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Abstract

Alterations in the frequency and intensity of drought events are expected due to climate

change and might have consequences for plant metabolism and the development of plant

antagonists. In this study, the responses of spring wheat (Triticum aestivum) and one of its

major pests, the aphid Sitobion avenae, to different drought regimes were investigated, con-

sidering different time points and plant parts. Plants were kept well-watered or subjected to

either continuous or pulsed drought. Phloem exudates were collected twice from leaves and

once from ears during the growth period and concentrations of amino acids, organic acids

and sugars were determined. Population growth and survival of the aphid S. avenae were

monitored on these plant parts. Relative concentrations of metabolites in the phloem exu-

dates varied with the time point, the plant part as well as the irrigation regime. Pronounced

increases in relative concentrations were found for proline, especially in pulsed drought-

stressed plants. Moreover, relative concentrations of sucrose were lower in phloem exu-

dates of ears than in those of leaves. The population growth and survival of aphids were

decreased on plants subjected to drought and populations grew twice as large on ears com-

pared to leaves. Our study revealed that changes in irrigation frequency and intensity modu-

late plant-aphid interactions. These effects may at least partly be mediated by changes in

the metabolic composition of the phloem sap.

Introduction

Plants are subjected to various environmental impacts, which influence both their own perfor-

mance but also the development of organisms interacting with the plants [1–3]. Amongst

those impacts, the climatic conditions during growth crucially determine plant development

and fitness. Climate extremes such as droughts have become more frequent and intense and

are predicted to become even more severe in the coming decades [4]. In agriculture, sufficient

frequencies and amounts of precipitation are essential to sustain high crop yields [5, 6]. Along

with impacts on plant growth, the metabolic composition of different plant parts can be
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affected by drought [7–9]. For example, plants accumulate certain metabolites to facilitate

water uptake and to protect cell structures and functions [10]. Changes in plant physiology

and nutritional quality may influence interactions of plants with their biotic environment such

as herbivorous insect pests, which in turn can impact crop productivity [11]. Moreover, effects

on the metabolome and different drought tolerance traits may depend on the duration of stress

[12], the developmental stage of the plant [13] and differ between plant parts [9], but these

aspects have rarely been investigated. Drought-induced bottom-up effects on insect herbivores

and potential feedbacks of herbivores on plants should also be considered in integrated pest

management [14].

Different hypotheses regarding the effects of (drought) stress on the development of insect

herbivores have been postulated. The plant vigour hypothesis predicts that insect development

is best on plants grown under optimal conditions, explained by a favourable water and nutri-

ent content [15]. In contrast, the plant stress hypothesis states that insects develop best on

stressed plants due to a breakdown of proteins and thus an increase of accessible nitrogen in

plant tissues [16]. In addition, stressed plants should have fewer resources available to synthe-

sise defences. The pulsed stress hypothesis discriminates between continuous and intermittent

stress and states that particularly sap-feeding insects profit from an occasional recovery of cell

turgor and a stress-induced increase in accessible nitrogen [17]. There is support for all three

hypotheses, depending on the insect species, its feeding guild, developmental stage and the

magnitude of stress applied [18–21]. The latter is directly related to the number of drought

cycles plants are exposed to [22] but also to the phenology of the plants [23].

The life history of aphids is particularly shaped by the accessibility and quality of the

phloem sap of their host plants. Under drought, some plant species show increased concentra-

tions of several amino acids in the phloem sap or phloem exudates [24–26]. Furthermore,

sucrose levels can be higher in the phloem sap of plants experiencing drought, while some

defence metabolites show lower concentrations [25]. The development of aphids is positively,

not or negatively affected by drought [25–27], depending on the plant species as well as the

diet breadth of the aphid species. Given this specificity, it may be impossible to generally pre-

dict herbivore responses to drought stress of their host plants.

As one of the world’s most important crop plant species, wheat (Triticum aestivum L., Poa-

ceae) is well-investigated regarding impacts of abiotic environmental factors and pest resis-

tance [28, 29]. Apart from detrimental effects of water scarcity on wheat biomass production,

probably more than 20% of the global wheat yield is lost due to pests [29]. One of these pests is

the aphid species Sitobion avenae F. (Hemiptera: Aphididae), which feeds on phloem sap of

wheat [30]. This herbivore proliferates particularly on the inflorescences and can cause severe

yield losses by impacting grain filling and by transmitting plant viruses [30]. In a previous pub-

lication, we demonstrated that the biomass of wheat plants was lower for drought-exposed

plants than for well-watered plants, indicating that drought caused some stress, whereas the

applied water use efficiency was higher in drought-stressed plants [31]. Furthermore, the meta-

bolome of wheat flag leaves differed between drought-exposed and well-watered plants, mea-

sured at two different time points [31]. Changes in the leaf metabolome were more

pronounced in plants exposed to pulsed drought stress compared to continuously drought-

stressed plants, although all drought-stressed plants received the same cumulative amount of

water [31]. Changes due to these irrigation treatments were also found in the amino acid com-

position of phloem exudates of wheat leaves, with drastic increases in relative concentrations

of proline in plants that have experienced pulsed drought stress [32]. However, it remained

unclear how further primary metabolites (organic acids, sugars) in the phloem exudates are

affected by drought and whether effects of drought on the phloem exudate composition and

on aphids differ between time points as well as between leaves and ears.
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The objectives of the present study were to assess effects of different drought regimes on

various primary metabolites in phloem exudates of wheat and on aphids, considering different

time points and plant parts. We grew well-watered, continuously drought-stressed and pulsed

drought-stressed wheat plants, analysed various primary metabolites in phloem exudates of

leaves (at day 77 and day 93 after sowing) and ears (at day 93) and conducted bioassays with S.

avenae on leaves and ears. We hypothesised that the metabolite profiles of phloem exudates

are altered by the drought stress treatments, with more prominent changes in plants exposed

to pulsed than to continuous drought stress [31, 32]. In particular, we expected compatible sol-

utes such as proline and sugars to increase in relative concentration under drought stress in

the phloem exudates of both leaves and ears. For the aphids we predicted a higher population

growth and survival on drought-stressed compared to well-watered plants due to higher rela-

tive proline concentrations found in leaf phloem exudates of drought-stressed plants [32] and

in line with the plant stress hypothesis [16]. We expected that their development is even better

on pulsed drought-stressed than on continuously drought-stressed plants, in accordance with

the pulsed stress hypothesis [17]. Furthermore, we hypothesised that after ear emergence,

aphid populations grow bigger on ears compared to leaves, because nutrients are transported

from vegetative to reproductive tissues during grain loading [33].

Materials and methods

Plant cultivation

The experiment was carried out in Bielefeld, Germany, from December 2016 to May 2017.

Seeds of spring wheat (Triticum aestivum cv. Tybalt; von Borries-Eckendorf, Leopoldshöhe,

Germany) were germinated in a glasshouse chamber at 22˚C, 46% relative humidity (r.h.),

light:dark 12:12 h in a 1:1 mixture of soil (Fruhstorfer Pikiererde Type P, Hawita Group,

Vechta, Germany) and river sand. The substrate had been steamed at 90˚C before use. Six days

after sowing, five seedlings were placed in each pot (4 l, 15.7 x 15.7 x 23.3 cm; Meyer, Rellingen,

Germany) filled with 4,185 g of wet substrate. The water content of the substrate (determined

gravimetrically) was 23% (based on the substrate wet mass; corresponding to 30% based on the

dry mass of the substrate). To simulate field conditions with competition for light, water and

nutrients, one seedling was placed in the centre and served as target plant, the other four seed-

lings were planted around this plant with distances of 6 cm to the central plant. Pots had holes

at the bottom and were placed on dishes to allow draining but restrict water loss. The pots

were placed in a block design in a glasshouse chamber (11˚C, 75% r.h., light:dark 12:12 h;

ambient sunlight supplemented with 400 W lamps, Philips HPI-T Plus; Philips, Amsterdam,

Netherlands) and their positions were randomised once to twice a week. Five weeks after sow-

ing, the temperature was increased to 14˚C, the r.h. was 64% and the photoperiod was set to 14

h per day for 7 days. For the remaining time, plants were kept at 19˚C and 58% r.h. at a photo-

period of 16 h light:8 h dark. Every other day, 15 randomly chosen pots were weighed, pot

masses were averaged and all pots were filled with tap water to a soil water content of 23%

(based on the wet mass of the substrate; corresponding to 30% based on the dry mass of the

substrate). Each pot received 5 g and 3 g of a mineral fertiliser (Plantosan N-P2O5-K2O 20-10-

15, containing 6% MgO, 2% S and traces of B, Cu, Fe, Mn, Mo and Zn; Manna, Düsseldorf,

Germany) at 32 days and 68 days after sowing, respectively. The fertiliser was applied directly

before watering all pots.

Irrigation treatments

We aimed to simulate either lower overall water availability (continuous drought) or extreme

weather events (prolonged drought and sudden rain events, i.e. pulsed drought) in line with
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predicted current climate change scenarios [4], which crop plants likely face under field condi-

tions. Therefore, different irrigation treatments were initiated 46 d after sowing, when stems

started to elongate (BBCH stage 30 [34]). All pots were randomly assigned to one of three irri-

gation treatments, with 40 pots per treatment. Fifteen randomly chosen control (ctr) pots were

weighed every other day and the mean amount of water needed to reach a soil water content of

23% was calculated. The respective amount of water was added to each pot of this treatment

group. Pots that were subjected to the continuous drought (cd) or pulsed drought (pd) treat-

ment were not watered until they reached an average soil water content of 11% (average of 15

randomly chosen pots). After this period (62 d after sowing until the end of the last aphid bio-

assays at day 155), pots of the cd treatment were watered every other day with 40% of the water

amount that ctr plants received (Fig 1). Pots of the pd treatment received the cumulative

amount of water that was given to cd plants only every eight days, with the first irrigation

event at 68 d after sowing. Irrigation treatments were established in a pre-experiment in a way

that drought-exposed plants showed signs of wilting but recovered under re-watering and had

no signs of chlorosis or delay in development.

In a previous publication that focused on plant responses, we analysed the effects of the dif-

ferent drought stress regimes on plant biomass, physiology and the metabolome of entire flag

leaves that had been harvested from one of the surrounding plants per pot [31]. For the present

study, we used the central target plants from the same pots to collect phloem exudates and set

up additional batches of plants for bioassays with aphids.

Collection of phloem exudates

Phloem exudates were collected from the central target plants of the pots using the ethylenedi-

aminetetraacetic acid (EDTA) method modified after Schweiger et al. [35] at two time points

(T1, T2; Fig 1) during the experiment (n = 10 replicates per time point and treatment). At T1

(77 days after sowing and 31 days after start of the different irrigation treatments; start of plant

heading, BBCH stage 51), exudates were collected from the three youngest fully developed

leaves of the main shoot. Using another batch of pots, at T2 (93 days after sowing and 47 days

after start of the different irrigation treatments; inflorescences fully developed, BBCH stage 59)

exudates were collected from the three youngest fully developed leaves and in addition from

the ear of the main shoot. These time points were chosen, because the transition from the vege-

tative to the flowering stage is crucial for the interaction of wheat with S. avenae aphids, which

rapidly colonise emerging ears [36] and feed on the phloem sap of the inflorescences, mostly at

or close to the inflorescence stem. Leaf blades were cut at the base close to the stem and pooled

for each plant, whereas ears were cut 1 cm below the flowers. The following steps were per-

formed in darkness at room temperature. Plant parts were placed with their cut surfaces in

Fig 1. Scheduling of conducted experiments. Irrigation is shown from day 62 onwards when drought-stressed plants

had dried to a soil water content of 11%; control (ctr) plants were watered to a soil water content of 23%, continuous

drought-stressed (cd) plants were watered with 40% of the water ctr plants received, pulsed drought-stressed (pd)

plants were watered with the cumulative amount of water cd plants received over 8 d. Aphid population assays are

labelled above the line, single aphid assays are labelled below the line.

https://doi.org/10.1371/journal.pone.0262671.g001
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50 ml tubes containing 1 ml of 8 mM EDTA solution (AppliChem, Darmstadt, Germany,

pH = 7) for 2 h to suppress sieve tube plugging. Afterwards, the plant parts were transferred

into new tubes containing 1 ml of Millipore water for 2 h to collect the phloem exudates. For

blank sampling, tubes were filled with 1 ml of Millipore water and treated the same way as

samples were treated. Samples and blanks were then frozen in liquid nitrogen and stored at

-80˚C. Plant material used for exudate collection was dried for 96 h at 40˚C and dry mass was

determined.

Amino acid analysis

Amino acids in phloem exudates were analysed modified after Jakobs and Müller [37]. Sub-

samples (300 μl) of the phloem exudates were lyophilised and extracted in 60 μl of 80% metha-

nol (LC-MS grade, VWR International, Leuven, Belgium) containing the internal standards

norvaline and sarcosine (each at 50 pmol μl-1, Agilent Technologies, Waldbronn, Germany).

Samples were analysed via high performance liquid chromatography coupled to fluorescence

detection (1260/1290 Infinity, Agilent Technologies, Santa Clara, CA, USA) using a ZORBAX

Eclipse Plus C18 column (250 x 4.6 mm i.d., 5 μm, Agilent Technologies) with a guard column.

Derivatisation of samples with borate buffer (Agilent Technologies, 0.4 M, pH = 10.2), ortho-

phthaldialdehyde (Agilent Technologies, 10 mg ml-1 in borate buffer and 3-mercaptoproprio-

nic acid), 9-fluorenyl-methyl chloroformate (Agilent Technologies, 2.5 mg ml-1 in acetonitrile)

and injection diluent [100 ml mobile phase A (see below) and 0.4 ml 85% phosphoric acid

(AppliChem)] was performed in the autosampler (6˚C). The mobile phase A consisted of 1.4 g

Na2HPO4 (AppliChem), 3.8 g Na2B4O7 � 10 H2O (Sigma-Aldrich, Steinheim, Germany) and

32 mg NaN3 (Roth, Karlsruhe, Germany) in 1 l Millipore water (pH was adjusted to 8.2 and

the eluent filtered through a 0.45 μm membrane). The mobile phase B was a mixture of metha-

nol, acetonitrile (LC-MS grade, VWR International) and Millipore water (4.5:4.5:1, v:v:v). The

flow rate was 1.5 ml min-1 at 40˚C column temperature. At the beginning, 2% B were held for

0.84 min, followed by a ramp to 57% B (reached at 43.4 min) and by column cleaning and

equilibration. The excitation and emission wavelengths of the detector were set to 340 nm and

450 nm for the first 32 min (primary amino acids) and to 260 nm and 325 nm for the remain-

ing time (secondary amino acids), respectively. Amino acids were identified by comparing

their retention times with those of reference standards measured within the same worklist and

quantified via peak areas using OpenLab ChemStation revision C.01.07 (Agilent Technolo-

gies). Peak areas of amino acids were divided by the peak areas of the internal standards (nor-

valine for primary amino acids, sarcosine for secondary amino acids) and by the

corresponding dry mass of the plant material that had been used for the phloem exudate

collection.

Analysis of organic acids and sugars

Organic acid and sugar analysis was modified according to Kutyniok and Müller [38]. Sub-

samples (300 μl) of the phloem exudates were lyophilised and redissolved in 80% methanol

with ribitol (99%, Sigma-Aldrich) as internal standard. Subsamples of the supernatants were

dried under nitrogen and subsequently derivatised with O-methylhydroxylamine hydrochlo-

ride (Thermo Fisher Scientific, Karlsruhe, Germany) in pyridine (99.9%, Sigma-Aldrich, 20

mg ml-1) for 90 min at 37˚C and with N-methyl-N-trimethylsilyl-trifluoroacetamide

(Macherey-Nagel, Düren, Germany) for 30 min at 37˚C. Samples were analysed via gas chro-

matography coupled to mass spectrometry (GC-MS 2010 Plus QP2020, Shimadzu, Kyoto,

Japan) using a VF-5ms column (30 m × 0.25 mm i.d., 10 m guard column, Varian, Palo Alto,

CA, USA). Samples (1 μl) were injected at 225˚C, using a split ratio of 1:10. The flow of the
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carrier gas (helium) was set to 1.14 ml min-1. The temperature gradient started at 80˚C that

were kept for 3 min, followed by a ramp of 5˚C min-1 to 310˚C. Ions from 40 to 600 m/z were

detected in electron impact ionisation mode at 70 eV. Peaks were identified by comparing

Kováts retention indices based on n-alkanes (C8-C40, Sigma-Aldrich) as well as mass spectra

to reference substances measured under the same conditions and to an in-house database.

Analytes were quantified as peak areas via the total ion count. Where required (i.e., for fructose

and glucose), peak areas of analytes belonging to the same metabolite were summed up. Peak

areas were divided by the peak area of the internal standard and by the corresponding dry

mass of the plant part, from which the phloem exudates had been collected.

Aphid bioassays

Aphids of Sitobion avenae were obtained from Koppert Biological Systems (Suffolk, UK) and

reared in the laboratory on T. aestivum (cv. Tybalt) plants (2–5 weeks old) in insect rearing

tents (60 x 60 x 60 cm) for several generations. Bioassays were initiated in parallel to the two

phloem exudate collections (T1, T2; Fig 1), using separate plant batches (n = 10 replicates per

treatment and time point). The population dynamics of groups of five adult aphids as well as

the survival of individual nymphs were monitored on the central target plants of each pot by

confining aphids in different cages/bags. Tests were performed at two time points, with youn-

ger (T1) and older (T2) plants. To assess the population dynamics, five apterous adult aphids

(= ‘aphid population’) were placed in clip cages (inner diameter 16 mm, height 15 mm) on the

second youngest fully developed leaf of the main shoot (~7 cm away from the stem) of each

target plant. On plants used at T2, additionally five apterous adult aphids were placed on the

ear of the main shoot of the target plant, confined in gauze bags (length 18 cm, diameter 6.5

cm, mesh size 210 μm). On the following day, one nymph that had been born in the meantime

by each aphid population on the leaves was placed on the youngest fully developed leaf of the

same plant in a separate clip cage to monitor its survival (see below). All other nymphs, which

had been born within this first day on the leaves and on the ears, were discarded. From the sec-

ond day on, all offspring was left in the cages/bags and all individuals per population on the

leaves and ears were counted every other day until day 13 after initiating the population assays.

Population assays were terminated then, because the cages /bags became very crowded (> 100

aphids on some plants).

To score the survival of individual aphids placed in the separate cages on leaves, their condi-

tion (alive or dead) was assessed daily until all aphids were dead (T1: 64 d, T2: 61 d after

nymphs had been put into the individual cages). Survival was only scored on the leaves but not

on the ears, because multiple cages could only be clipped on leaves. Offspring delivered later

by these individual aphids was discarded daily to avoid competition.

Data processing and statistical analyses

Only those metabolites (amino acids, organic acids, sugars) were retained in the data set which

did not occur in the blanks or for which the concentrations in the samples were much higher

than in the blanks. Moreover, only samples, in which at least 4 metabolites were detected in

the GC-MS analysis, were included for further data processing, resulting in 5–10 replicates per

treatment group. Metabolites had to occur in at least 50% of the replicates of at least one of the

treatment groups to be retained in the data set (in accordance with other metabolomics stud-

ies, e.g. [31, 32]). To compare the phloem exudate composition in dependence of the irrigation

treatment, relative abundances of amino acids, organic acids and sugars in percent (sum of all

three compound classes set to 100%) were used for leaves and ears. We did not use absolute
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concentrations, because the phloem exudation rate during collection may differ between plants

of different irrigation treatments and between plant parts.

If not stated otherwise, further analyses were performed in R 3.4.2 [39], using the indicated

packages. Nonmetric multidimensional scaling plots were generated for relative abundances of

amino acids (sum set to 100%) and organic acids and sugars (sum set to 100%) across as well

as within time points and plant parts, using Wisconsin double standardisations of square root-

transformed data and Kulczynski distances (package ‘vegan’ [40]).

For each metabolite, the log2 fold change (mean relative abundance in the treatment

divided by the mean relative abundance in the respective control group) was calculated. To

compare the phloem exudate composition of leaves and ears, additional log2 fold changes were

calculated (mean relative abundance in ears at T2 divided by mean relative abundance in

leaves at T2) within each irrigation treatment. These fold changes were used to generate aver-

age linkage hierarchical cluster heatmaps based on Euclidean distances with Cluster 3.0 [41]

and Java TreeView [42]. Only metabolites were included that occurred in at least 50% of the

replicates of at least one of the two groups that were compared. Metabolites were clustered, but

not treatment groups.

Differences in aphid population sizes after 13 days were tested using a generalised linear

model with the factors irrigation treatment (levels ctr, cd, pd) and plant part (levels T1 leaves,

T2 leaves, T2 ears) as well as their interaction with a quasi-Poisson distribution and log link

function. Additionally, for each time point and plant part manual contrasts were calculated for

ctr plants vs. cd plants and for cd plants vs. pd plants with the package ‘contrast’ [43] and P-val-

ues were corrected according to Holm within each time point and plant part. Kaplan-Meier

survival probability curves (R package ‘survival’ [44]) were plotted for individual aphids on

leaves, accounting for right censoring for few aphids (7 out of 60) that escaped from the cages.

To test the effects of the factors irrigation and time point (levels T1, T2) as well as their interac-

tion on the survival of individual aphids on leaves, a linear Cox model was performed (R pack-

age ‘coxme’ [45]), followed by pairwise log rank tests (R package ‘survival’ [44]) with Holm

correction of P-values within each time point to compare the aphid survival on ctr vs. cd plants

as well as on cd vs. pd plants.

Results

Metabolite composition of phloem exudates

In total, 20 amino acids (Figs 2A and 3), 5 organic acids and 3 sugars (Figs 2B and 3) were

detected in the phloem exudates. The cis- and trans-isomers of aconitic acid could not be dis-

tinguished, i.e., the corresponding peak may be one of the isomers or the sum of both. The pri-

mary metabolite composition of the phloem exudates was partly influenced by the irrigation

treatments, time points and plant parts (Fig 2). The amino acid profiles of phloem exudates of

ctr leaves and cd leaves at T1 overlapped largely but ctr leaves were separated from pd leaves

(Fig 2C), whereas those of ctr leaves at T2 were separated from those of both drought groups

(Fig 2E). Furthermore, at T2 the amino acid profiles of phloem exudates of ears and leaves

were quite distinct (Fig 2A). Within phloem exudates of ears, especially the pd group differed

from the ctr group (Fig 2G). For organic acids and sugars, the phloem exudates of T1 leaves

partly differed from those of T2 leaves and the exudate composition of ears was clearly sepa-

rated from that of leaves (Fig 2B). The irrigation treatments did not cause any clear separation

regarding organic acids and sugars in the phloem exudates of the different plant parts collected

at T1 and T2 (Fig 2D, 2F and 2H).

The cluster heatmap (Fig 3A) revealed that the responses of proline, asparagine and aconitic

acid to the drought treatments were most pronounced. The relative concentrations of many
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Fig 2. Nonmetric multidimensional scaling plots of amino acids (left) and organic acids with sugars (right)

detected in phloem exudates of Triticum aestivum measured at two different time points after the beginning of

the irrigation treatments (T1 = 77 days, T2 = 93 days after sowing) in different plant parts (leaves, ears). Cd

(continuously drought-stressed) and pd (pulsed drought-stressed) plants were compared to well-watered control (ctr)

plants. NMDS plots for phloem exudates over all time points and plant parts (A, B), for leaves at T1 (C, D), for leaves at

T2 (E, F) and for ears at T2 (G, H). Analyses were based on relative abundances of the metabolites. Stress values are

given at the bottom. The treatment groups are framed by convex hulls, with the corresponding areas being hatched

(ctr) and non-hatched (drought-stressed plants), respectively. n = 5–10 replicates per treatment.

https://doi.org/10.1371/journal.pone.0262671.g002
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amino acids were lower in leaf phloem exudates of drought-stressed compared to control

plants at T1 but higher or comparable in phloem exudates of leaves and ears of drought-

stressed plants collected at T2. The strongest changes in relative concentrations were found for

proline, which had up to 13-, nine- and six-fold higher mean relative concentrations in phloem

exudates of leaves at T1, leaves at T2 and ears (T2) of pd plants compared to control plants

(Fig 3A). In contrast, asparagine showed a seven-fold higher relative concentration in leaf

phloem exudates of cd compared to control plants at T2. Aconitic acid had considerably lower

relative concentrations in leaf phloem exudates of drought-stressed plants than in those of ctr

plants at T1; at T2, it only occurred in few replicates and no fold changes were computed. Sim-

ilarly, the relative citric acid concentrations were markedly lower in leaf phloem exudates of

drought-stressed (especially pd) plants compared to those of controls at T1. For the sugars we

found no clear pattern except for sucrose that showed 2.3 and 1.5 times higher relative concen-

trations in phloem exudates of ctr ears (T2) than in those of cd and pd ears, respectively. Com-

paring phloem exudates of ctr ears versus leaves at T2, the mean relative concentrations of

asparagine, proline and glutamine as well as of malic acid were 15, 10, 6 and 6 times higher in

ears (Fig 3B). Similar differences were also observed in phloem exudates of ears versus leaves

of both drought stress treatments. In contrast, we found two times lower relative sucrose

Fig 3. Average linkage hierarchical cluster heatmaps (based on Euclidean distances of log2 fold changes) of

relative metabolite abundances in phloem exudates of leaves and ears of Triticum aestivum measured at two time

points after the beginning of the irrigation treatments (T1 = 77 days, T2 = 93 days after sowing). In A, cd

(continuously drought-stressed) and pd (pulsed drought-stressed) plants were compared to well-watered control

plants for each time point and plant part. In B, phloem exudates of ears were compared to those of leaves within each

irrigation treatment at T2. For some comparisons, no fold change was computed since the metabolite did not occur in

at least 50% of the replicates of at least one of the two groups that were compared (grey boxes). GABA, γ-aminobutyric

acid. Means of n = 5–10 replicates per treatment.

https://doi.org/10.1371/journal.pone.0262671.g003
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concentrations in the phloem exudates of ears than in those of leaves (ctr, T2). These differ-

ences were even more pronounced in drought-stressed plants (Fig 3B).

Aphid population growth and survival

Aphid population sizes increased from five up to 162 aphids within 13 days (Fig 4). At day 13

of the bioassay, population sizes were significantly influenced by the factors irrigation and

plant part (Table 1), being on average between 13% and 61% larger on ctr plants compared to

cd and pd plants, respectively. This trend could be observed from day 7 onwards (Fig 4). How-

ever, population sizes at day 13 did not differ significantly between ctr and cd plants or

between cd and pd plants. Moreover, on average two times larger populations were found at

T2 on ears compared to leaves across plants of all irrigation treatments at day 13 (Fig 4).

The survival of individual aphids on leaves was significantly influenced by the irrigation

treatment (Table 2). Aphids survived longest on ctr plants and showed the lowest survival

probability on pd plants at T1 (Fig 5). The effects of the drought treatments were slightly more

pronounced at T1 but did not differ significantly between T1 and T2, i.e. there was no signifi-

cant effect of time point and also no significant interaction between irrigation and time point

(Table 2). For the bioassay starting at T1, aphid survival was significantly lower on cd com-

pared to ctr plants, whereas the survival probability did not differ significantly between aphids

on cd and pd plants at T1 or between the treatment groups (ctr vs. cd, cd vs. pd) at T2.

Discussion

Effects of drought stress on the metabolite profiles of phloem sap may affect plant-aphid inter-

actions, because aphids use the phloem sap as their food source. Our study revealed that

Fig 4. Mean numbers (± standard errors) of Sitobion avenae aphids (nymphs and adults) on Triticum aestivum
leaves and ears over time. Aphids were placed on control (ctr), continuously drought-stressed (cd) or pulsed drought-

stressed (pd) plants at two time points after the beginning of the irrigation treatments (start at T1: 77 days after sowing

or T2: 93 days after sowing). Bioassays started with 5 adult aphids per clip cage (leaves) or gauze bag (ears). For each

time point and plant part at day 13, manual contrasts of ctr vs. cd and cd vs. pd were calculated; n.s. = not significant;

n = 10 replicates per treatment.

https://doi.org/10.1371/journal.pone.0262671.g004

Table 1. Output of generalised linear model for population sizes of Sitobion avenae aphids on Triticum aestivum subjected to different irrigation treatments (factor

irrigation with levels well-watered, continuous drought, pulsed drought).

Residual deviance Residual df F P
Null Model 1717.0 89 - -

Irrigation 1627.6 87 3.56 0.033

Plant Part 1056.5 85 22.74 < 0.001

Irrigation x Plant Part 1033.6 81 0.46 0.768

At two time points after the beginning of the irrigation treatments (T1: 77 days after sowing or T2: 93 days after sowing), aphid populations were placed on different

plant parts (factor plant part with levels T1 leaves, T2 leaves, T2 ears). Final aphid population sizes after 13 days were tested. Significant P-values (< 0.05) are highlighted

in bold; n = 10 replicates per treatment.

https://doi.org/10.1371/journal.pone.0262671.t001
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drought stress caused changes in the metabolic composition of the phloem exudates of both

leaves and ears of wheat, with fold changes of some metabolites being higher in pd compared

to cd plants, as predicted. In particular, proline was drastically enhanced in relative abundance

in response to drought stress. Proline is well known to accumulate under drought conditions

in leaves, as it acts as an osmolyte and is involved in protecting cell structures and functions

[46]. Enhanced proline concentrations in leaves under drought are often due to an interplay

between increased biosynthesis and reduced catabolism [47] and proline may be transported

from photosynthetic tissues to roots under drought [48]. Proline has also been found to be

enhanced in leaf phloem sap or exudates of drought-exposed plants of several species, includ-

ing wheat [24, 32, 49]. The present study revealed a drought-induced increase of the relative

concentrations of proline in phloem exudates not only of leaves but also of ears and an overall

much higher relative concentration in the latter. Similar to proline, asparagine increased in

phloem exudates of drought-exposed plants and was particularly high in exudates of ears.

Asparagine is likewise responsive to abiotic stress [50] and was found to increase in concentra-

tion under drought stress in leaves and their phloem exudates in different species [26, 51, 52].

Whether the relative increases of proline and asparagine in the phloem exudates under

drought found in the present study are due to lower protein biosynthesis, higher degradation

of proteins or to de novo synthesis or lower catabolism of these amino acids remains to be

tested.

Interestingly, some metabolites in the phloem exudates mainly increased relatively in

response to the cd treatment (e.g., asparagine), others in response to the pd treatment (e.g.,

proline). The latter may be explained by longer drought stress periods that led to intermittently

lower soil water contents. Some metabolic processes might only become modulated above a

certain stress threshold. In contrast, a more pronounced impact on phloem metabolite concen-

trations caused by cd stress might be explained by the fact that cd plants only received a frac-

tion of the water that pd plants received on the day before the phloem exudate collection.

Thus, cd plants might have had a lower chance to recover from drought compared to pd

plants. Moreover, strikingly many amino acids showed lower relative concentrations in

phloem exudates of leaves in drought-stressed compared to control plants at T1, while these

were similar or higher compared to the ctr plants at T2. These effects might be caused by the

varying developmental stages of the plants at harvest and/or the different durations of the

drought stress experienced before. After short-term stress these metabolites may be used to

synthesise other compounds that are involved in the drought response. After a longer period

of stress these amino acids might be synthesised in response to drought.

With regard to organic acids, the most apparent decreases in relative concentrations in

response to drought were found for citric acid and aconitic acid in phloem exudates of leaves

at T1. Likewise, a decrease of citric acid was found in shoots of two genotypes of wheat

Table 2. Output of linear Cox model for the survival probability of Sitobion avenae aphids on Triticum aestivum
subjected to different irrigation treatments (factor irrigation with levels well-watered, continuous drought, pulsed

drought).

df X2 P
Irrigation 2 11.07 0.004

Time point 1 0.82 0.366

Irrigation x Time point 2 4.26 0.119

Individual nymphs were placed on leaves at two different time points after the beginning of the irrigation treatments

(start at T1: 78 days after sowing or T2: 94 days after sowing). Significant P-value (< 0.05) is highlighted in bold;

n = 10 replicates per treatment.

https://doi.org/10.1371/journal.pone.0262671.t002
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seedlings after 15 d of water deprivation [53]. Citric acid is an intermediate of the tricarboxylic

acid cycle; thus, the energy metabolism is apparently affected by drought. Impacts on the

energy metabolism might not only induce further metabolic changes but also affect plant phys-

iology and productivity [54]. For aconitic acid, we could not distinguish the isomers (cis/
trans). As cis-aconitic acid is also part of the tricarboxylic acid cycle, a decrease of this organic

acid would again point to changes in the energy metabolism. However, grasses including

wheat also contain trans-aconitic acid [55]. Interestingly, this organic acid showed lower con-

centrations under salt stress in shoots of Zea mays (Poaceae) [56] and led to reduced survival

of the aphid Rhopalosiphum padi (Hemiptera: Aphididae) on an artificial diet [57]. Further-

more, a negative correlation between the concentration of trans-aconitic acid in the stem juice

of different sorghum (Poaceae) cultivars and damage by the sugarcane aphid has been reported

[58], highlighting that organic acids can impact aphid development.

For sugars, no strong responses to drought were found in phloem exudates of wheat leaves

in the present study. Sugars are known to contribute to drought stress tolerance; however, an

increase under drought seems to occur only in certain genotypes of wheat [53, 59, 60]. In leaf

phloem exudates of drought-stressed plants of Arabidopsis thaliana (Brassicaceae) sucrose

likewise accumulated compared to control plants [25]. In contrast, in phloem exudates of ears

examined in our study, the relative sucrose concentration was lower in drought-stressed com-

pared to ctr plants. In ears, relative concentrations of metabolites in phloem sap might be

influenced by an altered metabolism during grain loading. Metabolic changes over time (from

anthesis to grain filling) were shown for different organs of wheat and depended on the water

Fig 5. Kaplan-Meier relative survival probability curves of Sitobion avenae aphids on Triticum aestivum leaves

over time. Nymphs were placed on control (ctr), continuously drought-stressed (cd) or pulsed drought-stressed (pd)

plants at two different time points after the beginning of the irrigation treatments (start at T1: 78 days after sowing or

T2: 94 days after sowing). Crosses indicate right censoring. For each time point, pairwise log rank tests comparing the

groups ctr vs. cd and cd vs. pd were calculated; n.s. = not significant, � = P< 0.05; n = 10 replicates per treatment.

https://doi.org/10.1371/journal.pone.0262671.g005
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status of the plants [61]. Our wheat plants might have been in different developmental stages

of anthesis or grain loading due to different watering regimes at T2, although their habitus did

not vary visually. Sucrose is an abundant sugar in pure phloem sap of all plant species, whereas

the occurrence of hexoses such as glucose and fructose in the phloem sap is still a matter of

debate [62] and is often attributed to artefacts imposed by the EDTA-facilitated exudation

method [63]. However, in wheat phloem sap collected via aphid stylectomy close to the ear glu-

cose and fructose were also detected and their levels increased significantly during grain load-

ing [64]. Thus, the hexoses in the phloem exudates found in the present study in wheat are

probably not artefacts from the sampling method.

In response to the drought-induced changes in phloem quality, we hypothesised that aphids

show a higher population growth and survival on drought-stressed compared to control plants

in line with the plant stress hypothesis [16]. However, while there was an overall significant

effect of irrigation, within time points and plant parts the population sizes of S. avenae did not

differ significantly between cd and ctr plants. In contrast, the relative survival probability was

significantly higher on ctr plants (at T1). Because the control plants showed the highest shoot

biomass [31], these results rather support the plant vigour hypothesis [15]. In a recent study, a

lower net reproductive rate and reduced rates of increase on drought-stressed compared to

control wheat plants for S. avenae were reported [60]. In our study, the changes in metabolite

composition of the phloem exudates induced by the different irrigation treatments may not

have been substantial enough to impact overall population size, although they affected the

individual survival (at T1).

Moreover, in contrast to our expectation and to the pulsed stress hypothesis [17], the aphid

population growth and survival did not differ significantly between cd and pd plants, although

some phloem metabolites such as proline and citric acid were more affected by pd than by cd.

Due to potential effects of the irrigation treatment on the volume of collectable phloem exu-

dates, evaluating the absolute concentrations of amino acids, organic acids and sugars was not

possible. Collection of phloem sap via aphid stylectomy from differently watered plants in a

similar experimental set-up led to considerable higher volumes collected per time obtained

from ctr plants compared to cd and pd plants (Stallmann, personal observation). This might

be explained by an increase in phloem sap viscosity under drought and a resulting reduction

in its flow rate [65]. The plant water status and leaf turgor are decisive for the accessibility of

phloem sap and drought might therefore influence the survival of S. avenae on drought-

stressed wheat plants, probably by compromising aphid feeding. In line with that assumption,

the phloem sap ingestion rate of R. padi was reduced on drought-stressed Dactylis glomerata
(Poaceae) plants despite an enhanced osmotic pressure and slightly higher concentrations of

essential amino acids in the phloem sap, leading to a suppressed intrinsic rate of increase [27].

Water availability does not only influence primary metabolites in plant tissues but can also

affect specialised (secondary) metabolites such as terpenoids or alkaloids, which increase in

certain plant parts under drought conditions depending on the duration of stress [12, 66, 67].

Some of the characteristic defence metabolites of wheat, the benzoxazinoids, are known to

accumulate under drought conditions in leaves of seedlings [68, 69] and likewise in flag leaves

of mature plants under pd stress [31]. Benzoxazinoids also occur in the phloem sap of wheat

[70] and may affect aphid development [70, 71]. Other abiotic factors related to climate change

such as warming have been shown to modulate the salicylic and jasmonic acid signalling path-

ways in wheat, with effects on the population size and feeding behaviour of S. avenae [72]. Fur-

thermore, drought can impact morphological plant parameters [10], such as the trichome

density, which can influence aphid survival [73].

Aphid populations grew almost twice as large on ears compared to leaves on older plants

(T2) in the present experiment. In the field, S. avenae cause highest yield losses when
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proliferating on the inflorescences during flower formation and anthesis [30] and many aphids

colonise the ears as soon as they emerge, while some mostly feed on the phloem sap of the

upper leaves ([36]; personal observation). That these aphids prefer the ears over the leaves may

be related to better nutritional conditions at the ears, which may also explain the higher popu-

lation growth on ears in our study. Important nutrients are transported from the vegetative tis-

sue to the developing grains via the sieve tubes, leading to changes in phloem sap composition

during grain loading [64]. In our experiment, the relative concentrations in phloem exudates

collected from ears of ctr plants were lower for sucrose but higher for malic acid and several

amino acids like proline, asparagine and glutamine compared to leaf phloem exudates. Since

both sucrose and amino acids affect aphid development [74], these differences may in part

explain the larger aphid populations on ears than on leaves.

Conclusion

In summary, our study revealed that drought influences the relative composition of phloem

exudates of wheat plants with the magnitude and direction of the impacts depending on the

irrigation frequency, time point and plant part under investigation. Regarding the two time

points, differences in plant phenology as well as differences in the duration of the preceding

drought stress phase may have contributed to the changes in plant quality. These modifications

of the phloem sap composition might be one of the reasons for changes in aphid survival on

plants subjected to drought stress. Considering these results in context of the predicted scenar-

ios of climate change, future investigations on drought and other components of climate

change should take into account that not only the intensity but also the frequency of stresses

can be decisive for plant chemistry and herbivore development. In addition to the severity of

drought stress, the time at which the drought stress occurs during plant development may play

a role for wheat grain production, as shown before [75]. Further studies are needed to investi-

gate the underlying mechanisms.
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