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Abstract: Zoanthids of the genus Palythoa are distributed worldwide in shallow waters around
coral reefs. Like all cnidarians, they possess nematocysts that contain a large diversity of toxins
that paralyze their prey. This work was aimed at isolating and functionally characterizing a
cnidarian neurotoxic phospholipase named A2-PLTX-Pcb1a for the first time. This phospholipase
was isolated from the venomous extract of the zoanthid Palythoa caribaeorum. This enzyme, which is
Ca2+-dependent, is a 149 amino acid residue protein. The analysis of the A2-PLTX-Pcb1a sequence
showed neurotoxic domain similitude with other neurotoxic sPLA2´s, but a different catalytic histidine
domain. This is remarkable, since A2-PLTX-Pcb1a displays properties like those of other known
PLA2 enzymes.

Keywords: cnidaria; venom; phospholipase A2; neurotoxin; Palythoa caribaeorum

Key Contribution: A2-PLTX-Pcb1a is the first neurotoxic phospholipase A2 isolated from the
zoanthid Palythoa caribaeorum. This phospholipase exhibited neurotoxic activity in the primary
motor cortex of rats and its amino acid sequence is different from those previously reported for
other cnidarians.
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1. Introduction

Zoanthids of the genus Palythoa inhabit the littoral zone around the globe [1]. At least 110 Palythoa
species are cited in the literature. Like all cnidarians, zoanthids are particularly characterized by the
presence of specialized cells called cnidocytes that produce stinging organelles called nematocysts.
Nematocysts are a kind of ovoid capsule containing a coiled filament that when touched or chemically
stimulated is projected to their possible prey with the purpose of injecting venom to paralyze them [2].
The venom includes a wide variety of toxins such as cytolysins, peptides that affect sodium [3],
calcium [4], potassium channels [5], protease inhibitors [6], and phospholipases A2 [7], which are
responsible for many harmful effects (cardiotoxicity, dermatitis, local itching, erythema, paralysis,
pain, among others) [8].

Phospholipases A2 (PLA2’s) are widely distributed in different life forms such as animals [9],
plants [10], bacteria [11], fungi [12], and viruses [13]. Two main families of PLA2’s have been
characterized: (1) High 80–120 kDa cytosolic phospholipases (cPLA2’s) that are involved in the
intracellular metabolism of arachidonic acid; and (2) 13–19 kDa secreted (sPLA2’s). The secreted
sPLA2’s are characterized by two amino acid catalytic dyads (His/Asp), which vary in position
depending on the type of secretory phospholipase, and require micromolar levels of Ca2+ for
substrate-binding and catalysis [14]. The main activity of sPLA2 is to catalyze the SN2 hydrolysis of
the ester bond of glycerophospholipids, and they have at least five disulfide bonds [14]. They are
active in the extracellular medium and are implicated in the pathogenesis of various inflammatory
processes and tumors, as well as in animal venom toxicity, mainly in bees and snakes [15]. PLA2’s
are divided into 15 different groups. G-IA, G-IIA, G-IIB, G-III, G-IX, and G-XII PLA2 scaffolds
have been assimilated into venoms [16]. More than 400 proteins with PLA2 activity have been
described from animal venoms and show substantial sequence homology with each other and with
mammalian PLA2 enzymes. Particularly, G-III PLA2’s have been recruited independently into four
venomous lineages [17]. Many snake sPLA2’s have been well characterized structurally and have been
shown to display a large diversity of activities, such as myotoxic [18], hemolytic [19], edematous [20],
hypotensive [21], cardiotoxic [22], anticoagulant [23], presynaptic [24], and postsynaptic effects [25].

Neurotoxic sPLA2’s can induce central neurotoxicity when added to neuronal cell cultures [26,27]
or during intracerebroventricular injection to animals [28–30]. Several PLA2’s display the same effect
through different mechanisms [31]. Despite the fact that many studies exist about the neurotoxic
activities of sPLA2 from animal venoms, information about the effects of sPLA2’s from cnidarians
is scarce.

The distribution of PLA2’s among members of the phylum Cnidaria is widespread, but their
enzymatic activities vary significantly between different species. Only eight PLA2’s have been
described to date. These molecules have been isolated or cloned from the sea anemones Condylactis
gigantean [32], Urticina crassicornis [33], Bunodosoma caissarum [8], Adamsia carciniopados [34], Actinia
tenebrosa [35], and Aiptasia pallida [36], and the fire coral Millepora platyphylla [37]. Several authors
have also determined PLA2 activity in extracts from other members of phylum Cnidaria. In addition,
several predicted cnidarian PLA2 belonging to Exaiptasia pallida [38], Nematostella vectensis [39], Acropora
digitifera, and Hydra vulgaris have been found in the NCBI and UniProt databases.

Thus, with the aim of understanding the function of sPLA2’s in venoms, we isolated and
characterized the PLA2 from the zoanthid Palythoa caribaeorum. We found that the isolated enzyme
presented a molecular mass of 16,617 Da, and exhibited neurotoxic activity in the primary motor cortex.

2. Results and Discussion

Cnidarians are a diverse animal group capable of producing a vast array of molecules with
different biological activities such as cytotoxic proteins, phospholipases (PLA2’s), hemolysins, and
neurotoxic peptides. Although PLA2 enzymatic activity has been reported in different cnidarian
tissue homogenates and is involved in the prey capture/digestion process [7], cnidarian sPLA2 toxin
characterization has been scarcely investigated with some exceptions [8,33–37].
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The crude venom extract fractionation by different Millipore membrane filters resulted in five
fractions. The PLA2 activity of each fraction was determined on agar plates. Only fraction “a”
showed PLA2 activity (Figure 1). Fraction “a” was fractionated by a cationic exchange column
(Figure 2A). Six fractions were collected. Fraction 3 (F3) showed PLA2 activity and was subjected
to a size exclusion HPLC column (Figure 2B). After these chromatographic steps, a highly pure
enzyme was obtained and named A2-PLTX-Pcb1a according to the proposed nomenclature
for anemone toxins [40]. The isolated PLA2 enzyme (A2-PLTX-Pcb1a) was analyzed by mass
spectrometry. The A2-PLTX-Pcb1a amino acid sequence contains the following 149 amino acid residues:
MLKRLVQFSYVITCFSLSCFRHATLLTSGIPCQKXFLAALALLDFGERNANHNRRSDLKRVCATYND
ACCRKSVVRPACSVPMSXIPTSLSLVSDDCDVAASCSLKRLLCYAGMDPAAKCYHNTYNQVTYHM
RVLPVGFGFKQCDRAMD (where X represents two amino acid residues that could not be determined
by our method; each amino acid residue has a molecular mass of 113.18 Da, meaning that these are
either a Leu or an Ile residue). Considering the literature on toxins isolated from the genus Palythoa,
this is the first PLA2 isolated and characterized from this group with a determined specific activity of
13.79 meqmg−1min−1 (Table 1).
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Figure 1. Inhibition halos of sPLA2 activity of total venom. The agar plate was incubated for 12 h at
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Figure 2. Isolation steps of PLA2 from Palythoa caribaeorum. (A) HPLC-cation exchange chromatography
of >30 kDa fraction from P. caribaeorum venom. Dotted line across right-hand side of chromatogram
indicates linear NaCl concentration (0–1 M) gradient used. (B) HPLC-size exclusion chromatography
of F3. The chromatogram shows the resulting A2-PLTX-Pcb1 phospholipase A2 and its amino acid
sequence (where X is no identified amino acid).
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Table 1. Flow sheet of exhibited phospholipase A2 activity purification.

Purification
Step

Protein a

(mg)
Total Activity b

(Units)
Specific Activity

(U/mg)
Activity

Recover (%)
Purification

Factor

Venom 176 230.56 1.31 100 1

a 42.47 116.36 2.74 24.13 2.09

F3 3.03 16.9 5.58 1.72 4.25

A2-PLTX-Pacb1a 2.42 33.37 13.79 1.37 10.5
a Proteins were estimated by BCA method. The experiments were conducted three times. b 1 Unit: mmol of fatty
acid released per mg of protein using Egg-PC emulsion as substrate in the presence of 10 mM CaCl2. NaOH (2 mM)
was used as titrating solution.

Like other phospholipase A2’s, A2-PLTX-Pcb1a is a calcium-dependent PLA2. No significant
hydrolysis of DTNB by A2-PLTX-Pcb1a was detected when adding CaCl2 together with EDTA
(Figure 3). Hence, we compared A2-PLTX-Pcb1a with other PLA2’s in order to find the calcium-binding
site. The aforementioned site was not found in this analysis. This result suggests that, like Conodipine
M, A2-PLTX-Pcb1a lacks the typical conserved calcium-binding residues present in other PLA2’s. Other
cases of PLA2’s lacking this site have been reported [41]. A2-PLTX-Pcb1a displays 34.48% identity
with the alpha-chain of Conodipine M from Conus magus, which possesses two similar domains [42].
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independent experiments. Bee venom was used as positive control, and DTNB and assay buffer as
negative control. Values represent the mean of the three replicates and standard errors are reported.

The comparison of the isolated toxin sequence using clustal Ω shows that A2-PLTX-Pcb1a does
not present the PLA2 histidine active site, due to the lack of a histidine residue in the appropriate
location (data not shown).

Likewise, the A2-PLTX-Pcb1a sequence does not present the characteristic calcium-binding region
“W/Y-x-G-x-G” similarly to the members of the family IX, that includes Conodipine M [41]. The isolated
PLA2 belongs to the sPLA2-type enzymes [43].

The neurotoxin sequences analysis was performed with the Clustal Ω program using default
settings and compared with homologous phospholipases. It showed a hydrophobic region of seven
amino acids that is similar to a region related to the neurotoxic activity reported in various sPLA2 toxins
(Figure 4) [44]. It has been proposed that this hydrophobic region is responsible for the PLA2 binding
to specific membrane receptors and the initial phase of neurotoxicity [45]. To determine the neurotoxic
activity of A2-PLTX-Pcb1a, the motor alterations (horizontal and vertical movements) were monitored
in Wistar rats exposed to the toxin by intracerebroventricular (i.c.v.) injection. The i.c.v administration
was used because the direct intracerebral administration of A2-PLTX-Pcb1a allows for the PLA2 toxin
penetration into the cortex and periventricular areas [30]. In this animal model, it was observed that
A2-PLTX-Pcb1a caused motor dysfunction in rats (Figure 5A–C). This effect has been reported for other
sPLA2’s from other venomous animals such as snakes and bees [26]. Since the hypokinetic effects
elicited by various neurotoxic sPLA2 have been associated with cellular damage [46,47], the cell damage
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(ratio of cell damage per field) throughout the different treatment groups was determined (Figure 5C).
Consequently, after seven days of i.c.v. A2-PLTX-Pcb1a administration, the rat brains were collected
to perform a histological analysis to determine the percentage of cellular damage (Figure 5D,E).
The cerebral tissue of control rats showed a normal appearance with well-preserved cell nuclei and
bodies. In contrast, treated rats showed the effects of A2-PLTX-Pcb1a on the brain, where several
pyknotic nuclei could be observed (Figure 5D). Cell damage augmented in A2-PLTX-Pcb1a-treated
rats as compared to the control. This effect correlates with numerous studies proposing that sPLA2

can elicit a β-neurotoxicity process [30,31]. Thus, A2-PLTX-Pcb1a can exert neurotoxic activity but the
sPLA2 neurotoxicity mechanism remains to be revealed.
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Neurotoxic phospholipase A2 (Hhar.Q8UW08, Hsch.P00610, Nscu.P00608, Nscu.P00609, Ptex.P23026,
Oscu.P0CG57, Dsia.Q02471, Paus.P04056, Vnik.Q1RP79, and Pfla.Q805A2 from Hydrophis hardwickii,
Enhydrina schistosa, Notechis scutatus scutatus, N. s. scutatus, Pseudonaja textilis, Oxyuranus scutellatus
scutellatus, Daboia siamensis, Pseudechis australis, Vipera nikolskii, and Protobothrops flavoviridis, respectively).
Conserved signature pattern, toxicity domain (NR)-L-V-Q-F-(SGAN)-X-(VLM)-I (amino acids within
brackets are allowed). Identical amino acids are highlighted in blue.
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A2-PLTX-Pcb1a. Rats were administered with a single infusion of A2-PLTX-Pcb1a 3.5 mg/mL into
the third ventricle. Both behavioral and morphological markers were explored seven days after
A2-PLTX-Pcb1a injection. Locomotor activity parameters ((A) horizontal and (B) vertical movements
as well as (C) total distance walked) are presented. (D) Histological features and (E) evaluation of
cellular damage in primary motor cortex sections of rats infused with A2-PLTX-Pcb1a are shown.
Tissue sections were histologically processed and stained with hematoxylin-eosin (×40 objectives).
Mean values + S.E.M. of four experiments per group are shown, a p < 0.05, different from control.
Student’s t-test.
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Cnidarian phospholipases described to date are scarce. Only two of them were isolated directly
from the animal and completely sequenced. Phospholipase A2 from the sea anemone Aiptasia pallida
consists of two isozymic forms α and β with molecular masses of 45 and 43 kDa, respectively, and are
considerably larger than the typical PLA2’s [36]. In contrast, the PLA2 isolated from Urticina crassicornis
has a molecular mass of approximately 14 kDa which corresponds with the masses reported for most
PLA2’s [33]. Interestingly, both phospholipases show the enzymatic activity but produce no hemolysis
when tested in erythorictes. A third known anthozoan phospholipase is that from the sea anemone
Bunodosoma caissarum of 14.7 kDa. Hemolytic activity was not tested for this enzyme but it induced
insulin secretion and kidney toxicity in rats [8]. The alignment of A2-PLTX-Pcb1a with these three
toxins revealed no sequence homology (data not shown).

As mentioned above, A2-PLTX-Pcb1a showed 34.48% identity with Conodipine M. And additional
analysis using the Pratt EMBL-EBI tool allowed us to do a broader pattern conserved analysis of
homologous sequences. After the analysis, we observed that the H22 in A2-PLTX-Pcb1a matched the
H of the typical catalytic domain PS00118 PA2_His of all phospholipases (Figure 6A); additionally, the
D98 of A2-PLTX-Pcb1a matched the D of the typical catalytic domain PS00119 PA2_Asp (Figure 6B).
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Figure 6. Patterns conserved of sPLA2 with A2-PLTX-Pcb1a were obtained from Pratt EMBL-EBI
(https://www.ebi.ac.uk/Tools/pfa/pratt/). Group IX (Cmag.Q9TWL9 from Conus magus), Group IA
(Nnaj.P15445 from Naja naja), group IB (Hsap.P04054, Mmus.Q9Z0Y2, Rnor.P04055 from Homo sapiens,
Mus musculus, and Rattus norvegicus, respectively), group IIA (Hsap.P14555, Mmus.P31482,
Rnor.P14423 from H. sapiens, M. musculus, and R. norvegicus), group IID (Mmus.Q9WVF6 from
M. musculus), Group IIE (Q9NZK7 from H. sapiens), group IIF (Hsap.Q9BZM2, Mmus.Q9QZT4
from H. sapiens and M. musculus), group III (Hsap.Q9NZ20, Btau.Q1JPB9 from H. sapiens and
Bos taurus), group V (Hsap.P39877, Mmus.P97391, Rnor.P51433 from H. sapiens, M. musculus, and
R. norvegicus), group X (Hsap.O15496, Mmus.Q9QXX3, Rnor.Q9QZT3 from H. sapiens, M. musculus,
and R. norvegicus), group XIA (Osat.Q9XG80 from Oryza sativa japonica), group XIB (Osat.Q9XG81
from O. s. japonica), group XIIA (Mmus.Q9EPR2, Hsap.Q9BZM1 from M. musculus and H. sapiens)
group XIIB (Hsap.Q9BX93, Mmus.Q99P27 from H. sapiens and M. musculus), and group XIV
(Dsec.B4HIK8, Adar.W5JTT2 from Drosophila sechellia and Anopheles darlingi). The common
conserved signature patterns: (A) the “PA2_HIS (PS0018), phospholipase A2 histidine active site
C-C-{P}-x-H-{LGY}-x-C” (where x represents a non-conserved amino acid, and amino acids within
brackets are not allowed) and (B) the “PA2_ASP (PS00119), phospholipase A2 aspartic acid active site
[LIVMA]-C-{LIVMFYWPCST}-C-D-{GS}-{G}-{N}-x-{S}-C” (where x represents a non-conserved amino
acid, amino acids within curly brackets are not allowed and amino acids within square brackets are
allowed). Identical residues are highlighted in blue.
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3. Conclusions

Marine organisms have evolved in different physicochemical and biological environmental
conditions compared to terrestrial animals, and numerous reports have shown that they could be
an invaluable source of active compounds. In the present study, we purified the first PLA2 from P.
caribaeorum that elicited neurotoxic activity (A2-PLTX-Pcb1a). These results open the possibility to
find new sPLA2 structures with diverse neurotoxic mechanisms that are worthy to elucidate. In this
case, due to the lack of the conserved calcium-binding residues and the low homology between
A2-PLTX-Pcb1a and other reported sPLA2’s, it is possible that A2-PLTX-Pcb1a could represent a
member of a new PLA2 group.

4. Materials and Methods

4.1. Venom Extraction and Fractionation

P. caribaeorum specimens were collected by free diving in the La Gallega coral reef approximately
1 km off the coastline at Veracruz, Mexico. The venom was extracted by a previously described
method [4]. Briefly, the material was cleaned from remnant rocks and soaked in water to eliminate
the superficial mucus. To extract the nematocyst’s venom, the organisms were carefully squeezed in
deionized water to expose hidden polyp tentacles and mechanically discharged. The solution was
then centrifuged, lyophilized, and stored at −70 ◦C until use. The extract was fractionated with the
ultrafiltration system (Amicon 8050 Stirred Ultrafiltration Cell 50 mL Protein Purification, Millipore,
Burlington, MA, USA) using deionized water and 1, 3, 10, and 30 kDa Millipore membrane filters.
The fraction that elicited phospholipase activity was subjected to a cationic exchange chromatography
(HPLC TSK SP-5-PW 75 × 7.5 mm, BIO-RAD, Richmond, CA, USA) column. The ion exchange
chromatography HPLC conditions included the use of buffer A (0.1 M Na2HPO4/NaH2PO4, pH 7.65)
and buffer B (0.1 M Na2HPO4/NaH2PO4, pH 7.65 plus 1 M NaCl). The separation was performed
at a flow rate of 0.5 mL/min. During the first 30 min, the elution was performed with buffer A, and
then from 30 to 80 min using a 0–100% gradient of buffer B. At a final stage, only buffer B was used
for 40 min. Proteins were monitored at 220 and 280 nm. Each fraction was collected, concentrated,
and tested for phospholipase A2 activity. The active fractions were purified with a size exclusion
HPLC TSK-gel G2000-SW column 600 × 7.5 mm (Toyo Soda, Tokyo, Japan). The size exclusion HPLC
conditions included the use of deionized water at pH 7.0. The separation was performed at a flow rate
of 0.15 mL/min over 120 min.

4.2. Protein Determination

Protein concentration in samples was determined using the BCATM Protein Assay Kit (Thermo
Scientific, Rockford, IL, USA) by comparison with bovine serum albumin (BSA) protein concentration
standards [48].

4.3. Phospholipase Activity

4.3.1. Enzymatic Activity on Agar Plates

PLA2 activity was measured following a modification of the protocol by Habermann and
Hardt [49]. Briefly, fresh egg yolk (1 vol) and 0.85% NaCl (3 vol) were mixed and centrifuged at
2000 rpm. One milliliter of supernatant was added to 98 mL of a 0.6% agarose solution in 50 mM
Tris-HCl at 50 ◦C (pH 7.95), followed by 1 mL of 10 mM CaCl2. A 15 mL portion of this mixture was
poured into a Petri dish and 3-mm wells were cut in the gel. The diameters of the inhibition halos were
measured after overnight incubation at room temperature.
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4.3.2. Enzymatic Activity on Titration Assay

PLA2 activity was routinely assayed at 25 ◦C and pH 8.9, with 2% L-α-phosphatidylcholine from
egg yolk and 10 mM CaCl2 (Sigma-Aldrich, St. Louis, MO, USA), as described previously in the
Worthington Enzyme Manual [50]. One unit of enzyme activity is defined as the uptake of NaOH in
micromoles per minute. We used PLA2 from bovine pancreas (Sigma-Aldrich) as positive control.

4.4. Secretory Phospholipase A2 Inhibition Assay

The inhibition of PLA2 activity was determined using a secretory PLA2 colorimetric assay
kit (Cayman Chemical, city, Ann Arbor, MI, USA). This assay uses the 1,2-dithio analog of
diheptanoyl phosphatidylcholine as substrate and EDTA as inhibitor. Free thiols generated by
PLA2 upon hydrolysis of the thioester bond at the sn-2 position were detected using DTNB
[5,5′-dithio-bis-(2-nitrobenzoic acid)]. Color changes were monitored by a Synergy HT (BioTek,
Winooski, VT, USA) microplate spectrophotometer at 414 nm, sampling 10 minutes. Ten microliters
(10 µg) of bee venom PLA2 control was used as the reference for PLA2 activity, and 5 µL (500 mM)
of EDTA was used in the inhibition assay. PLA2 inhibition was expressed in percentage of inhibition
with respect to the positive control (n = 3).

4.5. Neurotoxic Effects on Rats

4.5.1. Animals

All procedures with animals were strictly carried out according to the National Institutes of
Health Guide for the Care and Use of Laboratory Animals, and the local guidelines on the ethical
use of animals from the Ministry of Health, Mexico (NOM-062-ZOO-1999). Eight male Wistar rats
(260–280 g) were used throughout the study. Animals were obtained from the vivarium of the School of
Medicine from the Universidad Nacional Autónoma de México (National Autonomous University of
Mexico). Rats were kept in polycarbonate cages in the same room where the immobilization protocol
was performed. Animals were kept in groups of four per cage with free access to food (Laboratory
rodent diet 5001; PMI Feeds Inc., Richmond, IN, USA) and water, and under controlled environmental
conditions (constant room temperature (25 ± 3 ◦C), humidity (50 ± 10%), and light/darkness cycles
(12:12 h), before the immobilization experiments began.

4.5.2. Surgical Lesion Technique

Four rats were anesthetized with sodium pentobarbital (50 mg/kg, i.p.). A single intraventricular
injection of 10 µL (350 µg/mL) of A2-PLTX-Pcb1a was made with a Hamilton syringe into the third
ventricle at the stereotaxic coordinates 1.3 mm posterior to bregma, 0 mm lateral to bregma and 4.6 mm
ventral to the dura, according to the brain atlas in [51]. Four control animals were similarly injected
with isotonic saline solution. A2-PLTX-Pcb1a and control animals were euthanized after seven days,
and their brains were collected for further histological analysis.

4.5.3. Motor Activity

Motor activity was estimated in all animals before they were euthanized for histological purposes
in a VersaMax Animal Activity Monitor and Analyzer open field device (AccuScan Instruments, Inc.,
Columbus, OH, USA) for 15 min (one day before being euthanized).

4.5.4. Histology

Seven days after the intraventricular lesions, the animals were anesthetized i.p., with sodium
pentobarbital and perfused transcardially with 0.9% saline solution containing heparin, followed
by 4% p-formaldehyde at 4 ◦C. Then, brains were removed, post-fixed in 4% p-formaldehyde
for 2 days, and embedded in paraffin. Fixed tissues were serially sectioned in an 820 HistoSTAT
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microtome (American Instrument Exchange Inc., Haverhill, MA, USA). Sections (4 µm) were stained
with hematoxylin and eosin. The morphometric parameters were calculated following the “random
systematic sampler”. The general criteria to score damaged neurons included pyknotic nuclei and
cellular atrophy. The number of cells damaged was obtained as an average of five randomly selected
fields of four sections per rat. Data were expressed as the percentage of neuronal damage per field
in sections of the primary motor cortex. A 7-day period was chosen to demonstrate cell damage
in the adult rat brain since this period is optimum to evidence major qualitative and quantitative
morphological changes in the CNS (central nervous system) after a toxic insult. Considering that
reactive gliosis after toxic insults takes 3 or 4 days to occur, and major cell loss can be observed a
few days later, based on previous studies [52], the 7-day period looked adequate for this purpose.
In addition, since the infusion of the protein was made in the ventricle, the time selected was propitious
for the appropriate diffusion of the protein into the cortical tissue.

4.5.5. Statistical Analysis

Results obtained from behavioral and morphological tests were expressed as mean values ±
S.E.M. Data were analyzed by Student’s t-test, using the software Prism 4 (GraphPad, San Diego, CA,
USA). Values of p < 0.05 were considered as statistically significant.

4.6. Mass Spectrometry Analysis and Protein Sequencing

For mass spectrometry measurements, the purified A2-PLTX-Pcb1a was dissolved in 20%
acetonitrile/0.1% TFA (triflouroacetic acid) in water. Protein solution (100 pmol/µL) was diluted
200-fold in a saturated solution of α-cyano-4-hydroxycinnamic acid, in 50% ethanol. Enzymatic
digestion of A2-PLTX-Pcb1a was carried out using trypsin (modified sequencing grade). The enzyme
was dissolved in 20 µL of 1 mM HCl to a final concentration of 1.25 µg/µL; an amount of 50 µL of
A2-PLTX-Pcb1a protein solution (1000 pmol) was reacted with 48 µL of 25 mM NH4HCO3 at pH 8.4
and 2 µL trypsin solution. The mixture was agitated and incubated at room temperature for 3 h, and the
solution was diluted 200-fold in a matrix solution. The final peptide solutions were deposited on the
sample slide of a Kratos Kompact MALDI TOF-TOF (Manchester, UK) spectrometer using the Autodrop
System (Microdrop, Norderstedt, Germany). The mass spectrometer was equipped with a 337 nm
pulsed nitrogen laser for MALDI ionization and a curved-field reflectron for obtaining Post Source
Decay spectra. The instrument was operated in the positive ion mode with 20 kV extraction voltages.

4.7. Sequence Analysis

A2-PLTX-Pcb1a homologous sequences selected for sequence alignment were obtained from
Swiss-Prot (http://www.uniprot.org). Pairwise and multiple protein sequence alignments were
generated on Jalview 2.10 software [53] with the Clustal Ω algorithm using the default parameters [54].

4.8. Ethical Statement

Wistar rats were obtained from the vivarium of the School of Medicine from the Universidad
Nacional Autónoma de México (National Autonomous University of Mexico). All procedures were
strictly carried out according to the National Institutes of Health Guide for the Care and Use of
Laboratory Animals, and the local guidelines on the ethical use of animals from the Ministry of
Health, Mexico (Official Mexican Standard NOM-062-ZOO-2001). All were approved by the Ethics
Committee of the National Institute of Neurology and Neurosurgery (Project code 70/15, approved in
3 March 2016). Eight male Wistar rats (260–280 g) were used throughout the study. Rats were kept in
polycarbonate cages in the same room where the immobilization protocol was performed. Animals
were kept in groups of four per cage with free access to food (Laboratory rodent diet 5001, PMI
Feeds Inc., Richmond, IN, USA) and water, and under controlled environmental conditions (constant
room temperature (25 ± 3 ◦C), humidity (50 ± 10%), and light/darkness cycles (12:12 h), before the
immobilization experiments began.

http://www.uniprot.org
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