computational correction
offers any multiplex advantage analogous to the one present in con-
ventional Fourier transform spectroscopy (31, 32). For additive white
noise, there is no advantage: The SNR of the extracted correction sig-
nal is identical between a reference comb and a reference CW laser of
the same power. Even so, computational correction confers an advan-
tage in the presence of excess phase noise, that is, phase noise that is
not offset- or timing-related. Because it uses all of the lines of the
comb, it is less susceptible to the excess noise of a particular line.
We have observed that it is sometimes the case that even when most
of the multiheterodyne spectrum is well-corrected, the weaker comb
teeth can have sidebands (see fig. S3). These sidebands result from
multiple lines sharing a mode, similar to what has been observed in
microresonator combs (33), and manifest in QCL combs as a lack of
coherence (30). If one were to use one of these lines to perform the
correction instead of a clean comb line, the correction would be poor,
using all of the comb’s lines averages out these effects.

Some caveats apply. Because the combs are not fully referenced,
there remains an ambiguity in their average absolute frequency (9).
That said, this is often unimportant for spectroscopy, because the free-
running linewidth of most combs is narrower than typical spectro-
scopic features, and the absolute frequency can be localized using
an etalon or an interferometer if need be. Another consideration is
that because the filter needs to track the complex amplitudes of each
line, this scheme is easier to apply to combs where the number of lines
is not too large. This is easy to accomplish for chip-scale combs be-
cause the number of lines is typically in the hundreds but is compu-
tationally much more difficult for large mode-locked lasers [where the
number of lines approaches 100,000 (34)]. One way this issue can be
remedied is by intentionally tracking just a few of the multiheterodyne
lines. For example, fig. S4 shows a comparison between a multihetero-
dyne signal corrected by a Kalman filter that incorrectly assumes that
only two lines are present in the signal and one that correctly assumes
that no more than 30 lines are present (N = 2 and N = 30, respective-
ly). Although the corrected amplitudes are similar, because the 30-line
model can use information from all of the signal’s lines, the resulting
correction is more accurate. (An extra heuristic is needed to correct
the two-line model; see “Removal of the coherent artifact” in Supple-
mentary Materials and Methods for more information.)

In addition, because the linearized Kalman filter is suboptimal, the
correction is not perfect and always leaves a noise pedestal. For the
data shown in Fig. 3C, the pedestal is approximately 40 dB down from
the peak of each line. Although we subsequently implemented non-
linear unscented Kalman filters (35), we found that the improvement
was only marginal and that the result diverged more frequently. The
overall robustness of the linearized filter in this case can be interpreted
using an analogy to phase-locked loops. It has long been known that
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when a linearized Kalman filter is used to track a single oscillator, it is
equivalent to an ideal phase-locked loop, one whose gain perfectly re-
flects the amount of noise in the system (36). Because a comb is sim-
ply a system of oscillators whose phase noise is strongly correlated, a
similar interpretation can apply here. The linearized filter essentially
constructs a correlated bank of ideal loops and adjusts the phase of
each loop while ignoring signals resulting from other lines. The chief
deficiency of the linearized filter is the possibility of mislocking, which
is described in “Nonconvexity of the error function” in Supplementary
Materials and Methods. Although nonconvexity is corrected heuristi-
cally here, it could be resolved without heuristics by using a more gen-
eral tracking algorithm, such as a particle filter (37).

In conclusion, we have shown that coherent multiheterodyne spec-
troscopy can effectively be performed using a computationally en-
hanced method. Nearly all of the relevant phase and timing information
traditionally acquired by separate reference channels is buried within
the dual-comb spectrum and can be used to self-correct or to cross-
correct a spectroscopic signal channel. These approaches are particu-
larly useful for dual-comb systems based on semiconductor lasers or
on microresonators, on account of their large free spectral range. Al-
though we have used these techniques to correct comb spectra, they
are very general and can apply to any coherent spectrum where a
robust model of the phase-locking exists. The light source does not
need to be comb-like, merely deterministic.
MATERIALS AND METHODS
Phase and timing correction
To perform the phase and timing correction, a general scheme that could
take the large fluctuations present into account was needed. Phase correc-
tion was fairly simple, because phase fluctuations were common to all
comb lines and manifested as a pure multiplication. Timing fluctuations
presented a more substantial challenge, because the effect of timing fluc-
tuations was to nonlinearly stretch the time axis.
Defining an effective time t tð Þ≡ DfðtÞ

2p〈Df 〉, the multiheterodyne signal can

be written as yðtÞ ¼ eif0ðtÞ∑
n
Anein2p〈Df 〉tðtÞ. The phase-corrected signal

was found by calculating y0ðtÞ ≡ e�if0ðtÞyðtÞ, and the phase-timing–
corrected signal was found by using a nonuniform fast Fourier transform
(38) to interpolate y0(t) onto a linear grid, effectively calculating y0D(t) ≡
y0(t

−1(t)). No other correction was performed.

Optimization problem formulation
As mentioned in the text, the extended Kalman filter could be viewed
as fitting the measured data to the model with a regularization con-
straint (39). This was an optimization problem that sought to mini-
mize the error

JðxÞ ¼ ∑
k
jjyk � hðxkÞ jj2R�1 þ jjxk � f ðxk�1Þ jj2Q�1 ð2Þ

where xk is the state of our system at time k, yk is the measurement at
time k, h(xk) is the measurement function of the state, f(xk) represents
how the state evolves, R is the measurement noise covariance, Q is the
process noise covariance, and jjv jj2A ≡ v†Av. The first term represents
how closely the predicted measurement matches the observed mea-
surement, and the second is a regularization term that takes the role
of a time constant, in this case controlling how much multiplicative
noise is present in the system. Equation 2 is extremely general, applying
5 of 7
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to any nonlinear system modeled by a Kalman filter, and all of the
physics of the dual-comb signal are present in the form of the model
h(xk) and in the process noise covariance Q.

Model of the dual-comb spectrum
As discussed in the text, the measurement model is a function of the
complex amplitudes, phase signal, and timing signal

yðtÞ ¼ ∑
n
Ane

iðf0þnDfÞ ¼ ∑
n
rne

ifn eiðf0þnDfÞ ð3Þ

where we have separated the complex amplitudes into their ampli-
tudes and phases. Alternative equivalent formulations existed (for ex-
ample, considering the quadratures of the complex amplitudes), and
they differed somewhat, on account of the nonlinearity of the filter.
This particular formulation allowed us to place amplitude and phase
noise into the system very naturally. If N is the number of lines under
consideration, the state of the system is described by a vector length of
2N + 4, which contains the offset and repetition rate (f0 and Df), the
corresponding phases (f0 and Df), the mode amplitudes ({rn}), and
the mode phases ({fn}). At every time step, the two frequencies, modal
amplitudes, and phases were assumed to be left unchanged—perturbed
only by Brownian noise—whereas the offset and timing phases were
updated by the frequencies

f0;kþ1 ¼ f0;k þ 2pDt f0;k

Dfkþ1 ¼ Dfk þ 2pDtDfk ð4Þ

Similarly, the process noise covariance, Q, was constructed in a way
that was consistent with the spirit of a comb. It contained relatively large
amounts of phase and timing noise, relatively small amounts of mul-
tiplicative amplitude noise, and relatively small amounts of additional
phase noise. Note that the additional phase noise was constructed in
such a way that it did not contribute any extra phase/timing error, that
is, it has rank N – 2. The rest of the processing involved a fairly stan-
dard Kalman filter, with some modifications made to account for the
particulars of dual-comb spectroscopy. (Both extended and unscented
filters were used, with very little performance difference in this case.)
These are discussed in Supplementary Materials and Methods.
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/2/11/e1601227/DC1
Supplementary Materials and Methods
fig. S1. Dual-comb spectroscopy in a chaotic regime.
fig. S2. Cross-correction of multiple spectra.
fig. S3. Incoherent sidebands in a weak dual-comb tooth.
fig. S4. Multiheterodyne spectrum corrected by a two-line model.
fig. S5. Correction of artificial dual-comb data.
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